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Experiments are reported on the formation and migration of isolated dunes in a turbulent
channel flow. These dunes have a very robust crescentic shape with horns pointing down-
stream, very similar to that of the barchan dunes observed in deserts at a much larger
scale. Their main geometrical and dynamical properties are studied in detail, for four
types of grains: the conditions for their formation, their morphology, the threshold shear
stress for their motion, their velocity, erosion rate, minimum size, and the longitudinal
stripes of grains hollowed by fluid streaks in the boundary layer. In particular, the law for
the dune velocity is found to involve two dimensionless parameters, the Shields number
and the sedimentation Reynolds number, in contrast with predictions based on classical
laws for particle transport. As the dune migrates, its size slowly decreases because of
a small leakage of particles at the horn tips, and the erosion law is given. A minimum
size is evidenced, which is shown to increase with the friction velocity and scale with a
settling length.

1. Introduction
When sand grains are entrained by an air flow over a non-erodible ground, or with

limited sediment supply from the bed, they form dunes showing a remarkable crescen-
tic shape with horns pointing downstream. These dunes, known as barchan dunes, are
commonly observed in deserts, with height of a few meters and velocity of a few tens
of meters per year. In his famous book, Bagnold (1941) first pointed out their signifi-
cance for understanding the physics of blown sand. Their outstanding shape and stability
properties have triggered a number of studies, aiming at understanding the conditions
for their formation, their migration velocity and time evolution, and also the striking
existence of a minimum length, of about ten meters, below which no dune is observed. A
model accounting for their main properties was derived by Kroy, Sauermann & Hermann
(2002) and Andreotti, Claudin & Douady (2002a, 2002b), from calculations of the shear
stress at the dune surface by Hunt, Leibovich & Richards (1988) and a relaxation equa-
tion for the sand flux accounting for the retarding effect of grain inertia (Sauermann,
Kroy & Hermann 2001).

Similar barchan dunes have also been observed under water flows, with, however,
much shorter lengths than in air, when, again, the sediment supply is limited. Such
dunes formed in an open channel flow are reported by Mantz (1978), with typical width
of about three centimeters (Figure 1a); in this paper the resemblance with the aeolian
dunes observed by Bagnold was noted. This resemblance was investigated further by
Hersen, Douady & Andreotti (2002) and Hersen (2005) from experiments in which the
dunes were formed on a tray oscillating asymmetrically in a water tank. Barchan dunes
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Figure 1. Subaqueous barchan dunes. (a), in an open channel (Mantz 1978); (b) in a pipe
(Al-lababidi et al. 2008); (c), in a closed channel from the present experiments, top and side
views, and definition of the characteristic lengths (zircone beads with diameter d = 0.2 mm,
dune length L = 50 mm). Water flows from left to right.

formed in a circular pipe are also clearly visible in a photograph shown by Al-lababidi et
al. (2008) (Figure 1b); although this paper does not comment on their particular shape,
it discusses the increase of the pressure drop and potential damages that isolated dunes
may cause in industrial pipe flows.

Barchan dunes under water have received much less attention than aeolian dunes,
and important issues related to their dynamics remain unanswered. These issues are
(i) the conditions under which barchan dunes form and disappear, and their migration
velocity; (ii) the distributions of fluid velocity and shear stress over the dune surface,
and the resulting particle flux; (iii) their stability properties and interactions in a field:
splitting and merging of dunes of different size and velocity, existence of an eventual
stable equilibrium size. This paper aims at answering these questions, from experiments
in a turbulent channel flow. The present Part One is devoted to the first issue of the
formation and velocity of dunes; the following Part Two will deal with the second issue
of the fluid motion near the dune. In this Part One, the experimental set-up and turbulent
water flow are described in §2. The formation, morphology and migration velocity of the
barchan dunes are analysed in §3. The results are summarized and discussed in §4.
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Figure 2. Sketch of the experimental arrangement. (a), side-view; (b), cross-section of the
channel.

2. Experimental arrangement and channel flow
2.1. Experimental arrangement

The experimental arrangement mainly consists of a horizontal plexiglass channel, six
meters long, with rectangular cross-section of height 2δ = 60 mm and width b = 120
mm (Figure 2a). Water flows from a head-tank with free surface 2.5 meters above the
channel, and enters the channel through a divergent-convergent device with a honeycomb
section in order to suppress large eddies and homogeneize the small-scale turbulence. At
the open end of the channel, particles are separated by sedimentation in a large tank,
and a pump drives the water up to the head-tank. The volumetric flow rate is measured
with an electromagnetic flow-meter.

The particles were deposited in the channel, previously filled with water, with the help
of a syringe through a small hole in the upper wall located at 4.15 m form the entrance.
The sand settled in the water at rest and formed a conical heap. Then the flow was
started up, and the heap deformed into a barchan dune. The evolution of the shape of
the dune was recorded with a video camera placed above the channel and mounted on a
travelling system. The resolution of the camera was 2048×2048 pixels, with field of view
at the bottom wall of about 140× 140 mm2. The side view of the dune was recorded on
the same images thanks to a mirror inclined at 45◦, as shown in Figure 2b. A sample of
the resulting image is shown in Figure 1c.

Fluid velocity measurements were performed in the vertical mid-plane of the channel
using Particle Image Velocimetry (PIV), as sketched in Figure 2b. A vertical laser sheet of
thickness of 1 mm was generated by a 30mJ Nd:Yag double-pulse laser, and illuminated
fluorescent rhodamine encapsulated in small acrylic beads, of density 1110 kg m−3 and
diameter of about 10 µm. A 1280 × 1024 px 12-bit CCD camera was used to capture
the images, with a 50 mm or 60 mm Nikon lens. The time interval between the two
images of a pair was in the range 224–848 µs, and the sampling frequency of the pairs
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were in the range 1–4 Hz. A high-pass filter interposed between the laser sheet and the
camera allowed suppression of the light scattered by the dunes and channel walls. For
flow measurements over the whole channel height, the field of view was 85 × 68 mm2,
whereas for closer inspection near the dune, a smaller field of view was used, of 22× 17
mm2. The PIV images were processed with the software PIVIS developed at IMFT, with
correlation boxes of 16×16 pixels with sub-pixel accuracy; the resulting spatial resolution
of the velocity field was 1 mm with the large field, and 0.15 mm with the small one (in
the latter case an overlap of 50% of the correlation boxes was used). Convergence of the
time-averaged longitudinal and vertical velocities, U and V , was achieved within 1% with
about 30 frames, whereas a larger number, of about 200, was required for the Reynolds
stresses u′2, v′2 and u′v′.

2.2. Channel flow
The flow velocity 〈U〉, defined as the ratio of the measured volumetric flow rate and
the channel cross-section, was varied between 0.15 and 0.4 m s−1. The corresponding
Reynolds number

Re =
〈U〉2δ
ν

(2.1)

was in the range 9000− 24000, so that the flow was turbulent.
Figure 3a displays mean velocity profiles U(y) in the mid-plane, four meters down-

stream of the inlet, for six Reynolds numbers in the range 14000–21000. The profiles
appear to be symmetric with respect to the horizontal mid-plane, as expected. The
depth-averaged velocity is slightly larger than the flow velocity 〈U〉, by about 4%, which
difference corresponds to the retarding effect of the lateral walls. Plotting these veloci-
ties with semi-logarithmic scales (not shown) reveals log-regions spanning approximately
from 2 to 10 mm from the walls, allowing the friction velocity u∗ to be determined by
linear regression with κ = 0.41 for the Kármán coefficient. Figure 3b displays the velocity
profiles in the lower half of the channel in wall units, U+ = U/u∗ versus y+ = yu∗/ν, for
six Reynolds numbers. It appears that for y+ in the range 30–200, data points collapse
onto the same curve

U+ =
1
κ

ln y+ +B, (2.2)

with the coefficients κ = 0.41 and B = 5.5 having their usual values (Davidson 2004).
Note that these coefficients have been shown to decrease slightly with Reynolds number
and reach constant values for large Reynolds number only (Nagib & Chauhan 2008); these
small variations have not been taken into account here. A slow secondary flow normal to
the main flow is known to develop in rectangular ducts, with typical velocity of about
1% of the mean longitudinal velocity (Melling & Whitelaw 1976). This secondary flow is
expected to have negligible effect on the motion of dunes, and has not been measured.

Figure 4 shows the variation of the friction coefficient cf = u2
∗/

1
2 〈U〉2 with Reynolds

number, together with the Blasius correlation

cf = 0.079 (1.33Re)−1/4. (2.3)

In this equation, the factor 1.33 arises because the Reynolds number involved in the
Blasius correlation is based on the hydraulic diameter, and the friction velocity represents
the average over the perimeter of the channel (Schlichting 1979). It appears from Figure
4 that the Blasius correlation provides a good fit of the measured friction velocities.

Figure 5a displays profiles of the Reynolds stress −u′v′, normalized by u2
∗. This stress is

antisymmetric and varies linearly in the middle of the channel, as expected in a pressure-
driven channel flow. Its maximum is slightly lower than u2

∗ and located at y/δ ≈ 0.2; closer
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Figure 3. Velocity profiles U(y) in the vertical mid-plane of the channel for Re = 13900 (∗),
15000 (�), 16200 (◦), 17400 (4), 18500 (O) and 19700 (�); (a), in linear dimensional scales; (b)
in semilog wall scales in the lower half of the channel, with the straight line corresponding to
equation (2.2).
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Figure 4. (◦), Friction coefficient versus Reynolds number; (—), Blasius correlation (2.3).

to the walls where viscous effects are no longer negligible, it decreases to zero. Figure
5b displays the same profiles in wall units, magnifying the region close to the maximum;
this plot confirms that stresses are nearly uniform in the region 30 < y+ < 200 where
the log-law holds.

The Reynolds stresses u′2 and v′2, not shown, have also been determined and their
profiles agree with those shown in the literature (Davidson 2004). In particular, u′2 is
minimum and about u2

∗ at mid-height (y/δ = 1), it increases towards the walls and
reaches a maximum of about 4–5u2

∗ in the log-region; similarly, v′2 is minimum and
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Figure 5. Vertical profiles of the normalized Reynolds stresses −u′v′/u2
∗ for the same Reynolds

numbers as in Figure 3 ; (a), over the whole channel height; (b), close to the bottom wall in wall
units. Symbols: same as in Figure 3.

about 0.5u2
∗ at mid-height, it increases towards the walls and reaches a maximum about

u2
∗ in the log-region (y+ ≈ 100).
From the above discussion, it can be concluded that in the last third of the channel

where the dune motion was observed, the water flow has the classical features of a fully-
developed turbulent channel flow. In particular, near the lower wall and up to a height
of about one centimeter, the mean velocity profile is logarithmic with friction velocity u∗
given by the Blasius correlation (2.3); in this region, the Reynolds stress −u′v′ is nearly
uniform and close to u2

∗, as in a turbulent boundary layer with negligible pressure-gradient
effect.

2.3. Particles
Four types of particles were used, whose properties are given in Table 1: series 1, 2 and 3
correspond to glass particles of median diameter d = 0.12, 0.20 and 0.51 mm, and series
4 to heavier zirconium particles† of diameter 0.19 mm. The standard deviation of the
diameter distribution was about 0.2 d. The falling velocity Vfall shown in the table was
obtained from the classical Schiller-Neuman correlation for the drag coefficient (Clift,
Grace & Weber 1978), CD = 24/Refall(1 + 0.15Re0.687fall ) where the settling Reynolds
number is defined as

Refall =
Vfalld

ν
. (2.4)

We finally define the particle Reynolds number and Shields number as

Rep =
u∗dd
ν

, θ =
ρu2
∗d

(ρp − ρ)gd
=
u2
∗d
V 2

ref

(2.5)

where u∗d = 1.2u∗ is a characteristic friction velocity on the dune (larger than the
friction velocity u∗ on the smooth wall, as explained in the following Section) and Vref =
((ρp/ρ − 1)gd)1/2 is a reference settling velocity. Table 1 displays the maximum value

† The glass and zirconium particles were obtained from Sigmund Lindner GmbH, D-95485
Warmensteinach.
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Series d ρp Vfall Refall Rep,max θmax Symbol
mm kg m−3 mm s−1

1 0.12 2600 10.7 1.28 3.0 0.34 �
2 0.18 2600 20.6 3.71 4.5 0.23 ◦
3 0.51 2600 78.4 40.0 12.9 0.08 �
4 0.19 3760 35.0 6.65 4.8 0.12 ∗

Table 1. Particles properties, settling velocity Vfall and Reynolds number Refall, maximum
values of the particle Reynolds number Rep and Shields number θ, and corresponding symbols
in the figures.

of these numbers. Note that the particle Reynolds numbers was smaller than 13 for all
experiments, so that small viscous effects on the grain motion are likely to be expected.

3. Dune motion
3.1. Dune formation

Once a conical heap of particles is formed in the channel as explained in the previous
section, the flow is started up at a constant rate. The heap then deforms as shown in
Figure 6, which displays the top view and side view (in the upper part of the photos,
as given by the inclined mirror) of a typical heap, at six successive times. Due to strong
erosion on the upstream face, the heap flattens, as it can be seen on the side views,
and its horizontal area increases. A slip face develops on the lee-side where particles
avalanche (the clearer region on the top views), and horns grow on both sides. On the
fifth photograph (t = 36 s), the heap has reached a crescent-like shape typical of a barchan
dune. The dune then propagates downstream, keeping the same shape. The equilibrium
shape is reached as the displacement of the dune from its initial position is of the order
of its length. Varying the shape of the initial heap does not change the final dune shape.

The dune propagates as the result of the erosion of a thin layer of particles at the surface
of the upstream face; there, particles roll on each other, as over a flat bed (Mouilleron,
Charru & Eiff 2009; Lajeunesse, Malverti & Charru 2010); contrary to what happens
in air, no large saltating jumps were observed. As the particles reach the brink, they
avalanche on the downstream face where the fluid shear stress nearly vanishes. Among
the particles that arrive at the horn tips, most of them are driven towards the base of the
slip face by the recirculating flow in the dune wake. However, a few of them are entrained
downstream and leave the dune, so that the dune size slowly decreases with time.

As the dune propagates, one horn may become longer than the other, as shown in
Figure 7; the longer horn generally looses more particles, so that its length decreases and
the initial symmetry is recovered. However, when the dune approaches one of the side
walls of the channel, the asymmetry may amplify: the longer horn eventually separates
from the main dune and form a smaller dune propagating faster. Similar observations
were made by Hersen (2005) for dunes over a tray undergoing asymmetric oscillations in
a tank.
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Figure 6. Side views (upper part of the pictures) and top views (lower part) of an initially
conical heap of diameter 20 mm deposited from a syringe (the fixed black spot) and deformed
by the water flow, at times t = 0, 9, 18, 27, 36 and 45 seconds. The flow, with Re = 22200, is
from left to right.

Figure 7. Top view of an asymmetric dune with different horn lengths; the dune width is
W = 5 cm and the distance to the lateral walls of both horns is the same; the particles leaving
the longer horn are clearly visible.

3.2. Threshold shear stress for dune motion

Since the initial heap is formed by sedimentation, the arrangment of the particles is
loose and particles are easily moved by a small water flow. As the heap deforms, the
packing density increases and particles move less easily (which phenomenon is known
as armouring). Once the equilibrium shape is reached, a minimum water flow rate is
then needed for moving the barchan dune. The criterion chosen for this minimum flow
rate, not so easy to assess, was that a continuous motion over the dune surface must be
visible. This criterion gave threshold conditions close to those obtained by extrapolating
the dune velocity down to zero, see §3.4. Table 2 gives, for the four series of particles,
the friction velocity u∗ on the smooth wall corresponding to the threshold conditions,
deduced from the Blasius correlation (2.3) (for the threshold experiments, particles have
been re-sieved so that the diameters appearing in Table 2 are slightly different than those
in Table 1).

The actual shear stress on the dune crest, say ρu2
∗d, is expected to be larger than
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Series d D θt u∗t u∗ u∗t/u∗
mm – – mm s−1 mm s−1 –

1 0.11 2.75 0.073 11.2 9.0 1.24
2 0.21 5.26 0.047 12.4 10.7 1.16
3 0.53 13.3 0.031 15.9 13.1 1.22
4 0.21 6.31 0.042 15.4 11.9 1.29

Table 2. For each of the four series, dimensionless number D, corresponding threshold Shields
number θt and threshold friction velocity u∗t, friction velocity at the onset of dune motion u∗
as given by (2.3), and ratio u∗t/u∗.

that on the smooth wall, ρu2
∗, due to both form and roughness effects. This shear stress

was estimated as follows. The threshold shear stress for particle motion on a flat bed
corresponds a critical Shields number

θt =
ρu2
∗t

(ρp − ρ)gd
. (3.1)

This number is about 0.05, and weakly depends on the particle Reynolds number (or the
dimensionless number D3 = (ρp/ρ−1)gd3/ν2 which represents a Reynolds number based
on the Stokes falling velocity). For each series of particles, this number can be calculated
using the empirical correlation θt(D) proposed by Soulsby & Whitehouse (1997). Then
the corresponding threshold friction velocity on the dune, u∗t, can be obtained from (3.1).
The friction velocity thus determined, as well as the ratio u∗t/u∗, are reported in Table
2. It appears that u∗t/u∗ is approximately constant and close to 1.2. In other words, the
actual shear stress on a dune is approximately (1.2)2 ≈ 1.4 times larger than that on the
smooth wall, at the threshold conditions. Although this number might depend on the
dune height, no significant variation was found, which is consistent with the fact that this
height, in the range 1–7 mm, was much smaller than the channel height. More generally,
for dune widths less than one-half of the channel width and dune heights less than one
tenth of the channel height, confinement had negligible effect on the observations reported
in this paper. A detailed analysis of the variation of the shear stress along the dune will
be addressed in the second part of this paper.

3.3. Dune morphology
Since Bagnold’s observations, the shape of aeolian barchan dunes, in particular their
apparent scale invariance and the existence of a minimum size, has been extensively
investigated (Sauerman et al. 2000; Andreotti, Claudin & Douady 2002a; Elbelrhiti,
Andreotti & Claudin 2008). The length L, width W , height H and horn length Lh, as
defined in Figure 1c, are the parameters generally reported. Measurements exhibit large
scatter due to wind variations, but linear relationships emerge after averaging between
the characteristic lengths, of the form H = cH(L−L0). Typically, cH ≈ 0.2 and L0 ≈ 10
m; however, these coefficients depend on the dune field investigated. It has been noted
that the offset length L0 breaks the proportionality of the height and length, i.e. aeolian
dunes are not scale invariant. The significance of this offset length has been related to
the observation that all aeolian dunes are larger than a minimum size; this point will be
discussed further in Section 3.6. Another point of the discussion is the position of the
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Figure 8. Typical profile of a dune. Thick line: measured profile; (− · −), fit (3.2) with
L = 38 mm, hM = 3.6 mm, and xM = 4 mm; (− −), fit from (3.3) with L = 45 mm and
the same hM and xM ; (—) parabolic fit with L = 42 mm, and the same hM and xM .

dune top, which may coincide with the brink of the slip face for small dunes, or, for larger
ones, correspond to the crest of a smooth dome located upstream of the brink.

As mentioned in the introduction, barchan dunes under water have already been re-
ported, but with a centimetric size, much smaller than that of aeolian dunes. (The large
dunes observed at the bottom of shallow seas or rivers, of a few meters high, are rather
two-dimensional structures which have grown on erodible beds (ASCE 2002).) However,
the question of their morphology and scale invariance has not been investigated yet.

The first point to address is the longitudinal profile h(x) in the vertical symmetry plane
of the dune, which is closely related to the particle flux as it will be shown in Section 3.4.
Figure 8 displays the profile of a typical dune. The left side corresponds to the upstream
face, with slope of the order of 7◦, whereas the steeper right side corresponds to the
horn; the avalanche face, hidden by the horn, has a slope close to 30◦. The origin x = 0
corresponds to the highest point of the profile, which coincides with the position of the
brink in the symmetry plane of the dune. The profile of a dune or hill often considered
in theoretical analyses is the symmetrical bell shape (Benjamin 1959, Hunt, Leibovich &
Richards 1988)

h(x) =
hM

1 + (x− xM )2/L2
. (3.2)

Fitting the measured profile with this bell shape (the dotted-dashed line in the figure)
shows that (i), eq. (3.2) represents nicely the upstream face near the brink (−20 <
x (mm) < 0) but decreases too slowly near the foot (−40 < x (mm) < −20), and (ii),
the top of the bell does not coincide with the brink, it is located downstream at a
distance xM = 4 mm ≈ hM . The parabolic shape suggested by Sauermann et al. (2000),
h(x) = hM (1− (x− xM )2/L2), provides better agreement (plain line). The best fit over
the whole profile was however provided by the cosine shape

h(x) = hM cos
π(x− xM )

2L
, (3.3)

with the same xM and hM (dashed line). The length L = 45 mm for the cosine shape is
slightly larger than for the bell and parabolic shapes, and close to the length L = 48 mm
defined in Figure 1c from the top view. The feature that the slope of the profile is positive
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Figure 9. Width W versus length L for all dunes, for Reynolds number Re = 13900 (∗),
Re = 16200 (4), Re = 17400 (+), Re = 18500 (�), Re = 19700 (×), Re = 20800 (◦), Re = 23100
(�). (a), series 1; (b), series 2; (c), series 3; (d), series 4; the straight line corresponds to eq.
(3.4).

at the brink (i.e. that the summit of the fitting curve is located downstream of the brink,
at a distance of the order of the dune height) was quite general in the explored range of
fluid flow rates.

The characteristic lengths defined in Figure 1c have been measured for a large number
of dunes, more than six hundreds, as they had reached their equilibrium shape, i.e. after
they had travelled a distance larger than twice the size of the initial heap. Figure 9a
displays the width W versus the length L for Series 1, for seven flow Reynolds numbers.
It appears the data points gather close to the straight line

W = cW L, with cW = 1.1, (3.4)

with no significant dependence on the flow Reynolds number Re. The scatter, although
not negligible, is however much smaller than that for desert dunes, because of the constant
direction and velocity of the water flow. Comparison of Figures 9a-c (glass particles of the
same density) shows that increasing the grain diameter by a factor 5 has no significant
effect on the relationship between L and W . Comparing Figures 9b and 9d (particles
with the same diameter and density increased by a factor 1.5), no significant change can
again be noted. Finally, the linear relationship between the width and length appears to
be independent of the particle diameter and density, as well as of the flow velocity, and
(3.4) provides a good fit for all the measurements.

Dune heights were measured with the help of the video camera and the inclined mirror.
These heights exhibited large scatter for both physical reasons (loose selection mechanism
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Figure 10. Height H versus length L, for same Reynolds numbers as in Figure 9 (same symbols).
(a), series 1; (b), series 2; (c), series 3; (d), series 4; solid line: (3.5) with L0 = 70 d; dashed line
(3.5) with L0 = 12 mm.

of the height for given horizontal size) and technical reasons (uncertainties related to the
use of the mirror system). However, it appeared that the scatter could be reduced by
removing the most asymmetric dunes, i.e. dunes with horns of quite different lengths as
that shown in Figure 7. Figure 10 displays the height of dunes whose horn lenghts differ
by less than 20% of their mean value (this corresponds to the removal of 60% of the
measurements). For Series 1 (Figure 10a), most data points gather close to the solid line
defined as

H = cH(L− L0) (3.5)

with cH = 0.12 and L0 = 70 d. However, a few dunes have height smaller by a factor 2.
Figures 10b and 10d show that doubling the grain diameter or density, the relationship
(3.5) still holds; however, a constant offset length L0 = 12 mm (dashed line) also provides
a good fit of the data from the three series 1, 2 and 4. The dune heights from series 3
(large glass grains, Figure 10c) exhibit more complicated features: large dunes (L & 50
mm) are still accounted for by the relation (3.5) with L0 = 70 d, but small dunes are
closer to the line with L0 = 12 mm; the departure from (3.5) may be due to the small
ratio H/d of these dunes.

Horns are the most distinctive feature of barchan dunes and play an essential role
in their stability (Hersen 2004), so that horn lengths may be considered as their most
relevant geometrical property. Figure 11 displays the horn length Lh versus the length
L, for the same symmetric dunes as in Figure 10. Figure 11a for Series 1 shows that the
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Figure 11. Horn length Lh versus length L, for same Reynolds numbers as in Figure 9 (same
symbols). (a), series 1; (b), series 2; (c), series 3; (d), series 4; solid line: (3.6) with L0h = 30 d;
dashed line (3.6) with L0h = 6 mm.

horn length Lh increases linearly with the length L, according to the relationship

Lh = ch(L− L0h), (3.6)

with ch = 0.3 and L0h = 30 d. Again, no dependence on the flow Reynolds number
is visible. Doubling the grain diameter (Figure 11b for series 2) or the relative density
(Figure 11d for series 4) does not change the relationship (3.6); however, a constant offset
length L0h = 6 mm would also provide a good fit (see the dashed lines), as for the dune
heights. The dunes from series 3 shown in Figure 11c have shorter horns, still distributed
close to (3.6) although the scatter is large; this scatter is likely to be related, again, to
small heights (H/d < 10). From (3.5) and (3.6), the heights and horn lengths appear to
be nearly proportional, as noted by Andreotti et al. (2002a) for aeolian dunes.

Finally, the relationships between the dimensions of barchan dunes in water appear
to be linear, similarly to those for aeolian dunes. No significant change appears in the
slope coefficients cW , cH and ch, by varying the diameter by a factor 2 (between Series
1 and 2), or the density by a factor 1.5 (between Series 2 and 4), or the flow velocity by
a factor 1.7 (for all Series). The offset lengths L0 and L0h do not depend on the particle
density and the flow velocity; they might depend on the particle diameter but a specific
investigation of small dunes would however be needed for a definite conclusion to be
drawn.

The above linear relations between the dune dimensions are similar to those found
by previous investigations, with similar slope coefficients cW , cH and ch. In particular,
Hersen et al. (2002) and Hersen (2005) found cH = 0.11 for subaqueous dunes (we
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find 0.12); for aeolian dunes, Sauermann et al. (2000) found cH = 0.16 in Southern
Morocco and the compilation by Andreotti et al. (2002a) gives cH = 0.18. The offset
length L0 and L0h, which break the self-similarity of small dunes, are however quite
different: whereas they are of a tens of meters for aeolian dunes, they are much smaller,
of about ten millimeters, for subaqueous dunes. As noted by Hersen et al. (2002), using
`drag = (ρp/ρ)d as the length scale for the dune dimensions, the data for subaqueaous
and aeolian dunes nearly gather. This point will be discussed further in §3.6.

3.4. Dune velocity
Let’s first consider the classical theory for the velocity Vd of a two-dimensional aeolian
dune (invariant in the transverse direction) with brink normal to the air flow, without
any sand flux from upstream (Bagnold 1941). As long as the volumetric grain flux per
unit width at the brink, qH , is deposited on the avalanche face, mass conservation gives
the velocity

Vd =
qH
H
, (3.7)

where H is the height of the brink. This equation can also be derived from the local mass
conservation equation ∂th+ ∂xq = 0 with the shape-invariance condition ∂th = −Vd∂xh.
Integrating this equation along the windward face gives

qH − q(x) = Vd(H − h(x)),

which relates the local particle flux q(x) to the local dune height h(x). From this equation,
(3.7) is recovered when the incoming flux from upstream is zero (q = 0 at the foot of the
dune where h = 0). Assuming that the particle flux qH is in equilibrium with the local
shear stress τH at the brink, which is approximately 1.8 times the shear stress ρairu

2
∗

over the surrounding flat ground (Andreotti et al. 2002a), a semi-empirical transport law
of the form qH ∝ (ρair/ρp)u3

∗/g can then be used. From these considerations, the dune
velocity is given by

Vd

u∗
∝ ρair

ρp

u2
∗

gH
.

This crude model gives the right order of magnitude of a few tens of meters per year.
However, the available observations clearly show that the scaling Vd ∝ 1/H overestimates
the velocity of small dunes. Improvements have been proposed, accounting for a better
description of the hydrodynamics over the dune and the retarding effect of particle inertia
on the particle flux (Andreotti et al. 2002b; Kroy et al. 2002; Hersen 2004). In particular,
relationships of the form Vd ∝ 1/(H +H0), where H0 is an offset height of a few meters,
or Vd ∝ 1/L, were shown to provide better predictions. Thorough assessment of these
theories however comes up against the difficulty of observations on large space and time
scales, and also the large scatter due to the variable flow conditions and sand supply in
the open atmosphere.

Under water, a straightforward translation of the theory sketched above consists in
replacing the transport law qH ∝ (ρair/ρp)u3

∗/g by one for water, e.g. the widely used
Meyer-Peter & Müller law (Wong & Parker 2006),

qH
Vrefd

= 4.0 (θH − θt)3/2, (3.8)

where θH is the Shields number (2.5) with the shear stress evaluated at the brink, and
Vref = ((ρp/ρ − 1)gd)1/2. (Note that in the limit of small fluid density and large shear
stress, (3.8) reduces to the relationship for air.) To our knowledge, the only observations
of the velocity of subaqueous dunes are those of Hersen (2005) for dunes on a tray
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Figure 12. Dune velocity Vd versus the inverse length 1/L for series 1 (a), series 2 (b), series
3 (c) and series 4 (d). Symbols correspond to given Reynolds number, see caption of Figure 9
(for the lowest one (∗), the small velocity is multiplied by the factor shown on the right of the
line). Straight lines emphasize the linear dependence Vd ∝ 1/L for given flow conditions.

undergoing asymmetric oscillations, and of Taniguchi & Endo (2007) for dunes under
alternating flows. Thus, no velocity measurement under steady conditions is available, so
that the prediction (3.7-3.8) has not been assessed yet.

In the present experiments, dune velocities have been investigated by varying both the
grain properties and the fluid velocity. Velocities have been determined from the distance
travelled by the foot of the slip face, divided by the corresponding time; the distance was
of a few dune lengths (typically between 10 or 20 centimeters), and times ranged from
20 seconds to 40 minutes.

Figure 12 displays the velocity Vd as a function of the inverse dune length L−1, for
several flow Reynolds number, and for the four series (for clarity, the small values of Vd

for the smallest Reynolds number (∗) have been multiplied by the coefficient shown on the
right of the line). For the small glass particles of series 1, Figure 12a shows that, for given
Reynolds number, the velocity scales with the inverse length, Vd ∝ L−1, as predicted by
the mass conservation argument (3.7) along with the scale invariance L ∝ H. Figures
12b-c-d display the dune velocity for the series 2, 3 and 4, showing the same features.
For the smallest Reynolds number, linear regression suggested that the velocity rather
follows Vd ∝ (L + L0)−1, with a length L0 of a few millimeters, but the scatter of the
measurements prevented any precise determination.

The increase of the dune velocity with Reynolds number, for given dune length, is also
clearly visible in Figure 12. This dependence has been studied further by considering
the velocity Vd,60 of dunes of the same length, L = 60 mm, obtained from the linear
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Figure 13. Velocity of dunes with the same length L = 60 mm, for all series (see Table 1 for
symbols); (a), dimensional velocity versus the wall friction velocity u∗; (b), normalized velocity
Vd/Vref(L/d) versus θ − θt in log-log scales; straight line: eq. (3.7).

regression lines; such dunes all have nearly the same height, about 5–6 mm according
to (3.5). As shown in Figure 13a for all series, the velocity Vd,60 increases strongly with
the friction velocity u∗; for given u∗, it increases with the particle diameter (compare
series 1, 2 and 3 for the glass particles), and decreases with the particle density (compare
series 2 and 4 for the glass and zirconium particles of nearly same diameter d ≈ 0.2 mm).
For each of the four series, extrapolating the velocity down to zero provides an estimate
of the threshold friction velocity below which the dune no longer moves. This threshold
is in good agreement with that found independently from the visual observation of the
stopping of particle motion at the dune surface, and reported in Table 2.

In order to assess Bagnold’s theory, Figure 13b displays the dune velocity, normalized
with Vrefd/L, as a function of θ − θt, in logarithmic scales. Shields numbers have been
calculated with the friction velocity u∗d = 1.2u∗, i.e. by assuming that the ratio 1.2
found at threshold still holds above threshold. It appears that for all the four series, the
dune velocity follows power laws of the form Vd/Vref ∝ (d/L)(θ − θt)n, with the same
exponent n ≈ 2.5 but different numerical coefficients. Figure 13b also displays the line
corresponding to Bagnold’s prediction (3.7) with the particle flux at the crest given by
the Meyer-Peter & Müller correlation. It appears clearly that this prediction does not
provide the right velocity:
• it does not account for the dependence on the type of particles;
• the exponent 3/2 of the power law is too small.

Note that taking a different bedload transport law, from those available in the litterature,
do not provide better agreement.

Attempting to gather the data points of the four series on the same master curve, it
first appeared that dividing the dune velocity by the true falling velocity Vfall or the
friction velocity u∗d, instead of the reference velocity Vref , does not improve significantly
the picture. In fact, Figure 13b strongly suggests that one single dimensionless parameter,
i.e. the Shields number, is not sufficient to account for dune velocities. This observation
is consistent with the fact that particle Reynolds numbers are not large (see Table 1), so
that some dependence with this number may be expected.

A good collapse of the data points is achieved when the dune velocity is divided



Subaqueous barchan dunes in turbulent shear flow 17

0.01 0.1

10!2

100

102

 ! ! !t

V d
/V
no
rm

Figure 14. Normalized dune velocity versus θ − θt in log-log scales, for all series (see Table 1
for symbols). Vnorm = VrefResd/L, straight line: eq. (3.9).

by the sedimentation Reynolds number, as shown in Figure 14 where the straight line
corresponds to

Vd

Vref
= 280Res

d

L
(θ − θt)2.5. (3.9)

From (3.9), the particle flux qH at the dune crest can be deduced from the mass con-
servation equation (3.7) and the morphological relation (3.5). Ignoring the small offset
length L0 in (3.5), qH is found to be

qH
Vrefd

= 34Res(θ − θt)2.5. (3.10)

This relation is different, as expected, from the usual relationships for turbulent flow
which typically involve the exponent 3/2 for the dependence with the Shields number,
as the Peter-Meyer & Müller relation (3.8). It is also different, although closer, from the
quadratic relation qH/Vrefd ∝ θ(θ − θt) found from viscous flow experiments on a flat
bed by Charru, Mouilleron & Eiff (2004) (in these experiments, the grain properties were
not varied so that Res was constant). Note that the closeness of (3.10) with viscous flow
results is consistent with the fact that here, the particle Reynolds number was always
smaller than 13 (see Table 1), so that the moving grains hardly emerged from the viscous
sublayer (this point will be discussed further in the Part 2 of this paper, in relation
with shear stress measurements). Finally, (3.9) appears as as a good fit for grains with
different density and diameter, but its physical meaning remains to be understood.

3.5. Erosion rate
As a dune propagates, it slowly looses particles at the horn tips and its size decreases.
Understanding this particle leakage is important in the perspective of modelling the
evolution of a field of dunes, where the particles leaving one dune feed another one
downstream.

In the present experiments, a few single dunes have been tracked during a sufficiently
long time for their size evolution to be measured until disappearance. Figure 15a displays
the time evolution of the width of four dunes, for two types of particles (series 3 and 4) and
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Figure 15. Time variation of the dune width: (a), linear scales; (b), log scales. Symbols: (�):
series 3, Re = 13900; (◦): series 3, Re = 16200; (�): series 4, Re = 16200; (∗): series 4,
Re = 18500; (—): power law (3.11).

three Reynolds numbers. As the dune size has decreased down to about one centimeter,
the horns become unstable, randomly disappearing and appearing again with a time
scale of a few seconds. After a few oscillations, the horns definitely disappear and the
remaining heap is dispersed by the fluctuations of the turbulent flow. The disappearance
occcurs at a critical time t0 after the beginning of the run, which was typically between
one and five hours (larger dunes had longer life times). From the measurement of the
critical time or its estimation when the tracking was stopped before the disappearance
of the dune, the width was found to follow the power law W ∝ (t0 − t)1/3, as shown by
the log-log plot in Figure 15b.

From the morphology study presented in section 3.3 and on considering that dunes
have self-similar parabolic shapes, their volume V is related to their width by

V ≈ 6
15

cH
c2W

W 3 ≈ 0.03W 3.

Thus the exponent 1/3 forW (t) corresponds to linear decrease of the volume, i.e. constant
number of particles leaving the horns per unit time, or constant erosion rate. (Note that
an erosion rate proportional to the volume of the dune would result in an exponential
decrease, which is clearly not the case here.) Let te be the erosion time, i.e. the time
needed for loosing one grain per horn. Then the variation of the volume of the dune
during dt is

dV = −2
πd3

6φ
dt
te

where φ ≈ 0.6 is the volume fraction of the particles. From the above relations, the dune
width decreases with time as

W

d
= 3.9

(
t0 − t
te

)1/3

. (3.11)

From the above relation and the measured time evolution W (t), the erosion time te
can be deduced for each experiment. The four erosion times corresponding to Figure 15
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Figure 16. (a) Erosion time from experiments (symbols) and correlation (3.12) (solid line); (b),
dimensionless width versus dimensionless time using the correlation (3.12) for te. (�), series 3,
Re = 13900; (◦), series 3, Re = 16200; (�), series 4, Re = 16200; (∗), series 4, Re = 18500.

are shown in Figure 16a, where they appear to depend mainly on the shear velocity u∗
(they are nearly equal at the same flow Reynolds number Re = 16200 for series 3 and
4). Since the particles at the horn tips hardly emerge from the viscous sublayer (small
particle Reynolds numbers), the expected scale for the erosion time is the viscous time
based on the wall scales u∗ and ν. It appeared that the following law fits reasonably well
the measured erosion times:

te = 2
ν

(u∗ − u∗e)2 , u∗e = 11 mm s−1 (3.12)

where u∗e is a threshold friction velocity for dune erosion (the erosion time must diverge
at threshold). This threshold appears to be slightly lower than the threshold u∗t for dune
motion, which can be understood by the fact that particles are easier to move on the
smooth wall at the tip of the horns than on the rough dune surface. Figure 16b shows
that with the above modelling for the erosion time, all the data points collapse reasonably
well on the same curve for the four dunes.

3.6. Minimum size

As noted by Bagnold (1941, §14.3), aeolian barchan dunes have a minimum height of
about Hmin ≈ 1 m, and a corresponding minimum length Lmin ≈ 10 m, below which
no dune is observed. The minimum height was interpreted by Bagnold by considering
the trajectories of the sand grains after they have passed over the brink and enter a
region of stagnant air: below some critical dune height, the grains fall beyond the foot of
the slip face and are dispersed by the wind. From another point of view, the minimum
length can be interpreted as the distance needed for the particle flux to increase from
zero, at the upwind foot of the dune, up to some saturated value depending on the local
shear stress only (Bagnold 1941, §12.9). The length scale associated with the relaxation
of the particle flux may be related to several physical phenomena. Sauermann, Kroy &
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Figure 17. Successive pictures of the oscillations of the horns and disappearance of a barchan
dune. Between the first and last pictures, the elapsed time is 20 seconds and the dune has
travelled a distance of four times its initial size, of 15 mm.

Hermann (2001) proposed that it should scale with the saltation length

`salt ≈ 15
u2
∗
g

(3.13)

of the grains expelled from the bed by the impact of the oncoming grains, with a prefactor
accounting for the slowing down of the wind by the saltating cloud. Andreotti et al.
(2002b) consider that grain inertia is the dominant mechanism involved in the saturation,
so that the relevant length should be an acceleration length of the particles accelerated
from rest by the wind. From dimensional analysis, this acceleration length must scale
with the drag length

`drag =
ρp
ρ
d (3.14)

(which is typically 0.5 meter), and weakly depends on the wind strength (Andreotti et
al. 2010). These ideas have also been applied to observations on Mars by Claudin &
Andreotti (2006).

Under water, whose density is one thousand times larger than that of air, hydro-
dynamic interactions are more complex, and particles roll on each other rather than
experience large saltating jumps (Lajeunesse et al. 2010). A characteristic length may
however dominate: the deposition length

`fall =
u∗
Vfall

d, (3.15)

which represents the distance travelled by a grain with velocity u∗ during the falling
time d/Vfall. This length was introduced by Charru and Hinch (2006) from an erosion-
deposition model, and its importance in the selection of the wavelength of ripples was
discussed by Charru (2006). In water, the lengths `drag and `fall are of the order of one
millimeter, but they scale differently with the parameters. The measurements reported
in this section are intended to discuss the existence of a minimum size of subaqueous
barchan dunes, and to assess the relevance of `drag or `fall as the scaling length for this
minimum size.

Turning back to our experiments, the size of a dune was found to decrease slowly in
the course of its motion, because of the small leakage of particles at the tip of the horns
as discussed in the previous section. As the size is reduced to the order of one centimeter,
the horns become unstable, disappearing and reappearing randomly, as shown by the
sequence of six successive photographs displayed in Figure 17. The leakage of particles
increases strongly, and after a few oscillations of the horns (a few seconds) the dune
disappears.

The time of the disappearance, and the corresponding dune size, were not easy to
define precisely, but the onset of the horn instability was found to be reproducible. The
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Figure 18. (a) Minimum width of barchan dunes as a function of the shear velocity, for dunes
from series 2 (◦), 3 (�) and 4 (∗). (b) Same data presented with d and Vref as the unit length
and unit velocity.

size of a barchan dune at the onset of the instability was defined as the minimum size.
Figure 18a displays the variation of the minimum dune width, Wmin, with the friction
velocity u∗, for the three series 2, 3 and 4. For a given series, Wmin appears to increase
linearly with u∗. Were the drag length (3.14) be the relevant scaling length, Wmin should
not depend on u∗, which is clearly not the case. Figure 18b displays the same data in
dimensionless form, using d and Vref as the length and velocity units. The data points
for the glass beads of diameter 0.2 and 0.5 mm (series 2 and 4) fall on the same line,
and those for the zirconium beads (series 3) fall slightly above. Thus, although the data
points for the heavy zirconium grains lie slightly above the others, the deposition length
(u∗/Vref)d appears to be a scaling length of the minimum width (note that using the
actual falling velocity Vfall instead of Vref provides a less good collapse). Finally, the
result that the minimum width scales with a deposition length is consistent with both
ideas presented at the beginning of this section: dunes disappear because they become
smaller than the saturation length of the grain flux over the dune, or because the grains
leaving the brink (with velocity of the order of u∗) fall beyond the foot of the slip face
and disperse in the wake.

3.7. Stripes of particles
Illuminating dunes with an almost horizontal light revealed, on their upstream face,
streamwise stripes with regular spacing, as shown in Figure 19. These stripes were un-
steady, moving laterally back and forth, with a lifetime of a few seconds. They were
observed for all Reynolds numbers in the explored range and with the four series of
particles. These stripes were identified as the trace of fluid “streaks”, the filaments of
streamwise low-speed fluid which spread in the inner layer of turbulent boundary layers
(Smith & Metzler 1983, Panton 2001, Davidson 2004). Streaks are known to develop in
the viscous sublayer (y+ < 5) with a well-defined spacing or spanwise wavelength, λ,
scaling with the viscous length ν/u∗ such that λ+ ≈ 75− 80. Then they are lifted in the
logarithmic region where their spacing increases as the result of merging or coalescence.
Streaks are no longer visible above y+ = 40. In the present experiments, the domain
of existence of the streaks, y+ < 40, typically corresponds to 2 to 4 mm, which is the
order of magnitude of the dune heights. The alternance of regions of higher and lower
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Figure 19. Top view of a dune illuminated with an almost horizontal light, showing
streamwise stripes (the flow is from left to right, particles from series 4).
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Figure 20. Histograms of the dimensionless spanwise spacing of the stripes λ+ = λu∗/ν, for
(a) series 1, (b) series 2, (c) series 3, (d) series 4.

velocity is associated with pairs of counter-rotating streamwise vortices, which promote
higher erosion of particles along the lines where the streamwise velocity is higher and the
spanwise velocity diverges, and higher deposition in between these lines, explaining the
observed relief.

The spacing λ of particle stripes was measured for flow Reynolds numbers in the range
18000–28000, for the four series of particles. Figure 20 displays the distribution of these
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wavelengths, in wall units. It appears that for the particles of series 1, 2 and 4 (Figures
20a, 20b and 20d), with diameter in the range 0.1–0.2 mm corresponding to d+ = 1.7–
4.5, the distribution has a well-defined peak at λ+ ≈ 100, and a long tail on the side
of large wavelengths. For the larger particles of series 3 (d = 0.5 mm, d+ = 9.7–13.3,
Figure 20c), which protude out of the viscous sublayer, the distribution, although not
converged, indicates a larger spacing of about λ+ ≈ 150. These values correspond to
those of streaks on smooth walls (Smith & Metzler 1983), and confirm that the observed
stripes of particles are traces of fluid streaks.

Another mechanism could be invoked for the existence of stripes, related to the cur-
vature of the streamlines over a dune: the centrifugal Görtler instability of a boundary
layer flow over a concave wall. For a turbulent boundary layer, this instability gives rise to
unsteady streamwise vortices, and has been recognized to be responsible of sand stripes
in the scour-hole problem of a wall-jet flowing over a bed of particles (Hopfinger et al.
2004). However, as shown below, this instability is not relevant here. For the appear-
ance of Görtler vortices, the curvature R−1 must be high enough; the condition usually
considered, δ/R ≥ 0.01 (Floryan 1991), with R = H/L2, is fulfilled here. However, the
instability is weak and the growth of the vortices noticeably slow; following Hopfinger et
al. (2004), the spatial growth rate is (Reδm

δm)−1, where δm is the momentum thickness
and Reδm

is a Reynolds number based on δm and an eddy viscosity such that Reδm
≈ 30.

With δm ≈ δ/10, the typical distance from the upstream foot of a dune at which the
instability might be observed would be 3δ = 90 mm, which is larger than all the observed
dune lengths. Moreover, the centrifugal instability amplifies the largest eddies present in
the boundary layer, leading to vortices with spanwise wavelength usually about twice
the boundary layer thickness (Floryan 1991). Such a wavelength, here of 60 mm, is much
larger than the observed ones. Therefore, the Görtler instability cannot be invoked for
explaining the observed stripes. Finally, it can be noted that streaks may represent an
important mobilizing force in the erosion process, corresponding to an effective shear
stress, active in the sediment transport, larger than the actual shear stress.

4. Summary and conclusion
When a liquid flow transports a small amount of heavy particles, the particles gather to

form dunes with crescentic shape, with size of a few centimeters. Their main features are a
gentle slope on the upstream face, a sharp brink above a slip face downstream, and horns
pointing downstream. These dunes, similar to the barchan dunes observed in deserts, are
very robust structures. Their turnover time, i.e. the time needed for a dune to travel
a distance equal to its length, is of the order of one minute, which makes subaqueous
dunes much easier to study than the much larger and slower aeolian dunes (for which the
turnover time is of the order of one year). The geometrical and dynamical properties of
several hundreds of these dunes were investigated for flow Reynolds number up to 21000,
for four types of grains of different diameter and density. The main observations can be
summarized as follows.
• A heap of particles deposited in the channel quickly evolves to a barchan dune,

within a time of the order of their turnover time.
• The width, height and horns length are linear functions of the dune length, with an

offset of a few millimeters which breaks the self-similarity of small dunes. These relations
appear to be independent of the fluid velocity and the grain density and diameter. The
offset length may however depend weakly on the particle diameter, but the scatter of the
measurements prevented any definite conclusion to be drawn about this point. The slope
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of the upstream dune profile does not vanish at the brink: the summit of the envelope of
the profile is situated at a distance of about one dune height downstream.
• For small flow rates, the particles are at rest and the dune does not move. From the

Shields curve and visual observation of the onset of particle motion, it was found that
the shear stress on the dune, ρu2

∗d, is larger by a factor 1.4 than that on the smooth wall
of the channel.
• The velocity of dunes was found to be inversely proportional to their size, as pre-

dicted by a mass conservation argument. An empirical relationship for the dimensionless
velocity was derived, on which all the data points collapse well. This relationship involves
not only on the dimensionless shear stress (the Shields number θ) but also sedimentation
Reynolds number (or the particle Reynolds number). This suggests that viscous effects
are not negligible with regard to the particle transport, which is consistent with the fact
the particle diameter, in wall units ν/u∗d, was smaller than 13.
• As a dune migrates, it looses a few particles at the tip of its horns, so that its size

slowly decreases. The width was found to decrease according to the power law (W/d)3 ∝
(t0 − t)/te where t0 corresponds to the dune disappearance and te is an erosion time. A
consequence of this law is that erosion does not depend on the dune size and is governed
by the hydrodynamics in the vicinity of the horn tip. Modelling the erosion time with a
viscous scale, all the traces of W (t) collapse on the same curve.
• Barchan dunes exhibit a minimum size below which the horns become unstable and

oscillate and the dune quickly disappears. The minimum width increases linearly with
the friction velocity and scales roughly with the deposition length

√
θ d. This result is

consistent with two different explanations: dunes disappear because they become smaller
than the saturation length of the grain flux over the dune, or because the grains leaving
the brink fall beyond the foot of the slip face and disperse in the wake.
• Longitudinal stripes of particles were observed on the upstream face of the dunes.

These stripes have a spanwise spacing λ+ ≈ 150, in wall units, and are formed by the
well-known longitudinal streaks which develop in the viscous sublayer of a turbulent
boundary layer. These streaks are likely to enhance particle transport.

Finally, subaqueous barchan dunes appear as very robust structures which may migrate
over long distances. At moderate flow rates, they are the main mode of particle transport.
Their outstanding stability properties —which are likely to involve the small spanwise
particle flux, particle relaxation effects, and the flow structure in the dune wake— remain
to be understood. Beyond the study of isolated dunes, two situations would also be of
interest: (i) as the particle flux is increased, dunes with different size and different velocity
interact, and may form a continuous rippled bed; (ii) as the fluid flow rate is increased,
particles escape the dune brink and suspension occurs. These questions are left for future
investigation.
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