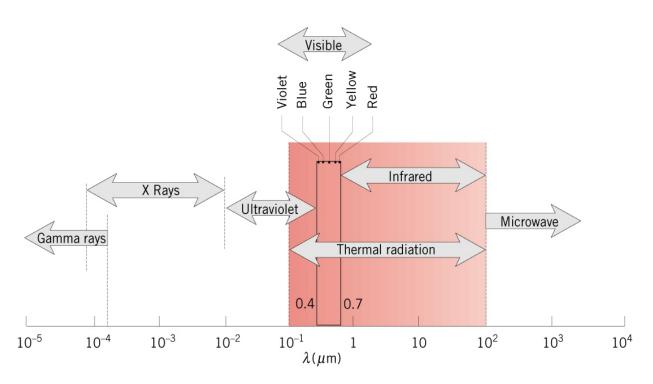
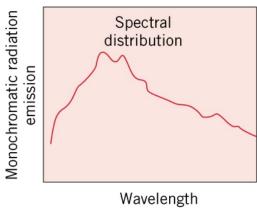
INTRODUÇÃO À RADIAÇÃO TÉRMICA


$$\nabla \cdot \vec{E} = 0 \quad ; \quad \nabla \times \vec{B} - \frac{1}{c} \frac{\partial \vec{E}}{\partial t} = 0$$

$$\nabla \cdot \vec{B} = 0 \quad ; \quad \nabla \times \vec{E} + \frac{1}{c} \frac{\partial \vec{B}}{\partial t} = 0$$

Radiação


- Introdução
 - Não envolve movimento de um fluido nem difusão molecular
 - Transferência de calor por ondas eletromagnéticas
 - Radiação térmica é a radiação eletromagnética emitida por um corpo em função da sua temperatura.
 - Fenômeno ondulatório => Distribuição espectral
 - Dependência de diversos fatores:
 - Dist. Espectral (emissor e receptor), temperatura dos corpos, acabamento das superfícies, orientação dos corpos...

O espectro eletromagnético

Luz visível: $0.4 \mu m < \lambda < 0.7 \mu m$

Rad. Térmica: $0,1 \mu m < \lambda < 100 \mu m$

- Toda matéria a uma temperatura absoluta emite radiação
 - Devido a sua atividade molecular e atômica
 - Radiação é emitida na forma de ondas eletromagnéticas
 - Tratamento do ponto de vista ondulatório: permite utilização de conceitos bastante conhecidos
 - Por exemplo, como para qualquer onda eletromagnética:

$$C = \lambda \nu$$

onde

C - velocidade da luz

 λ - comprimento de onda

v – freqüência

- Índice de refração de um meio material:
 - Razão entre a velocidade da luz no vacuo e velocidade da luz no meio:

$$\eta = C/C_0$$

onde

C - velocidade da luz no vacuo

C_o - velocidade da luz no meio

Ondas Eletromagnéticas: exemplo (Equações de Maxwell no vácuo)

$$\nabla \cdot \vec{E} = 0 \quad ; \quad \nabla \times \vec{B} - \frac{1}{c} \frac{\partial \vec{E}}{\partial t} = 0$$

$$\nabla \cdot \vec{B} = 0 \quad ; \quad \nabla \times \vec{E} + \frac{1}{c} \frac{\partial \vec{B}}{\partial t} = 0$$

Onde c = 299 792 458 m/s ; E = campo elétrico ; B = campo magnético

Tomando-se o rotacional da parte direita, e utilizando a parte esquerda, obtemos a "equação da onda"

$$\nabla \times \nabla \times \vec{A} = \nabla (\nabla \cdot \vec{A}) - \nabla^2 \vec{A}$$

Ondas Eletromagnéticas: equação da onda

$$\frac{\partial^2 \vec{E}}{\partial t^2} - c^2 \nabla^2 \vec{E} = 0$$

$$\frac{\partial^2 \vec{B}}{\partial t^2} - c^2 \nabla^2 \vec{B} = 0$$

A solução desta equação são ondas planas. E e B são perpendiculares entre si e à direção de propagação da onda, mas eles estão em fase

Equação da onda: solução

Como c é uma constante, a solução são ondas planas.
 Estas ondas são convenientemente escritas no espaço de Fourier:

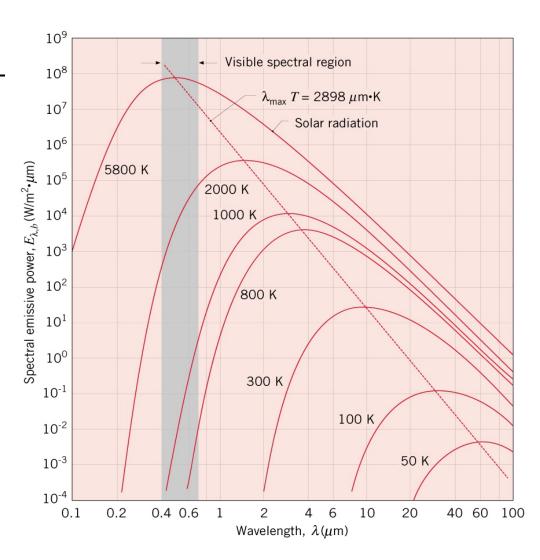
$$E(x,t) = \frac{1}{2} \int_{-\infty}^{\infty} \hat{E}(k) e^{i(kx - \omega t)} dk$$

$$B(x,t) = \frac{1}{2} \int_{-\infty}^{\infty} \hat{B}(k) e^{i(kx - \omega t)} dk$$

onde k = número de onda e ω = freqüencia angular. ω/k = c = velocidade de fase

Assim, percebemos a importância da análise
 ESPECTRAL em fenômenos ondulatórios deste tipo

Definição: Corpo negro


- Sua superfície é um absorvedor ideal de radiação incidente
 - Independente do comprimento de onda ou da direção da radiação
- Também é um emissor perfeito
 - Para uma dada temperatura, nenhuma superfície pode emitir mais energia radioativa
- É uma idealização
- A distribuição espectral de seu poder emissivo foi obtida por Planck

Distribuição espectral do poder emissivo monocromático de um corpo negro

$$E_{\lambda,n} = \frac{C_1}{\lambda^5 \left[\exp(C_2/\lambda t) - 1 \right]}$$

$$C_1 = 3,742.10^8 W \mu m^4 / m^2$$

$$C_2 = 1,439.10^4 \,\mu \, m \, K$$

Lei de Stefan-Boltzmann : poder emissivo total E_n de um corpo negro

O Poder emissivo total de um corpo negro é dado por:

$$E_n = \int_{0}^{\infty} E_{\lambda,n} d\lambda \qquad E_{\lambda,n} = \frac{C_1}{\lambda^5 \left[\exp(C_2/\lambda t) - 1 \right]}$$

Cuja integral é:

$$E_n = \sigma T^4$$

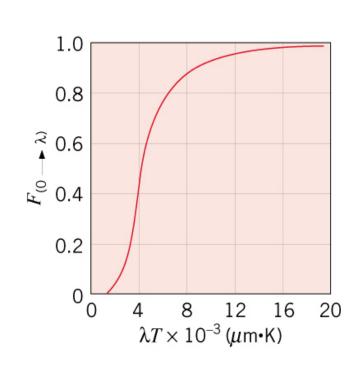
onde σ = 5,670.10⁻⁸ W/m²K⁴ é a constante de Stefan-Boltzmann

OBS: Lei deslocamento Wien

$$\lambda_{max} T = 2,90 \times 10^3 \,\mu \, m \, K$$

Exercício

- 9-3 A superfície de um corpo irradiador ideal, corpo negro, é mantida a uma temperatura uniforme de 15 °C. Determine:
- (a) A taxa total de energia emitida pelo corpo.
- (b) O comprimento de onda na qual a emissão monocromática máxima ocorre.
- (c) A taxa de energia monocromática máxima emitida pelo corpo.


Radiação emitida em um intervalo de comprimento de onda (ou de freqüência) por um corpo negro

$$F_{[\lambda_{1}-\lambda_{2}]}=F_{[0-\lambda_{2}]}-F_{[0-\lambda_{1}]}$$

$$F_{[0-\lambda_1]} = \frac{\int \frac{\lambda_1}{0} E_{0-\lambda_1,n} d\lambda}{\sigma T^4}$$

Onde

$$E_{\lambda,n} = \frac{C_1}{\lambda^5 \left[\exp(C_2/\lambda t) - 1 \right]}$$

e resultados numéricos dados na Tab. 9-1

Exemplo

 A radiação solar tem aproximadamente a mesma distribuição espectral que um corpo irradiante ideal a uma temperatura de 5800 K. Determine a quantidade de radiação solar que está na região visível 0,40 – 0,70 μm.

Taxa total de energia emitida por um corpo negro

$$E_n = \sigma T^4 = 5,67 \times 10^{(-8)} 5800^4 = 64,16 \times 10^6 W/m^2$$

Fração desta radiação na faixa do visível (tabela 9-1)

$$0 \le \lambda \le 0, 4 \to \lambda_1 T = 0, 4(5800) = 2320 \to F_{[0-0,4]} = 0,1245$$

$$0 \le \lambda \le 0.7 \rightarrow \lambda_1 T = 0.7 (5800) = 4060 \rightarrow F_{[0-0.7]} = 0.4914$$

Tabela 9-1 Funções de corpo negro

$\lambda T(\mu \mathbf{m} \cdot \mathbf{K})$	$F_{[0-\lambda]}$	$\lambda T(\mu \mathbf{m} \cdot \mathbf{K})$	$F_{[0-\lambda]}$
200	0,000000	6200	0,754140
400	0,000000	6400	0,769234
600	0,000000	6600	0,783199
800	0,000016	6800	0,796129
1000	0,000321	7000	0,808109
1200	0,002134	7200	0,819217
1400	0,007790	7400	0,829527
1600	0,019718	7600	0,839102
1800	0,039341	7800	0,848005
2000	0,066728	8000	0,856288
2200	0,100888	8500	0,874608
2400	0,140256	9000	0,890029
2600	0,183120	9500	0,903085
2800	0,227897	10000	0,914199
2898	0,250108	10500	0,923710
3000	0,273232	11000	0,931890
3200	0,318102	11500	0,939959
3400	0,361735	12000	0,945098
3600	0,403607	13000	0,955139
3800	0,443382	14000	0,962898
4000	0,480877	15000	0,969981
4200	0,516014	16000	0,973814
4400	0,548796	18000	0,980860
4600	0,579280	20000	0,985602
4800	0,607559	25000	0,992215
5000	0,633747	30000	0,995340
5200	0,658970	40000	0,997967
5400	0,680360	50000	0,998953
5600	0,701046	75000	0,999713
5800	0,720158	100000	0,999905
6000	0,737818		10 1850113

Exemplo

Fração de radiação solar na faixa do visível

$$F_{[0,4-0,7]} = F_{[0-0,7]} - F_{[0-0,4]} = 0,3669$$

A quantidade de radiação na faixa visível é:

$$E_{[0,4-0,7],n} = F_{[0,4-0,7]} E_n = 23,54 \times 10^6 W/m^2$$

Definição: irradiação

- Taxa na qual a radiação atinge uma superfície
 - Características direcionais da radiação são importantes
 - G é a irradiação por unidade de área

$$G_n = \int_0^\infty G_{\lambda,n} d\lambda$$

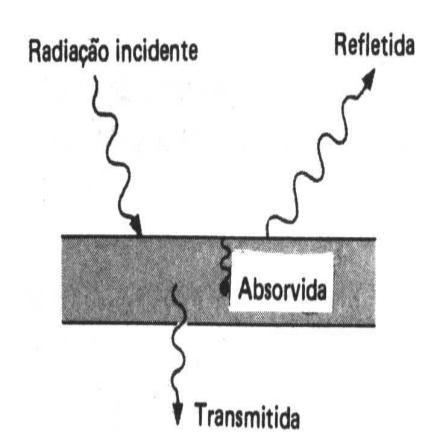
Propriedades da Radiação

Refletividade (ρ) é a fração de energia radiante refletida;

$$\rho = \frac{1}{G} \int_{0}^{\infty} \rho_{\lambda} G_{\lambda,n} d\lambda$$

 Absorvidade (α) é a fração de energia radiante absorvida;

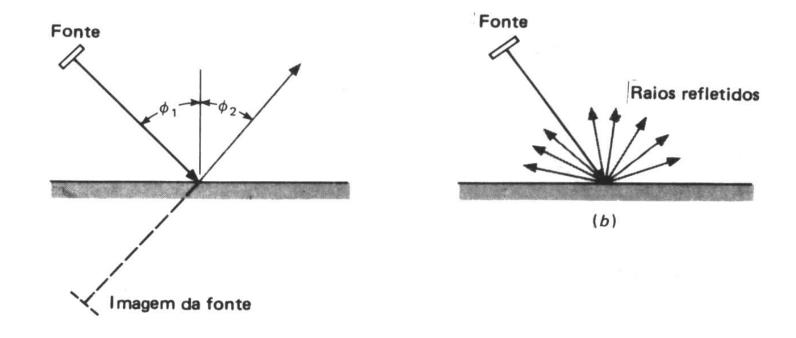
$$\alpha = \frac{1}{G} \int_{0}^{\infty} \alpha_{\lambda} G_{\lambda,n} d\lambda$$


Transmissividade (τ) é a fração de energia transmitida;

$$\tau = \frac{1}{G} \int_{0}^{\infty} \tau_{\lambda} G_{\lambda, n} d\lambda$$

Propriedades da Radiação

- Refletividade (ρ) é a fração de energia radiante refletida;
- Absorvidade (α) é a fração de energia radiante absorvida;
- Transmissividade (τ) é a fração de energia transmitida;
- Da conservação da energia:


$$\alpha + \rho + \tau = 1$$

 A grande maioria dos corpos sólidos não transmitem radiação térmica, portanto em muitos problemas práticos podemos escrever que:

$$\rho + \alpha = 1$$

 Quando um fluxo de radiação atinge uma superfície podem ser observados dois tipos de reflexão, direta (especular) e difusa.

Observações

- 1 nenhuma superfície real possui somente reflexão especular ou difusa;
- 2 um espelho comum é praticamente especular para a luz visível, mas não necessariamente especular para todos os comprimentos de onda da radiação térmica;
- 3 geralmente é válido: superfície polida é mais especular que a áspera.
- As refletividades e absorvidades discutidas até aqui são propriedades totais do material, isto é, representam o comportamento integrado do material em todos os comprimentos de onda. Na realidade, as substâncias reais emitem menos radiação que as superfícies negras ideais, ou seja, a emissividade não é só função da temperatura mas depende também do comprimento de onda.

Exercício

9-7 A radiação solar tem aproximadamente a mesma distribuição espectral que a de um corpo negro a 5.800 K. As janelas de uma casa podem ser fabricadas de vidro comum ou de vidro escuro. As transmissividades espectrais dos dois vidros estão mostradas na Fig. P9-7. Estime o aumento na quantidade de energia, em watts por metro quadrado, que é bloqueada pelo vidro escuro.

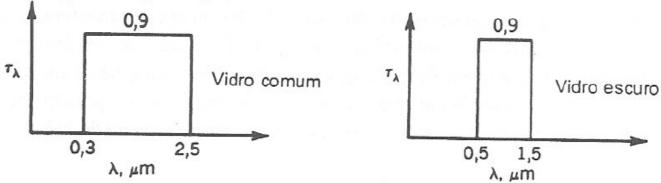


Figura P9-7 Características de radiação de vidros.

Propriedades da Radiação

 Emissividade (ε): razão entre a energia emitida por um corpo qualquer e a emitida por um corpo negro a mesma temperatura

 $\varepsilon = \frac{1}{E_n} \int_0^\infty \varepsilon_{\lambda} E_{\lambda,n} d\lambda$

Radiosidade: quantidade de radiação térmica que deixa um corpo

$$J = \varepsilon E_n + \rho G$$

 Radiação atmosfera terrestre: absorvida do sol e emitida pela atmosfera

$$G_{c\acute{e}u} = \sigma T_{c\acute{e}u}^4$$

Corpo cinzento

 Emissividade e absortividade da superfície são independentes do comprimento de onda e da direção

$$\varepsilon = \varepsilon_{\lambda} E_{\lambda, n} = const.$$

$$\alpha = \alpha_{\lambda} E_{\lambda,n} = const.$$

- Radiação emitida e refletida são difusas
- Emissividade e absortividade são iguais

$$\alpha = 3$$

Corpo Real

- Propriedades de radiação diferentes dos corpos negro e cinzento
- A radiação emitida por um corpo real não é inteiramente difusa
 - Emissividade depende do ângulo de observação
- Cálculos de engenharia: em situações práticas, o corpo real é aproximado por um corpo cinzento

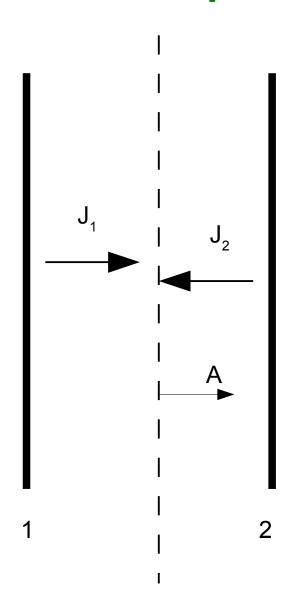
• Ex. Pretende-se construir uma rodovia asfaltada em uma região desértica, que recebe 600 W/m² de radiação solar quando a temperatura efetiva do céu é 270K. Uma leve brisa de ar a 30°C passa pela rodovia com um coeficiente de transferência de calor de 5 W/m² K. A absorvidade do asfalto para a radiação solar vale 0,93 e sua emissividade média 0,13. Assumindo que nenhum calor passa do asfalto para o solo, determine a temperatura de equilíbrio do asfalto.

$$\alpha_s G_{solar} + \alpha_{asf} G_{c\acute{e}u} - \dot{q}''_{conv} - E_{asf} = 0$$

$$\alpha_s G_{solar} = 0.93(600)$$

$$\alpha_{asf} G_{c\acute{e}u} = 0.13 \, \sigma \, T_{c\acute{e}u}^4$$

$$\dot{q}''_{conv} = h(T_{asf} - T_{\infty}) = 5(T_{asf} - (30 + 273))$$


$$E_{asf} = 0.13 \, \sigma \, T_{asf}^4$$

$$T_{asf} = 116^{\circ} C$$

Exercícios

- 9-2E Um fio de níquel-cromo é usado em um aquecedor por radiação. A temperatura do fio vale 2.000 °F. Determine:
- (a) A taxa total de energia emitida pelo fio assumindo que ele se comporta como um corpo negro em Btu/h ft².
- (b) A fração desta energia que cai na região infravermelha $1 < \lambda < 100 \ \mu m$.
- 9-4 A transmissividade do vidro comum vale 1 na região $0.2 < \lambda < 3 \ \mu m$ e zero fora dessa faixa. A transmissividade do vidro escuro vale 1 na região $0.5 < \lambda < 1 \ \mu m$ e zero fora dessa faixa. Calcule e compare a taxa de energia transmitida através de ambos os tipos de vidro se a fonte da radiação for um corpo negro à temperatura de
- (a) 1.000 °C. (b) 200 °F.
- 9-5E Um filamento de tungstênio de uma lâmpada pode ser considerado com sendo um corpo negro a 4.100 °F. Determine a porcentagem de energia emitida que está dentro da região visível $(0.4 < \lambda < 0.7 \ \mu m)$.
- 9-6 O sol é considerado como um corpo negro que irradia a 5.800 K. Qual porção dessa energia está na faixa ultravioleta, visível e infravermelha?

2 surpefícies paralelas infinitas

$$\dot{Q} = J_1 A_1 - J_2 A_2 = (J_1 - J_2) A$$

$$\dot{Q} = \frac{(J_1 - J_2)}{(1/A)}$$

2 surpefícies paralelas infinitas

Deixando superfície 1:

$$\dot{Q} = A_1 (J_1 - G_1)$$

Para corpo cinzento:

$$\alpha = \varepsilon$$

$$\alpha + \rho = 1$$

$$J_1 = \varepsilon_1 E_{nl} + \rho G_1 = \varepsilon_1 E_{nl} + (1 - \varepsilon_1) G_1$$

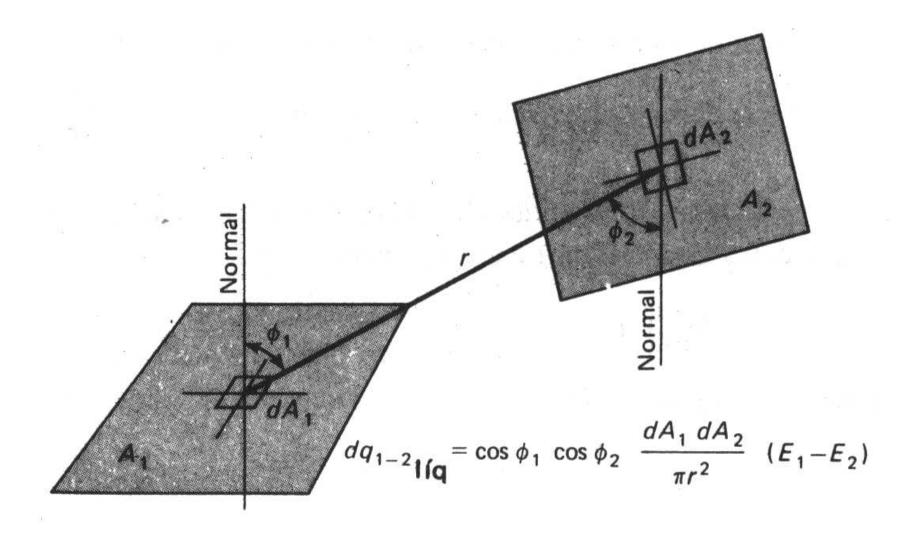
$$G_1 = \frac{J_1 - \varepsilon_1 E_{nl}}{1 - \varepsilon_1}$$

Substituindo:

$$\dot{Q} = A_1 (J_1 - \frac{J_1 - \varepsilon_1 E_{nl}}{1 - \varepsilon_1}) = \frac{A_1 \varepsilon_1}{1 - \varepsilon_1} (E_{nl} - J_1) = \frac{E_{nl} - J_1}{(1 - \varepsilon_1)/(A_1 \varepsilon_1)}$$

2 surpefícies paralelas infinitas

Deixando superfície 1 => atinge superfície 2


$$\dot{Q} = -\dot{Q}_2 = \frac{-(E_{n2} - J_2)}{(1 - \varepsilon_2)/(A_2 \varepsilon_2)} = \frac{J_2 - E_{n2}}{(1 - \varepsilon_2)/(A_2 \varepsilon_2)}$$

Assim:

$$\dot{Q} = \frac{E_{nl} - E_{n2}}{R_{eq}}$$

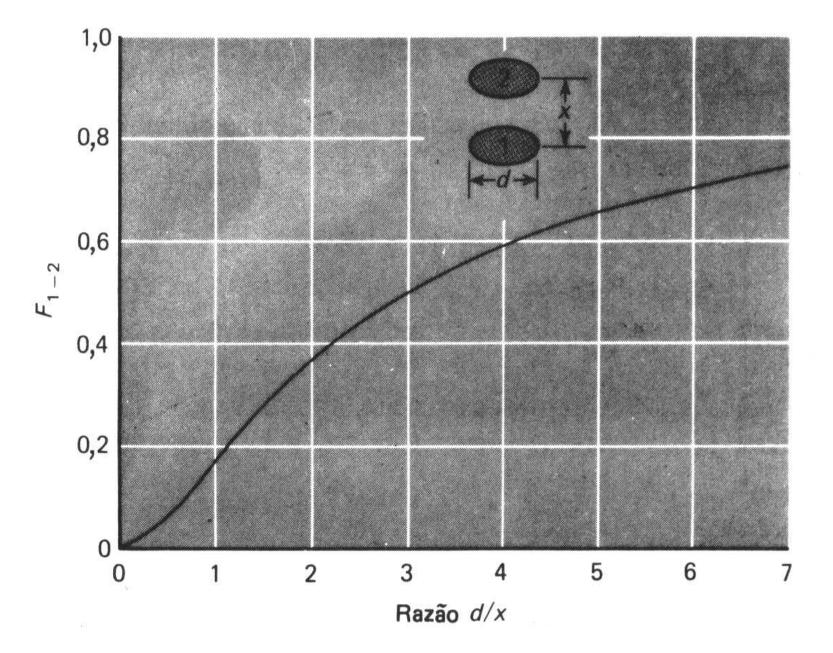
$$R_{eq} = (1 - \varepsilon_1)/(A\varepsilon_1) + 1/A + (1 - \varepsilon_2)/(A\varepsilon_2)$$

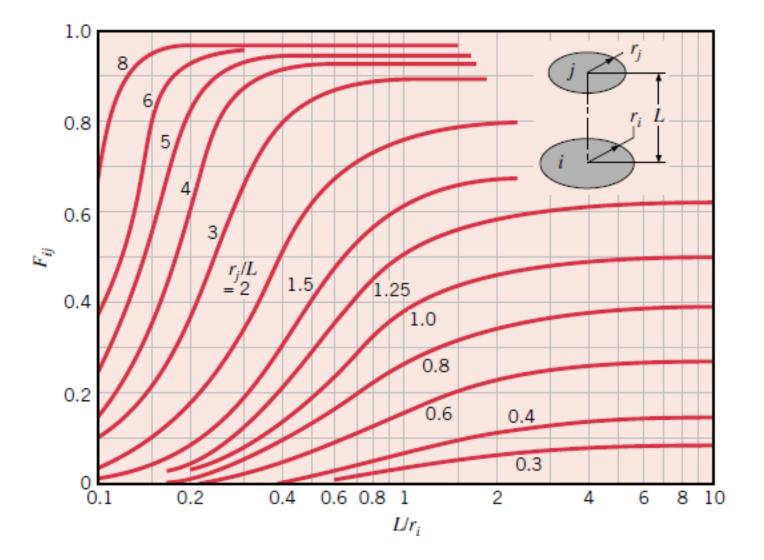
- Fator de Forma
 - Considere duas superfícies negras A₁ e A₂.
 - Desejamos uma expressão para a transferência de energia entre estas superfícies
 - Determinação da quantidade de energia que deixa uma superfície e atinge a outra;
 - Para resolver este problema é definido um fator de forma de radiação (F);
 - F_{1_2} Fração de energia que deixa a superfície 1 e atinge a superfície 2;
 - F_{2_1} Fração de energia que deixa a superfície 2 e atinge a superfície 1;
 - F_{m_n} Fração de energia que deixa a superfície m e atinge a superfície n;

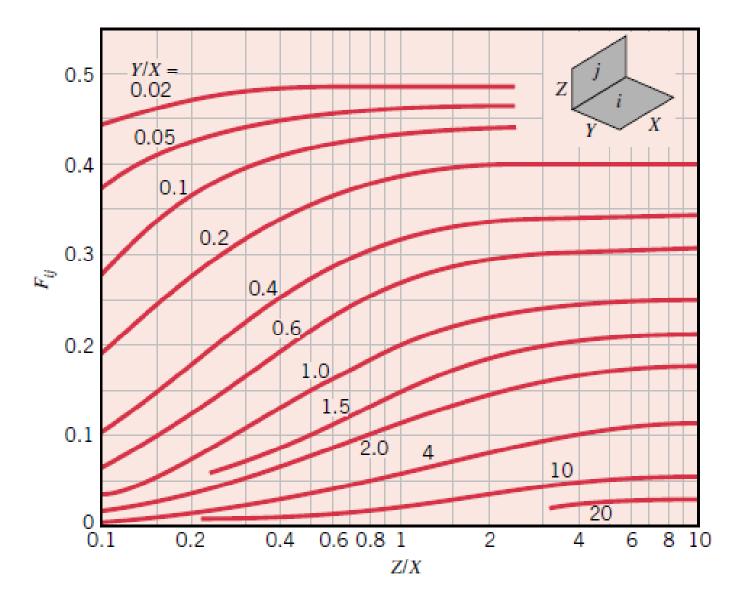
 Desta forma, pode-se calcular a quantidade de calor trocada por radiação entre duas superfícies Negras como:

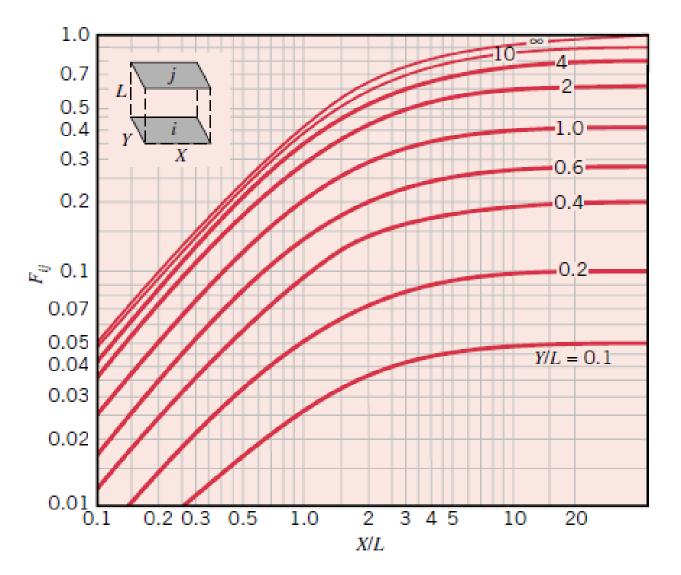
$$Q_{12} = A_1 F_{12} E_{N1} - A_2 F_{21} E_{N2}$$

Que deve valer para 2 corpos negros à mesma temperatura, logo

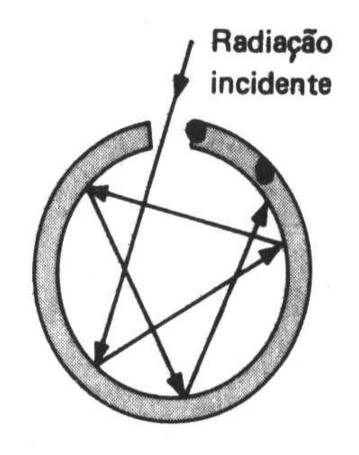

$$A_1F_{12} = A_2F_{21}$$


Assim:


$$Q_{12} = A_1F_{12}(E_{N1} - E_{N2}) = A_2F_{21}(E_{N1} - E_{N2})$$

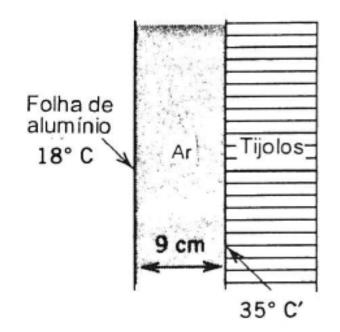

Para duas superfícies cinzentas:

$$Q_{12} = A_1F_{12}(J_{N1} - J_{N2}) = A_2F_{21}(J_{N1} - J_{N2})$$

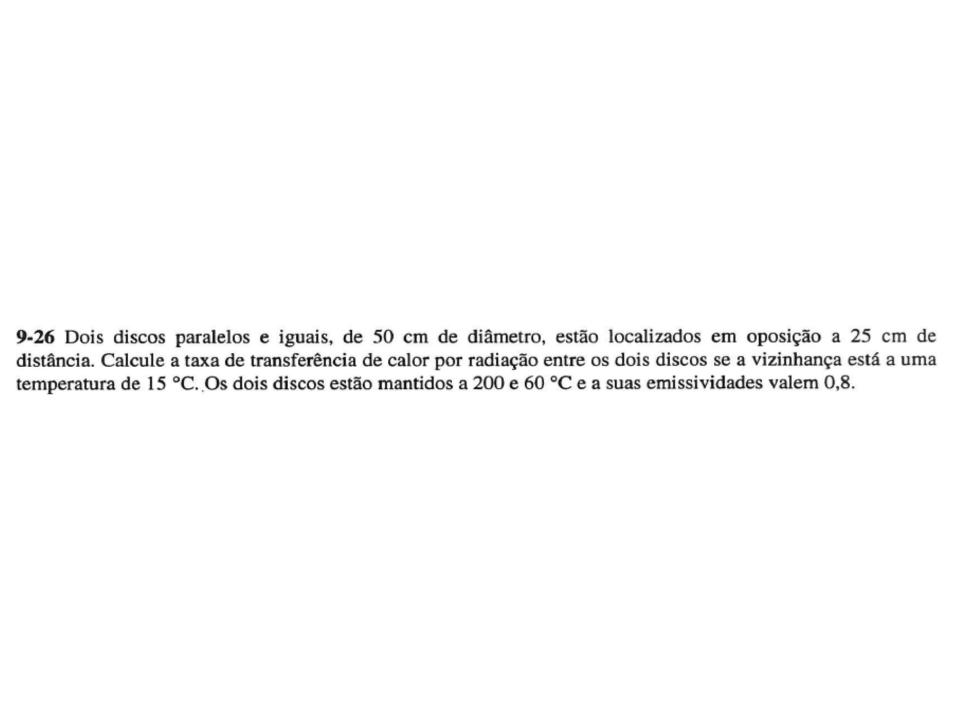


2 surpefícies cinzas com dimensões finitas

Da mesma forma como feito anteriormente, podemos mostrar que:


$$\dot{Q} = \frac{E_{nl} - E_{n2}}{R_{eq}}$$

$$R_{eq} = (1 - \varepsilon_1) I(A_1 \varepsilon_1) + 1 I(F_{1,2} A_1) + (1 - \varepsilon_2) I(A_2 \varepsilon_2)$$


- O poder emissivo de um corpo é definido como sendo a energia emitida pelo corpo por unidade de área e tempo;
- Corpo negro é uma idealização física.
 Um corpo negro não reflete alguma radiação e uma boa aproximação de um corpo negro pode ser esquematizado pela figura

9-18 Um espaço cheio de ar é deixado entre as paredes de uma casa como mostrado na Fig. P9-18. Desde que o espaço tem apenas 9 cm de espessura, as duas paredes podem ser consideradas como placas infinitas. O lado da parede de tijolo voltado para o espaço tem uma temperatura de 35 °C no verão, enquanto que a superfície do alumínio, folha de alumínio polido, está a 18 °C. Determine a taxa de transferência de calor por radiação através do espaço.

Figura P9-18 Espaço cheio de ar entre as paredes de uma casa.

