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PREFACE

Since the earlier 90’s, Matrix Inequalities (MIs) have become very important in engi-

neering, particularly in control theory. It is unquestionable that the approaches proposed

in the field of optimization and control theory based on matrix inequalities and semidefi-

nite programming have become very important and promising. Indeed, matrix inequalities

provide a nice set up for many engineering and related problems, and if the MIs are convert-

ible to LMIs, the optimization problem is well behaved and interior point methods provide

efficient algorithms.

This thesis provides tools which can solve a large class of optimization problems over

matrix inequalities. This includes, for instance, systems and control problems, or any other

type of engineering problem that can be posed as a matrix inequality. To use these tools,

no knowledge of Linear Matrix Inequalities (LMIs) is required. Furthermore, these tools

preserve the advantages of the LMI framework.

To understand the motivation for this task, one must expose some of the advantages

and disadvantages of the LMI framework. The wide acceptance of LMIs stems from the

following facts: 1) if a control problem is posed as an LMI, then any solution is a global

optimum; 2) efficient LMI solvers are readily available; 3) once a control problem is posed

as an LMI, any other constraints in the form of LMIs can be added to the problem. On the

other hand, the LMI framework has the following disadvantages: 1) there is no systematic

way to produce LMIs for general classes of problems; 2) there is no way to even know if it is

possible to reduce a system problem to an LMI, without actually doing it; 3) the user must

posses the knowledge of manipulating LMIs; 4) transformations via Schur complements can

lead to a large LMI representation.

If one has the ability to check whether or not an MI is convex and convertible to

an LMI, then the optimization problem can be solved by the many available LMI solvers;

however, if one does not have the ability to deal with LMIs, it is not clear what one should

do. An alternative is to restate the entire optimization problem in the form used by some

particular numerical nonlinear optimization solver. In this case, since optimization over

matrix functions are inherently not smooth, there is no guarantee of even a local minimum.

Furthermore, the tedious process of reformulating a matrix optimization problem usually

requires a high level of skill in algebra.

The main objective of this thesis is to provide a numerical solver for optimization

problems over matrix inequalities that possesses similar advantages as the LMI framework,

xii



but without its disadvantages. Our method has two components: 1) a numerical algorithm

that solves a large class of matrix optimization problems; 2) a symbolic “Convexity Checker”

which automatically provides a region on which the solution from 1) is a global optimum.

The convexity checker presented in Chapter 3 is one of the main contributions of this

thesis. This symbolic convexity checker algorithm takes as input a matrix function F (X)

and gives as output a family of inequalities which determine a domain G(X) on which F (X)

is “matrix convex.” In this way, if G(X) is convex, the checker gives a certificate that the

solution obtained from the numerical solver is indeed a global minimum inside the region

G(X).

The numerical optimization solver NCSDP, presented in Chapter 4, is another con-

tribution of this thesis. This tool can be used to solve optimization problems over matrix

inequalities, and does not require any knowledge of LMIs, or how to manipulate MIs to

be expressed as LMIs. Therefore, there is no need to determine Schur complements in or-

der to express the matrix constraints as LMIs. Moreover, since transformations via Schur

complements can lead to a large LMI representation, the NCSDP solver can reduce the

optimization time significantly when the dimensions of the matrices involved are large.

Putting together the convexity checker and the numerical optimization solver for

matrix functions, one has available a very powerful tool to solve many engineering problems

that can be posed using matrix inequalities. This approach also guarantees a region in which

the solution is optimal. Suppose one has multiple matrix inequalities, then by utilizing the

convexity checker it is possible to find a region on which all those inequalities happen to be

convex. Once this region is determined, one can solve an optimization problem that takes

into account this region of convexity. This tool addressed two important questions:

1. How one can determine if an MI is convex or not. (This is the convexity checker.)

2. If an MI is convex, how one can numerically solve an optimization problem without

having to convert the MI into an LMI. (This is the NCSDP solver.)

It should be noticed, however, that many other types of engineering problems are

intrinsically nonconvex, which makes the above tools no longer useful. Nonetheless, for

a specific nonconvex problem frequently encountered in control designs, the simultaneous

design of the plant parameters and the control law, this thesis provides a convexifying theory

which allow us to approximate the solution of this nonconvex integrated structure and

control design by iterating on a sequence of convex subproblems. The convex subproblem
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is obtained by adding a potential function to the nonconvex constraints. In practice, this

added potential function disappears at stationary solutions of the nonconvex problem. The

convexifying theory is another contribution of this thesis, which is presented in Chapter 5.

It is important to understand whether or not the variables in the matrix inequali-

ties should be treated as commutative or noncommutative (treating a matrix as a single

variable). Suppose one has the following noncommutative matrix function:

ATXA+XBTBX +Q (0.1)

This function has the same form regardless of the dimension of the defining matrices A, B,

Q, and X. It is also possible to write a commutative version of the above matrix function,

as a combination of known matrices L0, L1, . . . , Lm, L11, L12, . . . , Lmm in unknown real

numbers x1, . . . , xm (which are the entries of X):

L0 +

m∑

j=1

Ljxj +

m∑

i=1

m∑

j=1

Lijxixj . (0.2)

The formulas for the L’s depend on the dimension of the underlying matrices A, B, Q, and

X. As the dimensions of the matrices increases, the more complicated the formulas for the

L’s becomes.

From the above two equivalent representations (0.1) and (0.2), it is unquestionable

that the noncommutative approach for dealing with MIs provides a more elegant mathe-

matical framework. In addition we shall show it is more powerful. First of all it allows

one to compute efficiently directional derivatives. For instance, the second derivative, the

Hessian, of (0.1) is easily computed as being BTB. This is a clean expression that does not

depend on the dimension of the matrices involved. On the other hand, the formula for the

Hessian of (0.2) depends on the L’s and consequently, on the dimensions of the matrices

involved and it is messy.

We now note two interesting feature which arise in the noncommutative approach.

1. Noncommutativity is likely to be the only practical necessary and sufficient approach

available for checking convexity of matrix functions, given that the ability of checking

convexity of a matrix function is associated with the ability of determining positivity

of its Hessian matrix at each point. This is a huge calculation, so it must be done

symbolically. Even for problems with moderate number of (commuting) variables, the

size would be overwhelming without using aggregated noncommutative structure.
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2. The algebraic linear system of equations, that appears in the subproblem of our op-

timization solver, has basically the following special “Sylvester” structure:

N∑

i

AiδXBi +

N∑

i

BT
i δXAT

i = Q

where the A’s and B’s are obtained by collecting the terms on both the left and on

the right side of the update direction δX that appears inside the “Hessian map.”

This Sylvester form is not unique and our research has shown that making N small

saves considerable computer time; we give algorithms for doing this. This appealing

Sylvester structure bears furthers study.
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Paráıba, Brazil

PUBLICATIONS

Journal papers

J. F. Camino, J. W. Helton, Robert E. Skelton, and Jieping Ye. Matrix inequalities:

A symbolic procedure to determine convexity automatically. Integral Equations and

Operator Theory, 46(4):399–454, July 2003.

J. F. Camino, M. C. de Oliveira, and R. E. Skelton. “Convexifying” linear matrix

inequality methods for integrating structure and control design. ASCE Journal of

Structural Engineering: Special Issue on Structural Control, 129(7):1–11, July 2003.

R. H. C. Takahashi, J. F. Camino, D. E. Zampieri, and P. L. D. Peres. Multiobjective

Weighting Selection for Optimization-Based Control Design. Journal of Dynamic

Systems, Measurement, and Control, 122(3):567–570, September 2000.

Conference papers

J. F. Camino, M. C. de Oliveira, and R. E. Skelton. Plant and control design using

convexifying LMI methods. In Proceedings of the XV IFAC World Congress on

Automatic Control, Barcelona, Spain, July 2002. T-We-M18 (cdrom).

J. F. Camino, M. C. de Oliveira, and R. E. Skelton. Convexifying LMI methods for

integrating structure and control design. In Fabio Casciati, editor, Third World

Conference on Structural Control, volume 2, pages 431–437, Como, Italy, April 2002.

International Association for Structural Control (IACS), John Wiley & sons.

xvii



J. F. Camino, J. W. Helton, R. E. Skelton, and J. Ye. Analyzing matrix inequalities sys-

tematically: How to get Schur complements out of your life. In 5th SIAM Conference

on Control & Its Applications, San Diego, CA, July 2001.

M. C. de Oliveira, J. F. Camino, and R. E. Skelton. A convexifying algorithm for the

design of structured linear controller. In Proceedings of the 39th IEEE Conference on

Decision and Control, pages 2781–2786, Sydney, Australia, December 2000.

J. F. Camino, J. W. Helton, and R. E. Skelton. A symbolic algorithm for determining

convexity of A matrix function: How to get Schur complements out of your life. In

Proceedings of the 39th IEEE Conference on Decision and Control, pages 5023–5026,

Sydney, Australia, December 2000.

J. F. Camino, D. E. Zampieri, and P. L. D. Peres. H2 and H∞ optimization techniques

applied to A quarter-car suspension model. In Proceedings PACAM VI/DINAME 99,

Rio de Janeiro, RJ, Brazil, January 1999.

J. F. Camino, D. E. Zampieri, and P. L. D. Peres. Design of A vehicular suspension con-

troller by static output feedback. In Proceedings of the American Control Conference,

pages 3168–3172, San Diego, CA, June 1999.

R. H. C. Takahashi, J. F. Camino, D. E. Zampieri, and P. L. D. Peres. A multiobjective

approach for H2 and H∞ active suspension control. In Proceedings of the American

Control Conference, volume 1, pages 48–52, Philadelphia, Pennsylvania, June 1998.

J. F. Camino, D. E. Zampieri, and P. L. D. Peres. Aplicação da Técnica de controle ro-
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in the form of LMIs can be added to the problem. On the other hand, the LMI framework has
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a “Convexity Checker” which automatically provides a region, which if convex, guarantees that the

solution from 1) is a global optimum on that region.

Unfortunately, not all MIs are convex, and a different strategy is required for nonconvex

problems. In this thesis, the nonconvex problem of interest is the simultaneous design of the plant

parameters and the control law. To overcome the difficulty of nonconvex MIs, a convexifying theory

is presented which allow us to approximate the solution of this nonconvex integrated structure and

control design by iterating on a sequence of convex subproblems. The convex subproblem is obtained

by adding a potential function to the nonconvex constraints.
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Chapter 1

General Introduction

Since the early 90’s, Matrix Inequalities (MIs) have become very important in engi-

neering, particularly, in control theory. It is unquestionable that the approaches that have

been proposed in the field of optimization and control theory based on Linear Matrix In-

equalities (LMIs) and semidefinite programming (SDP) have become very important and

promising, since the same framework can be used for a large set of problems (Boyd et al.

(1994); El-Ghaoui and Niculescu (1999); Rockafellar (1997); Skelton and Iwasaki (1995);

Skelton et al. (1998)). Indeed, matrix inequalities provide a nice set up for many engi-

neering and related problems, and if the MIs are convex, then the optimization problem is

well behaved and the interior point methods provide efficient algorithms which are effec-

tive on moderate sized problems (Alizadeh et al. (1998); Nesterov and Nemirovskii (1994);

Vandenberghe and Boyd (1996)).

In practice, optimization problems in engineering present matrix inequalities that

require a large effort to determine their convexity. Nevertheless, using Schur complements

and change of variables, many standard control problems have been found to possess an

equivalent LMI formulation. A large collection of such control problems that can be posed

as LMI, and the algorithms used to solve them, can be found in Boyd et al. (1994); Colaneri

et al. (1997). In particular, the book by Skelton et al. (1998) shows that many control

problems can be posed in the following linear form in X

AXB +BTXAT +Q < 0. (1.1)

The parameterization of all feasible solutions X and the expression for the existence condi-

tions for the above matrix inequality (1.1) are also given.

1
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1.1 Optimization over Matrix Functions

If one has the ability to check whether or not an MI is convex and convertible to

an LMI, then the optimization problem can be solved by the many available LMI solvers;

however, if one does not have the ability to deal with LMIs, then it is not clear what

one should do. An alternative is to restate the entire optimization problem in the form

used by some particular numerical nonlinear optimization package. In this case, given that

optimization over matrix functions are inherently not smooth, there is no guarantee of even

a local minimum. Furthermore, the tedious process of reformulating a matrix optimization

problem usually requires a high level of skill in algebra. Therefore, what has been missing

up to now are the tools that can be used to reliably and certifiably solve optimization

problems over matrix functions.

To convey what is meant by optimization over matrix functions, we give an example.

Suppose one is given matrices of compatible dimensions A and S, and one needs to solve

the following problem for symmetric matrices X and Y > 0 inside the unit ball:

max
X,Y

Tr {X} (P)

subject to

XATY −1AX −AX(XAT Y −1AX − Y )−1XAT − (Y −1XATY −1AXY −1 − Y −1)−1

−AX(I + Y −1XATY −1AX)−1 − (I +XATY −1AXY −1)−1XAT − S < 0.

With the matrices A and S given by

A =

[
1 −1

0 2

]
, S =

[
2 0

0 1

]
.

Later in Chapter 2, we give a physical example.

The above type of matrix optimization problem (P) can be solved using the tools

provided in this thesis. These tools can solve a large class of convex optimization problems

over matrix functions. This includes, for instance, many systems and control problems, or

any other type of engineering problem that can be posed as matrix inequalities. To use

these tools, no knowledge of Linear Matrix Inequalities is required.

To understand the motivations for this task, one must expose some of the advantages

and the disadvantages of the LMI framework.
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1.2 Advantage and Disadvantage of Linear Matrix Inequali-

ties

The wide acceptance of LMIs stems from the following facts: a) if a control problem is

posed as an LMI, then any solution is a global optimum; b) efficient LMI solvers are readily

available; c) once a control problem is posed as an LMI, any other constraints in the form

of LMIs can be added to the problem.

On the other hand, the LMI framework has the following disadvantages: 1) there is

no systematic way to produce LMIs for general classes of problems; 2) there is no way of

knowing whether or not it is possible to reduce a system problem to an LMI without actually

doing it; 3) the user must possess the knowledge of manipulating LMIs; 4) transformations

via Schur complements can lead to a large LMI representation.

Extending more on disadvantage 1), each area has a few special tricks which convert

“lucky problems” into LMIs. Before there is any hope of producing LMIs systematically,

it is important to know which types of constraint sets convert to LMIs and which do not.

This appears to be a fundamental subject which remains to be explored. Although we do

not deal with this question in this thesis, the papers by Helton (2002) do address some of

these issues.

1.3 Our Approach to Solving Matrix Inequalities

Our method has two components: 1) a numerical algorithm, called NCSDP, that

solves a large class of matrix optimization problems; 2) a symbolic “Convexity Checker”

which automatically provides a region on which the solution from 1) is a global optimum.

The convexity checker presented in Chapter 3 is one of the main contributions of this

thesis. The symbolic convexity checker algorithm takes as input a matrix function F (X)

and gives as output a family of inequalities that determine a domain G(X) on which F (X)

is “matrix convex.” In this way, the checker guarantees that the solution obtained from the

numerical solver is indeed a global minimum inside the region G(X), provided that G(X) is

convex.

The numerical NCSDP optimization solver presented in Chapter 4 can be used to

solve optimization problems corresponding to matrix inequalities. This approach does not

require any knowledge of LMIs or any knowledge of how to manipulate MIs to be expressed
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as LMIs. Consequently, there is no need to determine Schur complements in order to express

the matrix constraints as LMIs. Moreover, since transformations via Schur complements

can lead to an LMI representation with large matrices, the NCSDP solver has the potential

to reduce the optimization time significantly when the dimensions of the matrices involved

are large (see Section 1.4.3 in this introduction).

Putting together the convexity checker from Chapter 3 and the NCSDP solver from

Chapter 4, we have a set of very powerful tools to solve many engineering problems that

can be posed as matrix inequalities. These tools also provide a region, which if convex,

guarantees that the solution of the NCSDP solver is a global minimum on that region.

Suppose one has multiple matrix inequalities, then by using the convexity checker, it is

possible to find a region on which all those inequalities happen to be convex. Once this

region is determined, one can solve an optimization problem which takes into account this

region of convexity. These tools answered two important questions:

1. How one can determine if an MI is or is not convex. (This is the convexity checker.)

2. If an MI is convex, how one can numerically solve an optimization problem without

having to convert the MI into an LMI. (This is the NCSDP solver.)

In some sense, there is a parallel between the conventional “LMI approach” and our

noncommutative approach. In the former, one needs to be able to convert the optimization

problem over matrix functions into an equivalent LMI problem, so that some available LMI

solver can be used. In the latter, the convexity checker is used to find a region G on which

the MIs happen to be convex, and the NCSDP solver is used to solve the optimization

problem inside this region G. The next Section 1.4 describes this approach.

1.4 Introducing our Approach by an Example

We begin by describing our method in terms of an example which seem to conve-

niently illustrate our approach for dealing with matrix inequalities. For this purpose, we

choose the optimization problem over matrix functions (P) and show that no knowledge of

LMIs is required in order to solve it. (A realistic engineering problem is presented in Chap-

ter 2.) Recall the optimization problem (P): suppose one is given matrices of compatible

dimensions A and S, and one needs to solve the following problem for symmetric matrices

X and Y > 0 inside the unit ball:

max
X,Y

Tr {X} (P)



5

subject to

XATY −1AX −AX(XATY −1AX − Y )−1XAT − (Y −1XATY −1AXY −1 − Y −1)−1

−AX(I + Y −1XATY −1AX)−1 − (I +XATY −1AXY −1)−1XAT − S < 0.

For this example, the unit ball can be represented by the following convex constraints:

XX < I and Y Y < I.

The matrices A and S are given by

A =

[
1 −1

0 2

]
, S =

[
2 0

0 1

]
.

Using our methodology, this type of matrix optimization problem can be solved quite

easily, while knowing nothing about LMIs. The steps are:

1. to determine the domain G on which the above problem is convex;

2. to solve the optimization problem using the numerical NCSDP solver over G.

These steps enforce that the solution from the code is guaranteed to be a global minimum

inside the region G, provided that G is convex.

1.4.1 Step 1. Checking convexity

The region G is easily determined by invoking the NCConvexityRegion[ ] intro-

duced in Part I of Chapter 3. We describe this step using standard TEX notation. For this

purpose, let us define the domain:

G = {(X,Y,A, S) : F (X,Y,A, S) < 0, Y > 0, XX < I, and Y Y < I} (1.2)

with

F (X,Y,A, S) = −AX(XATY −1AX − Y )−1XAT − (Y −1XATY −1AXY −1 − Y −1)−1 − S
−AX(I + Y −1XATY −1AX)−1 − (I +XATY −1AXY −1)−1XAT +XATY −1AX

for X = XT and Y = Y T . The region of convexity for G is evidently the region where the

function F (X,Y,A, S) is matrix convex inside the unit ball for all Y > 0.

Since the convexity checker works at the noncommutative symbolic level, we must set

the symbols appearing in the expression for F (X,Y,A, S) to be noncommutative. Thus, we

treat X, Y , A, and S symbolically as noncommutative indeterminate. To check the region

of convexity for F (X,Y,A, S), we apply the command:
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NCConvexityRegion[F , {X, Y }]

which outputs the list

{2Y −1, −2(XATY −1AX − Y )−1, 2Y −1, 0, 0, 0, 0, 0, 0, 0, 0, 0}.

Based on our theory, we know that F (X,Y,A, S) will be convex in the domain that makes

each entry in the list a positive definite expression, which, in this case, is the domain given

by

2Y −1 > 0 and − 2(XAT Y −1AX − Y )−1 > 0.

Thus, from this output, we conclude that whenever A, S, X, and Y are matrices of compat-

ible dimension, F (X,Y,A, S) is simultaneously “matrix convex” in X and Y on the domain

GF given by

GF := {(X,Y,A, S) : Y > 0 and XATY −1AX < Y }. (1.3)

To find if the above domain GF is itself simultaneously convex in X and Y , we run the

convexity checker once more on the function G(X,Y,A) = XATY −1AX − Y ,

NCConvexityRegion[XAT Y −1AX − Y , {X, Y }].

This command outputs the list {2Y −1, 0}. Thus, the region of convexity is Y > 0, and

consequently the domain GF in (1.3) is convex. The optimization problem (P) will ultimately

be convex inside the domain G ⋂GF .

1.4.2 Step 2. Invoking the NCSDP solver

The optimization problem (P) can now be solved with no great difficulty using the

NCSDP solver provided in Chapter 4. To enforce that this optimization problem is convex,

we need to add the following convex constraint:

XATY −1AX < Y. (1.4)

It should be realized that by adding the above constraint (1.4), we are not solving exactly

the original problem, but instead, we are solving problem (P) inside its region of convexity.

To proceed, let us define the objective for this optimization problem as

obj := −Tr {X} ,



7

and let the Gi, representing the constraint Gi < 0, be given by

G1 := F (X,Y,A, S)

G2 := −Y

G3 := Y Y − I

G4 := XX − I

G5 := XATY −1AX − Y

The numerical data for this problem are

A =

[
1 −1

0 2

]
, S =

[
2 0

0 1

]
.

With this data, we solve the minimization problem (P) using the NCSDP solver. In a

figurative syntax1, the call in Matlab is

NCSDP(obj, {G1, G2, G3, G4, G5}, {X,Y })

The solver returns the global optimum values for the unknowns X and Y given by

X∗ =

[
0.3421 0.0263

0.0263 0.0788

]
, Y ∗ =

[
0.8107 0.0016

0.0016 0.4255

]
.

The optimal cost is therefore Tr {−X∗} = −0.4208.

It is important to emphasize that the extra constraint XATY −1AX < Y obtained

from the convexity checker, allows us to solve a convex instance of the original problem, i.e.,

to solve the original problem inside its largest region of convexity, namely, closure(G ⋂GF ).

This ensures that the solution is a global minimum inside this convex domain. Moreover,

for the specific data in our example, the only constraint active at the optimal solution X ∗

and Y ∗ is F (X,Y,A, S) ≤ 0.

1.4.3 Timing chart

We have just presented ideas on how to use the NCSDP solver and demonstrated

some of its advantages as well. The question we address here is the comparison of speed;

1This is not the actual call for the solver. In its present implementation, the code receives as input the
expressions for the constraints as Matlab strings. In this way, we could parse the data to Mathematica for
symbolic manipulations.
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since it is important to present a comparative analysis of the NCSDP solver with other

SDP solvers. For this purpose, we present some of the results obtained in Section 4.7 from

Chapter 4. The optimization problem used in this comparison, is not problem (P) from

the previous section, but rather, another problem that also has an LMI representation. We

do not restate the problem here, since the point is to show a qualitative comparison (see

Section 4.7 for details).

The results are presented in Figure 1.1. The semidefinite programming solvers used

were: SeDuMi, SP, SDPHA, and LMILab. These professional solvers are well known to be

efficient for matrices of moderate size. The label MCLMI stands for a crude implementation

of the method of centers for LMIs. It is important to emphasize that while the NCSDP

solver is basically implemented using standard Matlab functions, most of the other solvers

have their core subroutines compiled.

From Figure 1.1, one can conclude that, as the size of the matrices increase beyond

16 × 16, the timing of the NCSDP solver approximates the timing of the LMILab solver

(Matlab LMI Toolbox) which was the fastest of the LMI solvers. Probably, for matrices of

dimensions larger than 64 × 64, the NCSDP might be faster than the LMILab solver. We

did not run this experiment for matrices of dimensions larger than 64 × 64 since the time

would be extremely long.
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Figure 1.1: Performance of LMI Solvers
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1.5 Convexity of Matrix Inequalities

At this point, one should realize that the main ingredient of our discussion concerning

MIs and LMIs is convexity – specifically, the ability of determining if a matrix function is

or is not convex (similarly, concave). If an MI can be similarly cast as an LMI, then it is

evident that one has a convex problem. To achieve this, one must be able to recognize what

type of transformation has to be applied to the original MI. Usually, this is accomplished

by applying Schur complements. Sometimes, this transformation is clear, but in many

other cases, it may not be immediately obvious. An example, is the matrix inequality

F (X,Y,A, S) < 0 used in the previous optimization problem (P). This MI is given by

XATY −1AX −AX(XATY −1AX − Y )−1XAT − (Y −1XATY −1AXY −1 − Y −1)−1

−AX(I + Y −1XATY −1AX)−1 − (I +XATY −1AXY −1)−1XAT − S < 0 (1.5)

with X ∈ S and S, Y ∈ S++. Even though it may not be obvious at first glance, this MI is

convex in X and Y , and can be transformed via Schur complements to the equivalent LMI




−S AX + Y 0 XAT

XAT + Y −Y XAT 0

0 AX −Y 0

AX 0 0 −Y



< 0. (1.6)

As seen from (1.6), this transformation led to an LMI representation four times larger

than the original MI representation (1.5). Once the problem is in the linear form given by

(1.6), there are many available LMI solvers. To cite a few of them: Gahinet et al. (1995);

Sturm (1999); Vandenberghe and Balakrishnan (1997); Vandenberghe and Boyd (1995), and

references therein.

For this example, we succeed in producing the LMI counterpart of the MI, however,

as already emphasized, there is no systematic way to produce LMIs for general classes

of problems. Thus, a natural question, is “how to identify if a matrix inequality is or

is not convex.” This is quite important, since applying Schur complements to determine

convexity2 of MIs may take time, cleverness, and large efforts. Yet, if one fails to set the

problem as an LMI, it does not necessarily imply that the MI is nonconvex. The answer to

this type of question is presented in Chapter 3, where a convexity checker for determining

convexity of matrix functions is made available.

2A matrix inequality F (X, Y ) < 0 been convex, means that the domain G := {(X, Y ) : F (X, Y ) < 0} is
convex. This in turns implies that the function F (X, Y ) itself is matrix convex in X and Y .
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1.6 Noncommutative Matrix Inequalities

It is important to understand if the variables in the matrix inequalities should be

treated as commutative or noncommutative, and which mathematics one has available to

deal with those formulas. For this purpose, let us discuss the various ways one could write

a matrix inequality. As an example, the following convex MI

ATXA+XBTBX +Q < 0 (1.7)

has the same form regardless of the dimension of the defining matrices A, B, Q, and X.

In other words, if we take the matrices A, B, Q, and X to have compatible dimensions

(regardless of what those dimensions are), then this inequality is meaningful and its form

does not change. On the other hand, for this same example, once the dimensions of the

matrices A, B, Q, and X are specified, it is also possible to write the above MI as a

combination of known matrices L0, L1, . . . , Lm, L11, L12, . . . , Lmm of dimension p× p in

unknown real numbers x1, . . . , xm:

L0 +

m∑

j=1

Ljxj +

m∑

i=1

m∑

j=1

Lijxixj < 0. (1.8)

For example, if we assume that the dimension of the matrices in the inequality (1.7)

are A ∈ R2×2, B ∈ R1×2, Q ∈ R2×2, then XT = X ∈ R2×2 and consequently m = 3. The

unknowns in the inequality (1.7) are the numbers xi in

X =

(
x1 x2

x2 x3

)

For this set of matrices, the Ls are given by

L11 =

(
b211 0

0 0

)
L22 =

(
b212 b11b12

b11b12 b211

)
L21 = LT

12

L12 =

(
b11b12 b211

0 0

)
L23 =

(
0 b212

0 b11b12

)
L31 = LT

13

L13 =

(
0 b11b12

0 0

)
L33 =

(
0 0

0 b212

)
L32 = LT

23

L1 =

(
a2

11 a11a12

a11a12 a2
12

)
L3 =

(
a2

21 a21a22

a21a22 a2
22

)
L0 = Q

L2 =

(
2a11a21 a12a21 + a11a22

a12a21 + a11a22 2a12a22

)
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Now, if we consider that the dimensions of the matrices involved are A ∈ R3×3,

B ∈ R3×3, Q ∈ R3×3, and X ∈ R3×3, then the formulas for the Ls, whose relationship

to (1.8) takes a little while to figure out, are more complicated. This shows that formulas

like (1.8) do not scale simply with the dimension of the matrices, while formula like (1.7)

does. Thus, formulas like (1.7) are easier to manipulate with a pencil and paper (or with

NCAlgebra) than formula (1.8). In this way, it is plausible to say that noncommutative

inequalities behave better than commutative ones.

Commutativity also has its own advantages, given that unscalable formulas like (1.8)

tend to hold more generally than scalable ones and that they do not contain too much

special structure. Moreover, formulas like (1.7) have the disadvantage to be intrinsically

noncommutative, so that a person must have skill with noncommutative calculations. Nev-

ertheless, the properties that originated from the commutative point of view do not appear

to provide any useful advantage regarding our approach for dealing with matrix inequality,

on the other hand, noncommutativity provides a powerful setup to manage matrix inequal-

ity symbolically. Therefore to develop a basis for computer algebra packages which could

assist engineers in manipulating matrix inequalities, one needs to use the theory behind

noncommutative rational functions, which is addressed in great detail in Chapter 3.

1.6.1 Noncommutativity as the Only Option for Checking Convexity

We have just shown that noncommutativity for dealing with MIs provides a more

elegant mathematical framework. In addition, it allows us to efficiently compute directional

derivatives, to collect and to simplify terms in an expression, and thus, to generate the

algebraic linear system of equation which provides the Newton direction. But, perhaps, the

greatest advantage of the noncommutative framework is that noncommutativity is likely the

only practical necessary and sufficient approach available for checking convexity of rational

functions over matrices.

It is hard to imagine a way to implement a convexity checker other than by using

symbolic computation, even on modest size problems. Moreover, with commuting variables,

the Hessian matrix is big and its positivity must be checked at every point. Even if a

sum of squares algorithm is successfully developed to check positivity of the Hessian, it

would be practical with only a dozen or so variables. The advantage of noncommutative

representations is that one letter Z stands for a matrix with n2 commuting variables. This

is a tremendous saving, which in most problems means the difference between being able

to or not being able to run a convexity checker.



12

1.7 Solving the Linear System

As we will see in Chapter 4, another important advantage of using the theory be-

hind noncommutative rational functions is that the Newton direction (implemented in our

numerical solver) is obtained as the solution of a “matrix” algebraic linear equation. Basi-

cally, the algebraic linear system of equations, H(δX) = Q, to be solved have the following

structure:
N∑

i

AiδXBi +
N∑

i

BT
i δXAT

i = Q (1.9)

where the A’s and B’s are obtained by collecting the terms on the left and on the right side

of the update direction δX that appear inside the “Hessian map,” denoted by H(δX). The

integer 2N has been defined as the Sylvester index by Konstantinov et al. (2000).

The above equation (1.9) provides the necessary conditions that the direction δX must

satisfy in order to be a Newton direction. An important question, which is still open, is

how this linear system can be solved efficiently. We present a rudimentary approach, which

uses the vec operation. Using the properties of the vec operation, the matrix system (1.9)

can be transformed in the equivalent vector form

Hv = g (1.10)

where H is the Hessian matrix given by H =
∑N

i BT
i ⊗Ai +

∑N
i Ai ⊗ BT

i , the vector g is

the gradient given by g = vec(Q), and v is the vector of unknowns given by v = vec(δX).

The final equation (1.10) is now in the conventional vector form, and can be solved by

any conventional linear system solver. However, this “brute force” procedure does not take

advantage of the particular structure of the Hessian map H(δX), which is readily evident

from (1.9). Naturally, after applying the vec operation, the linear system (1.10) somehow

contains this “nice” structure, but from the knowledge of the author, there are no practical

algorithm that can solve the linear system (1.10) taking into account the structure of H(δX)

for any arbitrary Sylvester index N .

For the simpler case of when N = 1, so that H(δX) = AδXB + BT δXAT , we have

a “Lyapunov” type of algebraic equation, for which there are many available numerical

and analytical results (see Chapter 7 of Golub and Loan (1983) and references therein).

However, in the most general form where the Sylvester index can be any number, there is

no satisfactory numerical algorithm, or even theoretical results, that can take advantage

of the structure of the system. Some works in this area are Konstantinov et al. (2000).

Since most of the running time of the optimization code is spent on solving the above linear
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system, a satisfactory theory and algorithm would be valuable. We leave this major open

area of work for others.

1.7.1 Improving Function Evaluations

Even though we will not present in great details how our optimization code is imple-

mented, we feel that it is important to expose the main idea behind the implementation,

mainly the fact that the algorithm can be split into two parts: a symbolic and a numerical

part.

Roughly speaking, at the symbolic level, Mathematica computes the first and second

directional derivatives of a log-barrier function that incorporate the objective and the con-

straints. From those derivatives one obtains the maps for the Hessian H(δX) and for the

Gradient Q, building in this way an algebraic linear equation like (1.9). At this stage, the

most important question is how one can symbolically simplify the final expressions such

that when we substitute matrices for the symbols, the time spent on function evaluations

can be minimized.

To attain this goal, we should observe that even if two symbolic rational functions

may at first glance look different, they, in fact, can be totally equivalent. This frequently

happens inside noncommutative rational functions containing a large number of terms. It is

also important to collect terms in an expression. We show this with a very simple example,

which appears, in practice, in a more complex fashion. Suppose one has an expression like

A1δX + · · ·+ApδX

To evaluate this expression, once that δX and the Ai are replaced by matrices, we need

p matrix additions and also p matrix multiplications. On the other hand, collecting this

expression in δX we obtain (
p∑

i=1

Ai

)
δX .

In this case, we need pmatrix additions and only one matrix multiplication. In this example,

the Sylvester index has dropped from p to 1. This represents a huge saving on the numerical

cost of evaluating the above expression. Thus, the ability to decrease the Sylvester index

by collecting factors in an expression, plays a very important role. The work by Helton

et al. (1998) provides an efficient theory and algorithm to simplify noncommutative rational

functions.
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It is also true that at the symbolic level of Mathematica, the process of collecting

terms on an expression and the process of simplifying rational functions, can consume a

considerable amount of time. However, this computation is done only once in the begin of

the run. This is in contrast with the numerical part, where the evaluation of the expression

to provide the update direction takes place at each inner iteration (which occurs many

times).

1.7.2 More on Collecting

Since the ability to collect terms on an expression significantly reduces the time spent

on function evaluations, we show one more example, and we leave for Section 4.6 the

numerical results showing how much time can actually be gained. Let us illustrate with the

next example exactly what we mean by collecting terms in an expression. Suppose that the

expression for the Hessian map H(δX) is given by

H(δX) = AδXA
T +XT δXX +BδXB

T −AδXX −XT δXA
T +BδXA

T +AδXB
T .

The Sylvester index in this case is seven. This expression can be collected in at least two

different ways, having the same number of terms. One possibility is

H(δX) = (A−XT )δX(A−XT )T + (A+B)δX(A+B)T −AδXAT =
3∑

i=1

AiδXBi

for Ai and Bi given by

A1 = (A−XT ), A2 = (A+B), A3 = −A
B1 = (A−XT )T , B2 = (A+B)T , B3 = AT

Another one is

H(δX) = (A+B −XT )δX(A+B −XT )T +BδXX +XT δXB
T =

3∑

i=1

AiδXBi

for Ai and Bi given by

A1 = (A+B −XT ), A2 = B, A3 = XT

B1 = (A+B −XT )T , B2 = X, B3 = BT

In both cases, the Sylvester index is now three, going down by less than half. It is now quite

easy to see that a large reduction in the Sylvester index might happen. It is also evident

from the above example, that this process is not at all unique.
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1.8 Nonconvex Matrix Inequalities

Unfortunately, not all MIs are convex, and a different strategy is therefore required

to deal with nonconvex MIs. An example of an engineering problem that is posed using

nonconvex matrix inequality is presented in Chapter 5. The nonconvex problem of interest

in this thesis is the simultaneous design of the plant parameters and the control law. It

can be shown that the joint integrated structure and control design problem has the same

mathematical structure as a decentralized output feedback control problem with the control

gain matrix being diagonal, which is well known to be hard to solve.

We now give an idea of what makes the integrated structure and control problem

nonconvex. Suppose our dynamic system is described by the following first-order differential

equation

ẋ = Ax+Bu

where u is the control input and A, B are given matrices describing the dynamics of the

system. To find a stabilizing state feedback control law, given by u = Kx, it suffices to

solve the following matrix inequality for X and F

AX +XA+BF + F TBT < 0,

where the change of variable F = KX was performed. Once X and F are determined, the

control gain is promptly given by K = FX−1. If A and B are fixed matrices, then the

problem is clearly linear in X, however, if either A or B contain unknown terms, then the

problem is nonconvex. This is exactly the type of structure that appears in this simultaneous

design, since matrices A and B are no longer fixed matrices, as they may contain unknown

parameters to be optimized, as an example: the mass, the stiffness and the damping ratio

of the structure.

To overcome the difficulty of nonconvex MIs, a convexifying theory is presented in

Chapter 4, which will allow us to approximate the solution of the nonconvex integrated

structure and control design by iterating on a sequence of convex subproblems. The convex

subproblem is obtained by adding a certain potential function to the nonconvex constraints.

In practice, this added convexifying function disappears at stationary solutions of the orig-

inal nonconvex problem.

Even though the convexifying theory presented in Chapter 4 is applied to the inte-

grated structure and control design problem, the idea is broader and can be used to solve

many other type of nonconvex control problems (de Oliveira et al. (2000)).
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1.9 Summarizing the Main Ideas of Each Chapter

1.9.1 The Convexifying Theory

This section summarizes the main ideas behind the convexifying theory, which are

presented in detail in Chapter 5. Let V ⊂ Rp×q. Suppose one wishes to solve the following

nonconvex optimization problem:

min
x∈Ω

f(X), Ω := {X ∈ V : G(X) ≤ 0} (1.11)

where f(X) : V → R is a linear function on the unknown X ∈ V and G(x) : V → Sn is

a nonconvex matrix function. Then, we define a convexifying matrix function H(X,Y ) :

V × V → Sn for all X,Y ∈ V such that

G(X) +H(X,Y )

is now convex in X. This potential matrix function H(X,Y ) must posses some extra

properties (Section 5.3):

i) the matrix H(X,Y ) is positive semidefinite for all X,Y ;

ii) for all X,Y satisfying ‖X−Y ‖ < δ, there exists ε > 0 such that H(X,Y ) ≤ ε‖X−Y ‖;

iii) for all X,Y satisfying ‖X−Y ‖ < δ, there exists ε > 0 such that H ′(X,Y ) ≤ ε‖X−Y ‖,
where H ′(X,Y ) is the derivative of H(X,Y ) in X.

Using these ideas, a simple algorithm for finding suboptimal solutions to the above

nonconvex optimization problem is given by

Algorithm 1.9.1 Let ε > 0, X0 ∈ Ω and a convexifying matrix function H(X,Y ) be given:

1. For k = 0, 1, 2, . . . , solve the convex optimization problem

Xk+1 = arg min
X∈Ωk

f(X), Ωk :=
{
X ∈ V : G(X) +H(X,XK) ≤ 0

}
. (1.12)

2. Until converges, go back to 1.

The above convex problem is significantly simpler than (1.11), and we assume that

its solution can be obtained by some available convex programming technique. Under quite

strong assumptions, the XK will converge to a stationary solution of the original nonconvex

problem. Experiments have shown that this algorithm has been successful for the integrated

structure and control problem presented in Chapter 5.
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1.9.2 The Convexity Checker Algorithm

In Chapter 3, we provide a computer algebra algorithm that can be used to find the

domain G of convexity of a noncommutative rational function F . This algorithm produces

sufficient, and with some weak hypotheses, necessary conditions for convexity.

We now very loosely introduce the idea behind the algorithm even though we have

not set down any formal definitions. Let F be the noncommutative rational function to be

analyzed. Say F is a function of the noncommutative variables, A1, . . . , Am, X1, . . . , Xk.

The main steps of the algorithm are:

1. The second directional derivative with respect to X1, . . . , Xk, the Hessian HF of the

function F , is computed.

2. As the Hessian is always a quadratic function of the update directions, it can be

associated with a symmetric matrix MHF with noncommutative entries.

3. The noncommutative LDLT factorization is applied to the coefficient matrix MHF .

4. And finally specifying positivity of the resulting diagonal3 matrix D(A1, . . . , Am, X1,

. . . , Xk) gives inequalities describing a region G of variables on which F is matrix

convex.

While determining convexity of conventional commutative functions is extremely

straightforward, noncommutativity imposes rather interesting complications. In particular,

proving that the largest symbolic inequality domain on which F is matrix convex requires a

substantial proof, mixing both linear algebra and algebraic representation type arguments.

1.9.3 The Optimization Solver for Matrix Functions

In Chapter 4, we propose a methodology where we can numerically solve convex

optimization problems over matrix functions. The constrained optimization problem (COP)

we are interested in can be posed as:

find f∗, if one exists, such that

f∗ = min {f(X) : X ∈ closure(G)} (COP)

3If D is not diagonal, it contains 2 × 2 blocks which are never positive definite. See Section 3.4.
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where the feasibility domain G is given by

G =
{
X ∈ C : Fi(X) > 0, i = 1, . . . ,m

}

and C is a bounded convex domain. The function f(X) : C → R is linear and the map

Fi : C → Sni for each i is concave.

The idea behind the method is to replace the above constrained problem by a sequence

of unconstrained convex minimization problems whose solutions eventually tend to the set

of optimal solutions of (COP). In order to accomplish this, we need to define a barrier

function for the feasibility domain G. This barrier function, which we denote by Θ(X), has

to be a smooth strongly convex function such that Θ(X)→∞ for points converging to the

boundary of the set G. A usual barrier is the one given by

Θ(X) = −
m∑

i=1

log detFi(X) : G → R.

With the barrier Θ(X) as defined above, the original problem (COP) could be approximated

by a family of unconstrained problems of the form

X∗(γ) = arg min
{

log (1/(γ − f(X)) + Θ(X) : X ∈ Gγ

}
(1.13)

where the feasibility set Gγ is given by

{X ∈ G : f(X) < γ} .

Under some mild conditions, the solution X∗(γ) of (1.13) approaches the set of optimal

solutions of (COP) for an appropriate sequence of decreasing centralization parameter γ.

1.10 The Layout of the Thesis

For clarity of presentation we have tried to make the chapters as independent from

each other as possible. Thus, the reader will not need to be flipping pages over and over, and

consequently, each chapter can be read in the order that is most suitable for him. For this

purpose, most of the chapters have an introduction section and a notation section, producing

a few overlaps of material. Sometimes, in order to avoid repeating certain definitions, there

will be a reference to an earlier chapter that already provided them.

In this way, we believe the contributions of this thesis are more easily accessed, since

each main contribution will be presented in an individual chapter. These contributions, as
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seen from a bigger picture are: The convexifying theory and its application to the integrated

structure and control design; the convexity checker; and a theory and a computer algorithm

that solves convex optimization problem over matrix functions. Naturally, these are the

main results, but many other new results are also derived in order to support these main

ideas: for instance, the theory and implementation of an LDU algorithm for noncommuta-

tive rational functions.

This thesis is organized as follows. Chapter 2 illustrates the application of our method

for solving matrix inequalities to an engineering design: an H2/H∞ criteria for the design

of active suspension control. Chapter 3 provides the convexity checker algorithm; its theory

and its symbolic implementation. In Chapter 4, the theory behind the NCSDP solver is

presented, along with many numerical experiments. Chapter 5 presents the convexifying

theory, with an application to the integrated structure and control design. Chapters A-

D are appendices which provide, among other results, Matlab codes and a list of testing

problems for the NCSDP solver.

We reinforce that the notation used in Chapter 3 for the convexity checker is somewhat

inconsistent with the notation used in the other chapters. In most of the chapters, we have

used the same notation to stand either for a symbolic variable or for a variable which is a

matrix, i.e., X could stand either for a noncommutative element or for a matrix of fixed

dimension. On the other hand, given that in Chapter 3 we will be constantly substituting

noncommutative elements by matrices of compatible dimensions, a more refined notation

is needed. Thus, in Chapter 3, Euler-Script letters are frequently used to indicate the

substitution of noncommutative elements by matrices of compatible dimensions. As an

example, F (X) means a noncommutative rational function whose argument X is a symbolic

element; on the other hand, the Euler-Script X is used in F (X) when X is a matrix in Rn×m.



Chapter 2

An H2/H∞ Criteria for the Design

of Active Suspension Control

To motivate the use of the tools provided in this thesis, the present chapter demon-

strates how to solve an engineering design problem posed as matrix inequalities. No knowl-

edge of LMIs or how to manipulate MIs to be expressed as LMIs is required. The optimiza-

tion problem considered here is the design of an H2/H∞ guaranteed cost controller for a

vehicular suspension.

This will not be a comprehensive presentation on how to design active suspension

systems, but rather on providing efficient tools for solving matrix inequalities. The reader

which are not interested in the engineering setup and wants to see the application of our

tools, might want to start from Section 2.5.

2.1 Introduction

Since the early 80’s, optimal control techniques for improving vehicular suspensions

have been fairly investigated. Those techniques can improve the performance of an automo-

tive suspension significantly as shown in Camino et al. (1999); Hrovat (1991, 1993); Sharp

and Crolla (1987). A vehicular suspension basically supports the vehicle weight, maintains

stability along different types of maneuvers, offer a relative margin of comfort, and mini-

mizes the effect of forces arising from the road disturbances. To describe those dynamics, a

model suitable for control design (see Chalasani (1987); Takahashi et al. (2000); Thompson

(1976)), which is largely used in the literature, is the quarter-car showed in Figure 2.1.

20
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2.2 Dynamics of a Vehicular Suspension

For the two degree of freedom model presented in Figure 2.1, the coordinates x1

represents the displacement from equilibrium of the unsprung mass m1, the state x2 is

the displacement from equilibrium of the sprung mass m2. The states x3 and x4 are their

m1

m2

k2

w

k1

u c

Figure 2.1: A 2-DOF suspension car

respective velocities. The road disturbance applied to the tire is w. The stiffness of the

tire is k1. For the suspension system, the damping coefficient is c and the spring stiffness

is k2. The force produced by the actuator is denoted by u. With these specifications, the

equation of motions derived using Newton’s laws is given by

ẍ1 = − c

m1
(ẋ1 − ẋ2)−

k2

m1
(x1 − x2)−

k1

m1
(x1 −w) − 1

m1
u

ẍ2 =
c

m2
(ẋ1 − ẋ2) +

k2

m2
(x1 − x2) +

1

m2
u.

These equations can be represented in the state-space form:

ẋ = Ax+Buu+Bww

where Bw is

BT
w =

[
0 0 k1/m1 0

]

and the matrices A, Bu are given by

A =




0 0 1 0

0 0 0 1

−(k2 + k1)/m1 k2/m1 −c/m1 c/m1

k2/m2 −k2/m2 c/m2 −c/m2



, Bu =




0

0

−1/m1

1/m2



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2.3 Control Strategy

The control design for a vehicular suspension system always involves a trade-off among

several conflicting objectives, which are usually expressed by: 1) road holding ability as-

sociated with the tire deflection; 2) required rattle space, i.e., the relative space between

the axle and the body of the car; 3) user discomfort associated with the acceleration of

the sprung mass m2. The index used to quantify those objective are respectively given by

x1 − w, x1 − x2, and the control effort u. Based on these criteria, one design methodology

is to find a control law which minimizes the following quadratic cost function

J =
1

2

∫ ∞

0

{
α(x1 − w)2 + β(x1 − x2)

2 + ρu2
}
dt (2.1)

with the weights given by α, β, and ρ.

Naturally, for the appropriate choice of weighting matrices Q = CT
2 C2 and R =

DT
2uD2u this cost function gives rise to an LQR design. This was the design proposed in

Thompson (1976), where a suitable change of variable (to include the disturbance w) was

applied to the system so that the designed closed-loop system would be of type I, having

a zero steady-state offset to a step input w (similar to a regular spring-damper automobile

suspension system). After applying the change of variables, the system and the cost function

are given by

J =
1

2

∫ ∞

0
zT
2 z2 dt =

1

2

∫ ∞

0

{
x̂TCT

2 C2x̂+ uTDT
2uD2uu

}
dt,

˙̂x = Ax̂+Buu, z2 = C2x̂+D2uu

where

DT
2uD2u = ρ, CT

2 D2u = 0

and

CT
2 C2 =




α+ β −β 0 0

−β β 0 0

0 0 0 0

0 0 0 0



, x̂ =




x1 − w
x2 − w
x3

x4




A main disadvantage of this LQR design is that the road disturbance must be available

for feedback. To overcome this difficulty, we propose a different methodology based on the

mixed H2/H∞ control problem. In our approach, instead of a change of variable as done

in the above design, we add an integrator given by ẋ5 = x1 − x2, thereby enforcing that
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the rattle space will have a zero steady-state offset to a step input. In this new approach,

the states can be easily obtained from the suspension stroke and through integration of

the acceleration of both the unsprung and the sprung mass. Allowing in this way a more

realistic implementation.

Let us denote by Hwz1 the transfer function from the disturbance w to the unsprung

mass displacement x1. Since w is no longer available, and consequently the tire deflection

x1 − w can no longer be included in the cost function for the new design, we bound the

closed-loop gain of Hwz1 by a factor of 95% of the gain provided from the nominal system.

From Figure 2.2, we found that ‖Hwz1‖NOM
∞ for the nominal system is 1.2. Note that the

magnitude in this Figure is given in dB, thus we have 20 log10(1.2) = 1.5836 dB.
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Figure 2.2: Bode diagram of the nominal system Hwz1

To achieve our purposes, we choose the controlled output z1 = C1x+D1w to represent

the displacement of x1, i.e.,

C1 =
[
1 0 0 0 0

]
and D1w = 0

This provides the H∞ performance. For the H2 criteria, the cost function (2.1) becomes

J =
1

2

∫ ∞

0

{
αx1 + ζx2

5 + ρu2
}
dt (2.2)

where the new state x5 is included. In this way, we have obtained a mixed H2/H∞ control

problem.
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2.4 Multi-objective H2/H∞ Control Design

Our control problem is depicted in Figure 2.3 below, where w is the disturbance acting

on the system, the available vector y contains measurements, the vector u is the control

law, and the output z2 and z1 are the controlled output for the H2 and H∞ performance

criteria.

Plant

Control

w
z1
z2

u y

Figure 2.3: Mixed H2/H∞ control problem

The state-space representation for this system is given by

ẋ = Ax+Buu+Bww

z2 = C2x+D2uu

z1 = C1x+D1uu+D1ww

We assume that all the states are available for feedback, thus the control law is given by

u = Kx

with K being the constant gain to be determined. The closed-loop system is now given by

ẋ = (A+BuK)x+Bww

z2 = (C2 +D2uK)x

z1 = (C1 +D1uK)x+D1ww

For this configuration, we can pose our mixed H2/H∞ control problem as: find a

control gain K, if one exists, such that

α∗ = min
K
‖Hwz2‖2 subject to

‖Hwz1‖∞ < η

where η is a given positive number, and Hwz2 and Hwz1 are the transfer functions from the

disturbance w to z2 and from w to z1, given respectively by

Hwz2 := (C2 +D2uK) [sI − (A+BuK)]−1Bw

Hwz1 := (C1 +D1uK) [sI − (A+BuK)]−1Bw +D1w
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Thus, the idea behind our control design is to minimize the H2 norm of the transfer

function of the closed-loop system meanwhile its H∞ norm is bounded by a constant scalar

η > 0. We pose the mixed H2/H∞ control problem using the parameterization for the

H2 and H∞ performance given in Iwasaki and Skelton (1994); Skelton et al. (1998). To

accomplish this, we show how one can compute the H2 and H∞ performance criteria using

matrix inequalities.

For a given control gain K, the H2 norm of the closed-loop system does not exceed a

positive scalar µ, if symmetric matrices Q and X2 > 0 exist such that:

Tr {Q} < µ2

Q− (C2 +D2uK)X2(C2 +D2uK)T > 0

(A+BuK)X2 +X2(A+BuK)T +BwB
T
w < 0

These equations are obtained from the controllability Grammian of the closed-loop system.

In a similar way, for a given control gain K, the H∞ norm of the closed-loop system does

not exceed a positive scalar η, if a symmetric matrix X∞ > 0 exists such that:

(A+BuK)X∞ +X∞(A+BuK)T +BwB
T
w

+
[
X∞(C1 +D1uK)T +BwD

T
1w

]
R−1

[
X∞(C1 +D1uK)T +BwD

T
1w

]T
< 0

with R = η2I −D1wD
T
1w > 0.

In order to solve this problem, it is a usual compromise to require that the above

Lyapunov matrices X2 and X∞ be identical. Thus, X = X2 = X∞ for both performance

objectives. Applying the change of variable Y = KX, we can pose our H2/H∞ guaranteed

cost control problem as:

minTr {Q}
X > 0

Q− (C2X +D2uY )X−1(C2X +D2uY )T > 0

(2.3)

AX +XAT +BuY + Y TBT
u +BwB

T
w

+
[
XCT

1 + Y TDT
1u +BwD

T
1w

]
R−1

[
XCT

1 + Y TDT
1u +BwD

T
1w

]T
< 0

with R = η2I −D1wD
T
1w > 0.

2.5 Solving the Design Problem

An important issue now is how one can solve the above MI problem given in (2.3). If

one has the ability to check wheter or not this problem is convertible to an LMI, then the
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optimization problem can be solved by the many available LMI solvers; however, if one does

not have the ability to deal with LMIs, it is not clear what one should do; since optimization

over matrix functions are inherently not smooth.

Using our methodology, this type of matrix inequality optimization problem can be

solved quite easily, while knowing nothing about LMIs. The steps are just:

1. to determine the domain G on which the above MI problem is convex;

2. to solve the optimization problem using the numerical NCSDP solver over G.

These steps, enforces that the solution from the code is guaranteed to be a global minimum

on the region G, provided that G is convex .

2.5.1 Step 1. Checking convexity

The region G is easily determined by invoking the NCConvexityRegion[] introduced

in Part I of Chapter 3. We describe this step using the standard notation in Mathemat-

ica/NCAlgebra. For this purpose, let us define the domain:

G = {X | F1(X,Q, Y ) > 0 and F2(X,Q, Y ) > 0}

with

F1(X,Q, Y ) := Q− (C2X +D2uY )X−1(C2X +D2uY )T

F2(X,Q, Y ) := −
(
AX +XAT +BuY + Y TBT

u +BwB
T
w

+
[
XCT

1 + Y TDT
1u +BwD

T
1w

]
R−1

[
XCT

1 + Y TDT
1u +BwD

T
1w

]T)

The region of convexity G is evidently the region where the functions F1(X,Q, Y ) and

F2(X,Q, Y ) are matrix concave.

Since the NCConvexityRegion command works at the noncommutative symbolic level,

we must set the symbols appearing in the expression for F1(X,Q, Y ) and F2(X,Q, Y ) as

noncommutative. In Mathematica/NCAlgebra this is done by:

In[1]:= SNC[Q, X,Y,A, C2, D2u, Bu, Bw, C1, R, D1u, D1w];

Now, let us define the function F1(X,Q, Y ) and F2(X,Q, Y ) in Mathematica:

In[2]:= F1 = Q - (C2 ** X + D2u ** Y) ** inv[X] ** (X ** tp[C2] + tp[Y] ** tp[D2u]);
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In[3]:= F2 = -(A ** X + X ** tp[A] + Bu ** Y + tp[Bu ** Y] + Bw ** tp[Bw] + (X ** tp[C1] +

tp[D1u ** Y] + Bw ** tp[D1w]) ** inv[R] ** (C1 ** X + D1u ** Y + D1w ** tp[Bw]));

To check the region of convexity for F1(X,Q, Y ), we apply the command:

In[4]:= NCConvexityRegion[F1, {X,Y,Q}]

which outputs the list:

{−2X−1, 0}

From this output, we conclude that the function F1(X,Q, Y ) is matrix concave on the

domain G1 given by

G1 := {(X,Y,Q) : X > 0}.

To check the region of convexity for F2(X,Q, Y ), we apply the command:

In[5]:= NCConvexityRegion[F2, {X,Y,Q}]

which outputs the list:

{−2CT
1 R

−1C1, 0}

since CT
1 R

−1C1 ≥ 0 by assumption, we conclude that the function F2 is matrix concave.

This result tells us that the optimization problem as stated in (2.3) is convex for all

X > 0. Moreover, whichever solution our NCSDP solver returns, for the above problem

(2.3) with the constraint X > 0, this solution is guaranteed to be a global minimum.

2.5.2 Step 2. Invoking the NCSDP solver

We now provide the numerical data used for simulation purpose. The nominal pa-

rameters of the system are given by m1 = 28.58 kg, m2 = 288.90 kg, k1 = 155900 N/m,

k2 = 19960 N/m, and c = 1861 Ns/m. For the H2 performance, we used α = 2.5, ζ = 100,

and ρ = 8 × 10−10. The imposed bound η on the H∞ norm of the transfer function from

w to z1 was η = 0.95 × 1.2 = 1.14. With these data, we solve the control problem posed

in (2.3) using the NCSDP solver. The solver returns the global optimum values for the

unknowns Q, Y , and X given by:

Q = 102 ×




0.598437 0.381385 −0.241154

0.381385 1.563809 −0.063589

−0.241154 −0.063589 0.262757


 ,
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Y = 107 ×
[
−0.014988 −0.054751 7.248507 −0.358297 −0.008526

]

and

X = 105 ×




0.000695 0.000191 −0.018557 0.005479 0.000025

0.000191 0.000710 −0.015702 −0.001408 0.000050

−0.018557 −0.015702 3.516382 −0.167338 −0.001861

0.005479 −0.001408 −0.167338 0.066279 0.000145

0.000025 0.000050 −0.001861 0.000145 0.000006




Thus, for the imposed bound η = 1.14, the guaranteed H2 performance is
√

Tr {Q} =
√

242.5 = 15.57. This is also seen from the iteration log of the code presented in Table 2.1.

The controller KH2/H∞
= Y X−1 is given by

KH2/H∞
= 105 ×

[
0.760705 −0.696518 0.000586 −0.089321 3.535528

]

Iteration log of the Code

The iteration log for this optimization problem is presented in Table 2.1, where the

first column NeNe shows the number of Newton steps required to compute the analytic

center, within an accuracy of 10−3 (i.e. τ < 10−3). The second column shows the norm

of the gradient vector g, the third column presents the step length σ, the fourth column

shows the value of Tr {Q}, and the last two columns present the minimum and the maximum

eigenvalue of the Hessian matrix H. The code stops when the upper bound γ (centralization

parameter) between two successive iterations, γk+1 − γk, is less than 10−5. Note that the

table does not show every iteration. For a more detailed description of these parameters

see Section 4.4.4.

Table 2.1: An H2/H∞ control design for a vehicular suspension car

NeNe ‖g‖ τ σ Tr {Q} λmin(H) λmax(H)

Iteration 1 γ = 5.8425445E+09

1 9.8E-03 3.9E+00 0.2 2.7590497E+09 1.0E-19 2.1E-03

2 8.3E-03 3.7E+00 0.2 2.5719360E+09 8.1E-20 1.8E-03

3 7.0E-03 3.5E+00 0.2 2.3625135E+09 6.3E-20 1.5E-03

4 5.9E-03 3.2E+00 0.2 2.1396897E+09 5.1E-20 1.2E-03

continued on next page
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continued from previous page

NeNe ‖g‖ τ σ Tr {Q} λmin(H) λmax(H)

...
...

...

24 2.5E-04 9.6E-01 0.5 1.2784479E+09 3.9E-20 6.9E-05

25 1.7E-04 4.3E-01 0.7 1.2884245E+09 5.2E-20 6.8E-05

26 7.5E-05 1.0E-01 1.0 1.2913954E+09 6.3E-20 6.7E-05

27 6.4E-06 3.4E-03 1.0 1.2913429E+09 6.6E-20 6.6E-05

Iteration 2 γ = 3.7976539E+09

1 1.8E-08 1.9E+00 0.3 1.1406628E+09 6.6E-20 6.6E-05

2 1.4E-05 1.5E+00 0.4 9.8653968E+08 6.5E-20 6.7E-05

3 2.9E-05 9.8E-01 0.5 8.5279649E+08 6.4E-20 6.9E-05

4 3.7E-05 4.8E-01 0.7 7.6725520E+08 6.2E-20 7.1E-05

5 2.4E-05 1.4E-01 1.0 7.3283248E+08 6.0E-20 7.3E-05

6 2.1E-06 3.3E-03 1.0 7.3359799E+08 6.0E-20 7.4E-05
...

...

Iteration 66 γ = 2.4250082E+02

1 1.8E+05 2.0E+00 0.3 2.4250061E+02 3.4E-10 4.3E+13

2 1.3E+05 1.7E+00 0.4 2.4250059E+02 4.5E-10 5.0E+13

3 8.7E+04 1.3E+00 0.4 2.4250058E+02 4.4E-10 6.0E+13

4 5.3E+04 8.4E-01 0.5 2.4250057E+02 4.9E-10 7.3E+13

5 2.5E+04 4.2E-01 0.7 2.4250056E+02 4.5E-10 8.8E+13

6 7.6E+03 1.3E-01 1.0 2.4250055E+02 6.0E-10 1.0E+14

7 1.3E+01 2.2E-04 1.0 2.4250055E+02 6.4E-10 1.1E+14

Iteration 67 γ = 2.4250068E+02

1 2.9E+05 2.0E+00 0.3 2.4250055E+02 6.1E-10 1.1E+14

2 2.1E+05 1.7E+00 0.4 2.4250054E+02 7.3E-10 1.3E+14

3 1.4E+05 1.3E+00 0.4 2.4250053E+02 8.0E-10 1.5E+14

4 8.3E+04 8.4E-01 0.5 2.4250052E+02 7.5E-10 1.8E+14

5 4.0E+04 4.2E-01 0.7 2.4250052E+02 5.8E-10 2.2E+14

6 1.2E+04 1.3E-01 1.0 2.4250051E+02 9.9E-10 2.6E+14

7 2.1E+01 2.3E-04 1.0 2.4250051E+02 1.2E-09 2.7E+14
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2.6 Comparing the H2/H∞ Design against the LQR Design

For the purpose of comparison, we also calculate a LQR controller using the cost

function given in (2.1), which we denote by KLQR. The weights used for the LQR were

α = 10, β = 1, and ρ = 8× 10−10. The LQR controller is given by

KLQR = 104 ×
[
5.247840 −2.064051 0.039623 −0.263124

]

Figure 2.4 shows the Bode diagram of Hwz1 , which is related to the road holding

ability for the nominal system and for the new system using the H2/H∞ controller.
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Figure 2.4: Bode diagram of HNOM
wz1

and HH2/H∞

wz1

The mixed H2/H∞ design is presented in solid line (-) and the passive design is shown

by the dotted line (·). As one can see, the new system has a smaller H∞ norm, within

the magnitude of 20 log10(1.14) = 1.1381, which was the imposed upper bound η = 1.14.

Consequently, a better margin of safety for the vehicular suspension system is provided.

We also simulate the step response of the closed-loop system using the H2/H∞ con-

trollers and the LQR design. These results are presented in Figure 2.5 for the displacement

x1 of the unsprung mass m1 and for the suspension stroke x1 − x2. The LQR design is

plotted using a dash-dot line (·−). From this plot, we see that the mixed H2/H∞ control

design possesses a very similar performance to the LQR design for a step input, giving a

slightly better performance regarding the rattle space.

When compared to the nominal system, with no control, both designs have signifi-

cantly better performance. It is also important to observe the acceleration of the sprung
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Figure 2.6: Sprung mass acceleration ẍ2 and control effort u

mass x2, which is related to the user ride comfort. This plot is presented in Figure 2.6 along

with the control effort u. The nominal system and the active systems provide similar ride

comfort. However, the mixed H2/H∞ requires significantly less control effort u than the

counterpart LQR design, by a factor of 8. This is a large saving.

It is not surprising that active suspensions can overcome the performance of the coun-

terpart passive system. One disadvantage of active suspension designs are that they need

actuators able to produce large forces. However, our design requires significantly less con-

trol effort. Another important advantage is that our design does not require measurement

of the road disturbance.



Chapter 3

Convexity Checker

3.1 Introduction

This chapter is split into two parts. Part I of this chapter presents our algorithm,

describes its implementation and illustrates its effect on a few examples. We prove in

Part II that the region G of convexity which our algorithm determines is the largest possible

in a certain sense. The results in Part II give a satisfying theory of “matrix convexity”

and of “matrix positivity” of noncommutative quadratic functions of a certain type. This

part contains a bit of redundancy in order to maximize the reader base. Throughout the

presentation of our algorithm we insert actual calls to symbolic routines in NCAlgebra,

since this makes clear exactly what can be computed automatically.

Part I should be accessible to readers from many areas, from operator or matrix theory,

from symbolic computation, and from engineering who work with matrix inequalities. It

is organized as follows. Section 3.2 gives preliminary definitions about noncommutative

rational functions, convexity, positivity, and derivatives. Section 3.3 concerns quadratic

noncommutative functions Q. It gives a representation for Q in terms of a symmetric

matrix MQ with noncommutative entries and it provides an algorithm to compute the LDU

decomposition of MQ. Section 3.4 gives the convexity algorithm that provides the tools

for checking the positivity and presents some examples. Section 3.5 illustrates how the

algorithm when implemented using the noncommutative algebra package NCAlgebra can

be used to find the region of convexity of a noncommutative rational function.

Now we describe the organization of Part II. Section 3.6 formally states and proves

a theorem to the effect that our Convexity Algorithm produces a domain G in which the

32
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given function is convex. This is easy and informative. Section 3.7 gives formal definitions.

Section 3.8 states theorems to the effect that G is the biggest domain of convexity in a certain

sense. Sections 3.9 and Section 3.10 gives proofs of the theorems stated in Section 3.8 and

Section 3.3.

Section A is an appendix which describes a computer algorithm for representing a

noncommutative quadratic function of k variables H1, . . . ,Hk in terms of a matrix MQ.

This matrix plays an important role in determining the positiveness of a noncommutative

rational function.

3.2 Notational Section for the Convexity Checker

The operator (·)−1 and (·)T means the inverse and the transpose respectively. In order

to make an expression symmetric the operator sym, defined as sym[M ] = M+M T , is used.

The arrow over a variable is used to indicate that the variable is a list of elements
→

X =

{X1, . . . , Xk}. If
→

X contains only one indeterminate, then the notation is
→

X = X. Roman

upper case letters will commonly represent symbolic elements, and also matrices when it

is clear by context. Euler-Script letters are frequently used to indicate the substitution

of noncommutative elements by matrices of compatible dimensions. As an example, Γ(X)

means a noncommutative rational function whose argument X is a symbolic element; on

the other hand, the Euler-Script X is used in Γ(X) when X is a matrix in Rn×m. Another

example appears in the definition of the set Rx
L := {(HLx) : all H ∈ Rn×m} where L is

a noncommutative rational function evaluated on certain matrices, H is a matrix, and x is

a vector. Note that we do not use the Euler-Script font for vectors and functions. Even if

the argument of the function L is a matrix Z rather than an indeterminate Z, we would

have used L(Z) instead of L(Z), and often we abbreviate L(Z) to L. We reinforce that this

notation is somewhat inconsistent with the notation used in the other chapters. It is more

refined in that it carefully distinguishes between symbolic (noncommutative) variables and

variables which are matrices.

3.2.1 Noncommutative symmetric rational functions

In this section we present useful definitions and facts about noncommutative rational

functions. In fact, the development in this section follows Helton and Merino (1997) and

Helton and Merino (1998).
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We begin with definitions of noncommutative rational functions, of derivatives of

noncommutative functions, and of convexity. Next, the procedure to represent a quadratic

function together with the noncommutative LDU decomposition is illustrated. Also the

idea behind necessary and sufficient conditions for positivity of noncommutative quadratic

functions is introduced. Later in Section 3.4, our Convexity Algorithm is described and

then, in Section 3.5, it is illustrated by some examples.

What occurs in practice are functions Γ which are polynomial or rational in non-

commutative variables (often referred to as indeterminates) with coefficient which are real

numbers. Noncommutative rational functions of X are polynomials in X and in inverses of

polynomials in X. Examples of noncommutative symmetric functions are

Γ(A,B,X) = AX +XAT − 3

4
XBBTX, X = XT ,

Γ(A,D,X, Y ) = XTAX +DYDT +XY XT , Y = Y T and A = AT , (3.1)

and

Γ(A,D,E,X, Y ) = A(I +DXDT )−1AT +E(Y XY T )ET , X = XT . (3.2)

We also assume there is an involution on these rational functions which we denote

superscript T , and which will play the role of transpose later when we substitute matrices

for the indeterminates.

Often we shall think of some indeterminates as knowns and other indeterminates

as unknowns and be concerned primarily about a function’s properties with respect to

unknowns. For example, in function (3.2) when we are mainly concerned about behavior

such as convexity of Γ in X,Y we write Γ(A,D,E,X, Y ) simply as Γ(X,Y ). We also use
→

Z to abbreviate all indeterminates which appear in the function, for example, in (3.2) we

have
→

Z = {A,D,E,X, Y }. Often we distinguish knowns
→

A = {A1, . . . , Am} from unknowns
→

X = {X1, . . . , Xk} by writing
→

Z = {
→

A,
→

X}. Throughout this chapter, letters near the

beginning of the alphabet denote knowns, while the letters X, Y stand for unknowns.

We call a noncommutative function Γ(
→

A,
→

X) symmetric provided that Γ(
→

A,
→

X)T

= Γ(
→

A,
→

X). If all XT
1 , X

T
2 , . . . , X

T
k in Γ(

→

A,
→

X) appear to the left of every X1, X2, . . . Xk

variable, then the noncommutative function Γ(
→

A,
→

X) is said to be hereditary 1 in
→

X. Our

algorithm when restricted to hereditary noncommutative functions is easier to describe and

the theory is easier.

1Note that in our definition of hereditary the variables Xj can not be constrained to be symmetric.
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3.2.2 First derivatives

Conventional convexity of a function can be characterized by the second derivative

being positive. As we shall see in Section 3.2.4, this is also the case with “noncommutative

convex functions” and so we review a notion of second derivative which is suitable for

symbolic computation. We begin with first derivatives rather than second derivatives. Later

we study convexity tests which are based on derivatives of Γ and their transposes.

Directional derivatives of noncommutative rational Γ(
→

A,
→

X) with respect to
→

X in the

direction
→

H are defined in the usual way

DΓ(
→

X)[
→

H ] := lim
t→0

1

t

(
Γ(

→

X + t
→

H)− Γ(
→

X)

)
=

d

dt
Γ(

→

X + t
→

H)

∣∣∣∣
t=0

.

For example, the derivative of Γ in (3.1) with respect to X is

DXΓ(X,Y )[H] = HTAX +XTAH +HYXT +XY HT .

and the derivative of Γ in (3.2) with respect to Y is

DY Γ(X,Y )[K] = E(KXY T + Y XKT )ET .

It is easy to check that derivatives of symmetric noncommutative rational functions always

have the form

DΓ(X)[H] = sym

[
k∑

`=1

A`HB`

]
.

The noncommutative algebra command to generate the directional derivative of the

function Γ(X,Y ) with respect to X, which is denoted by DXΓ(X,Y )[H], is:

NCAlgebra Command: DirectionalD[Function Γ, X, H].

3.2.3 Second derivatives

To obtain sufficient conditions for optimization we must use the second order terms

of a Taylor expansion of Γ(
→

X + t
→

H) about t = 0 ∈ R:

Γ(
→

X + t
→

H) = Γ(
→

X) +DΓ(
→

X)[
→

H ] t+
→

HΓ(
→

X)[
→

H ] t2 + . . .

Where the Hessian HΓ of Γ is defined by

HΓ(
→

X)[
→

H] :=
d2

dt2
Γ(

→

X + t
→

H)
∣∣∣
t=0

.
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One can easily show that the second derivative of a hereditary symmetric noncom-

mutative rational function Γ with respect to one variable X has the form

HΓ(X)[H] = sym

[
k∑

`=1

A`H
TB`HC`

]
.

And an analogous more general expression holds for more variables. For example, the second

derivative of Γ in (3.2) with respect to X is

HXΓ(X,Y )[H] =

2 (A(I +DXDT )−1DHDT (I +DXDT )−1DHDT (I +DXDT )−1AT ).

Once the Hessian HΓ(
→

X)[
→

H ] is computed, the only variable of interest is
→

H. Thus,

for convenience, the variables
→

X and
→

A are gathered in
→

Z, producing a function Q,

Q(
→

Z)[
→

H ] := HΓ(
→

X)[
→

H],

which is quadratic in
→

H. Here of course, a noncommutative polynomial in variables H1, H2,

. . . , Hk is said to be quadratic if each monomial in the polynomial expression is of order

two in the variables H1, H2, . . . , Hk.

We emphasize that for our convexity considerations once the Hessian is computed the

fact that
→

X played a special role has no influence.

NCAlgebra Command: Hessian[function Γ, {X1, H1}, . . . , {Xk, Hk}].

3.2.4 Matrix convex functions

There are several (almost equivalent) notions of noncommutative convexity, and hence

we describe two familiar matrix versions. We begin by defining matrix convex functions

as it is the definition used throughout the chapter, and later we define geometrically

matrix convex functions as it is a common definition for convexity although we do not

use it.

We shall be focusing on symmetric noncommutative functions Γ of
→

Z defined on

a domain G given by “inequalities” on symmetric noncommutative rational functions ρj ,

j = 1, . . . , r. The tuple
→

Z denotes all noncommutative variables A,B,C,X, . . . which appear

in Γ. (Frequently we just denote
→

Z = {Z1, . . . ,Zv}). We write the formal expression

Gρ := {
→

Z = {Z1, . . . , Zv} : ρj(
→

Z) ≥ 0, j = 1, . . . , r}
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and call such an expression a Symbolic Inequality Domain – SID. An example is

G := {
→

Z = {A,C,X} : −ATX −XA− CTC ≥ 0, X ≥ 0}

Note that the
→

Z are just formal symbols. Since our ultimate interest is matrices we

introduceM(Gρ) the set of all matrix tuple
→

Z = {Z1, . . . ,Zv} which satisfy

ρj(
→

Z) is a positive semidefinite matrix for all j = 1, . . . , r.

Denote byM∆ all tuple of matrices
→

Z of size ∆. Denote byM∆(G) the set of all matrices

of size ∆ which are inM(G), that is,M∆(G) =M∆
⋂M(G). See section 3.7.2 for a more

complete statement.

Our main definitions of positivity are:

1. A noncommutative rational function Q(
→

Z)[
→

H] which is quadratic in
→

H is said to be

matrix positive quadratic (resp. matrix strictly positive quadratic) on a SID

Gρ provided that Q(
→

Z)[
→

H] is a positive semidefinite matrix (resp. positive definite

matrix) whenever tuple of matrices
→

Z inM(Gρ) and
→

H are substituted for
→

Z and
→

H.

2. The function Γ(
→

A,
→

X) is said to be matrix convex with respect to variable
→

X on a

SID Gρ provided its Hessian HΓ(
→

X)[
→

H] is a positive semidefinite matrix for all
→

A,
→

X

inM(Gρ) and all
→

H; in other words, when its Hessian is matrix quadratic.

One Symbolic Inequality Domain Gρ contains another Gρ̃, means that whenever

tuple of matrices
→

Z of compatible dimension satisfy the inequalities ρ̃j(
→

Z) ≥ 0, for j =

1, . . . , r̃, then they also satisfy the inequalities ρj(
→

Z) ≥ 0, for j = 1, . . . , r. In this case we

say that

the inequalities ρ(
→

Z) ≥ 0 are weaker than the inequalities ρ̃(
→

Z) ≥ 0.

This condition is the same as M(Gρ̃) ⊆M(Gρ).

While this looks awkward and elaborate, it is in fact the type of “matrix convexity”

which fits reasonably into symbolic processing of the type of matrix inequalities which

engineers use. We present a few examples in Section 3.5 which make this definition clear

and natural. Also matrix convexity is strongly connected with usual notions of geometric

convexity, as we now discuss.
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A noncommutative rational symmetric function Γ of
→

X = {X1, . . . , Xk} will be called

geometrically matrix convex provided that whenever the noncommutative variables
→

X

are taken to be any matrices of compatible dimension, then for all scalars 0 ≤ α ≤ 1 we

have that

Γ(α
→

X
1

+ (1− α)
→

X
2

) ≤ αΓ(
→

X
1

) + (1− α)Γ(
→

X
2

).

Where
→

X
1

= {X1
1, . . . ,X

1
k} and

→

X
2

= {X2
1, . . . ,X

2
k} are tuples of matrices of compatible

dimension. The function Γ is strictly geometrically matrix convex if the inequality is

strict for 0 < α < 1. The reverse inequality characterizes geometrically matrix concave.

Both the definitions, matrix convex and geometrically matrix convex, are equivalent

provided that the domain of the function Γ is a convex set; as stated by the following lemma.

Lemma 3.2.1 Suppose Γ is a noncommutative rational symmetric function. Then it is

geometrically matrix convex (respectively geometrically matrix concave) on a convex region

Ω of matrices of fixed sizes if and only if

HΓ(
→

X)[
→

H] ≥ 0

(respectively ≤ 0) for all
→

H and
→

X ∈ Ω.

Proof. The proof is given in Helton and Merino (1998) where Ω is all matrices of a given

size. It extends in a straight forward way to Ω which are convex sets.
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Part 3.I

The Algorithm: Its Implementation and

Use
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3.3 Noncommutative Quadratic Functions

An example of a simple quadratic function in H = HT and K = KT , where the

arguments appear outside the expression, is

Q[H,K] := HAH +KBK +HCK +KCTH.

Or yet, a more complicated function, in the sense that the argument H appears inside the

monomial is

Q[H] := HAH +GTHBH +HBTHG+GTHDHG.

This function can be written in the form

Q[H] =
(
H GTH

)( A BT

B D

)(
H

HG

)
. (3.3)

This contrasts with the commutative case where (3.3) takes the form

Q[H] = H(A+GTB +BTG+GTDG)H.

3.3.1 Representing a quadratic function as a matrix MQ

As suggested by (3.3), a noncommutative quadratic function Q which is hereditary in
→

H = {H1, . . . ,Hk} can be always represented as a product of the form

Q = V [
→

H]TMQV [
→

H],

where V [
→

H] is a “vector” with noncommutative entries and MQ is a symmetric matrix with

noncommutative entries. The “vector” V [
→

H ] is called a border vector of the quadratic

function Q and the matrix MQ is the coefficient matrix of the quadratic function

Q.

The representation V TMQV for a general hereditary quadratic polynomial in
→

H =

{H,K} is given by Q[H,K] :=




HL1
1

...

HL1
`1

KL2
1

...

KL2
`2




T 


A1,1 · · · A1,`1 A1,`1+1 · · · A1,r

...
...

...
...

AT
1,`1

· · · A`1,`1 A`1,`1+1 · · · A`1,r

AT
1,`1+1 · · · AT

`1,`1+1 A`1+1,`1+1 · · · A`1+1,r

...
...

...
...

AT
1,r · · · AT

`1,r AT
`1+1,r · · · Ar,r







HL1
1

...

HL1
`1

KL2
1

...

KL2
`2



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where r = `1 + `2. The quantity `1 is the number of times that a monomial of order two

in H appears, and the quantity `2 is the number of times that a monomial of order two in

K appears. The Li
j , j = 1, . . . , `i are called the coefficients of the border vector. The

L1
j corresponding to H are distinct and only one may be the identity matrix (equivalently

for the L2
j corresponding to K). The border vector V is the vector composed of H, K and

Li
j. The coefficient matrix MQ is the one in the middle with entries As,t, for s, t = 1, . . . , r.

See appendix A for an algorithm which compute this decomposition. This general notation

illustrated by the example in equation (3.3) is:

V [H]T =
(
H GTH

)
and MQ =

(
A BT

B D

)
.

Noncommutative quadratics even though not hereditary have a similar representation

(which takes much more space to write) for such a quadratic in H,K. For example, the

border vector for a quadratic in H, HT , K, KT has the form

V [H,K]T =

(
(L1

1)
THT , . . . , (L1

`1)
THT , (L2

1)
TKT , . . . , (L2

`2)
TKT , (L̃1

1)
TH, . . . ,

(L̃1
˜̀
1
)TH, (L̃2

1)
TK, · · · , (L̃2

˜̀
2
)TK

)
.

As we shall see from the Example 3.5.3 in Section 3.5 the MQ representation for

a quadratic Q may not be unique. However, this non-uniqueness turns out to produce

surprisingly few problems.

We should emphasize that the size of the MQ representation of a noncommutative

quadratic functions Q[H1, . . . ,Hk] depends on the particular quadratic and not only on the

number of arguments k of the quadratic. For example, there are noncommutative quadratic

functions in one variable which have a representation with MQ a 102 × 102 matrix.

NCAlgebra Command: NCMatrixOfQuadratic[Q, {H1, . . . ,Hk}] generates the list {left
border vector, coefficient matrix, right border vector}.

3.3.2 Positivity of noncommutative quadratic functions

Determining positiveness of the Hessian, which is a quadratic function in
→

H, is the

key to determining the convexity of a rational function of matrices. A critical issue is

relating Q[
→

H] being a positive semidefinite matrix for all
→

H to the matrix MQ being positive

semidefinite. In this section we roughly summarize our main result which surprisingly says
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that under weak hypotheses these two properties are very close to being equivalent. Later,

Theorem 3.3.3 gives a definitive test for the positivity of MQ.

Theorem 3.3.1 (Positivity: Q versus MQ ) Suppose that the noncommutative rational

function Q(
→

Z)[
→

H ] is quadratic in
→

H. Represent Q(
→

Z) with coefficient matrix M
Q(

→

Z )
and

border vector V [
→

H ], that is Q(
→

Z)[
→

H] = V [
→

H]TM
Q(

→

Z )
V [

→

H]. Let G denote the Symbolic

Inequality Domain, based on M
Q(

→

Z )
, given by

G :=

{
→

Z : M
Q(

→

Z )
≥ 0

}
.

Then Q(
→

Z)[
→

H] is a matrix positive quadratic function for each
→

Z ∈ G. Conversely, assume:

i. the MQ representation of Q has a border vector V [
→

H ] with coefficients Lj
1(

→

Z), . . . ,

Lj
lj
(
→

Z) for Hj which for each j are linearly independent functions of
→

Z;

ii. the Symbolic Inequality Domain G is not thin in the sense that the set M∆(G) is an

open set in M∆, provided that the size ∆ is large enough (see the Openness Property

in Section 3.7.2).

Then the closure of G in a certain topology is the biggest domain on which Q(
→

Z)[
→

H] is a

matrix positive quadratic function.

Proof. The sufficient side, the symmetric matrix MQ being positive semidefinite guaran-

tees that the matrix Q[
→

H] is also positive semidefinite for all tuple of matrices
→

H, is trivially

proved. To see this, write the quadratic function as

Q[H1, . . . ,Hk] := V [H1, . . . ,Hk]TMQV [H1, . . . ,Hk].

Now, let MQ ∈ Rr×r be positive semidefinite. By definition this implies that

xTMQx ≥ 0 for all vectors x ∈ Rr.

So, for any y ∈ Rm, choose x to be x = V [H1, . . . ,Hk]y. Then

xTMQx = yTV [H1, . . . ,Hk]TMQV [H1, . . . ,Hk]y = yTQ[H1, . . . ,Hk]y ≥ 0.

The necessity side requires involved proof which takes up Part II of this chapter. We

shall illustrate one of its steps in the simple Example 3.3.1 below.
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Note that linear dependence of a small set of matrices in a high dimensional space is

a rare event. This intuitively speaking is the type of linear dependence in assumption (i) of

Theorem 3.3.1 required to violate the necessity of MQ being positive. Indeed, this type of

linear dependence has never occurred in any experiments we have done, although one could

probably make up examples where it occurs.

Even though a quadratic Q can have two representations M 1
Q and M2

Q meeting the

hypotheses in Theorem 3.3.1, our result implies that M 1
Q will be positive semidefinite if and

only if M 2
Q is also positive semidefinite.

Example 3.3.1 Consider the noncommutative quadratic function Q[H] given by

Q[H] := HTBH +GTHTCH +HTCTHG+GTHTAHG. (3.4)

Here, in distinction to most of Part I, we are not forcing H to be symmetric. This is

much easier to analyze than the case where H is symmetric. The border vector V [H] and

the coefficient matrix MQ with noncommutative entries are

V [H]T =
(
HT GTHT

)
and MQ =

(
B CT

C A

)
,

that is, Q[H] has the form

Q[H] = V [H]TMQV [H] =
(
HT GTHT

)( B CT

C A

)(
H

HG

)
.

Now, if in equation (3.4) the elements A, B, C, G, H are replaced by matrices in

Rn×n, then the noncommutative quadratic function Q[H] becomes a matrix valued function

Q[H]. The matrix valued function Q[H] is positive semidefinite if and only if xTQ[H]x ≥ 0

for all vectors x ∈ Rn and all H ∈ Rn×n. Or equivalently, the following inequality must

hold
(
xT HT xT GT HT

)
MQ

(
Hx

HGx

)
≥ 0. (3.5)

Let

yT :=
(
xT HT xT GT HT

)
. (3.6)

Then (3.5) is equivalent to yTMQ y ≥ 0. Now it suffices to prove that all vectors of the

form y span R2n.
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Suppose for a given x, with n ≥ 2, the vectors x and Gx are linearly independent.

Let y =

(
v1

v2

)
be any vector in R2n, then we can choose H ∈ Rn×n with the property that

v1 = Hx and v2 = HGx. It is clear that vectors of the form

Rx :=

{(
Hx

HGx

)
: for all H

}

is all R2n as required. Thus we are finished unless for all x the vectors x and Gx are

linearly dependent. That is for all x, λ1(x)x + λ2(x)Gx = 0 for nonzero λ1(x) and λ2(x).

Note λ2(x) 6= 0, unless x = 0. Set τ(x) := λ1(x)
λ2(x) , then the linear dependence becomes

τ(x)x + Gx = 0. This says that every vector x is an eigenvector of G, which implies that

G = λI for some constant λ. This fact can be verified from the Jordan form G = M−1JM

via τ(x)Mx + JMx = 0, for all x. Thus the set of all y satisfying (3.6) is all of R2n unless

τI + G = 0 for some τ .

Conversely, if G = λI, then the set of y of the form (3.6) is not all of R2n and has an

orthogonal complement R⊥. The function Q can be positive without rTMQr being positive

on vectors r ∈ R⊥.

Clearly the method used in the proof above to show that Rx is all of R2n is very

special. Part II of this chapter uses a very different method (there are several parts to this

more general proof). In a very vague sense, the main idea behind the proof is that if Rx is

not all of R2n, then the coefficients Li
j of the border vector form a set of linearly dependent

functions. One consequence of this linear dependence property, which is of independent

interest, is presented in the following corollary of Theorem 3.10.10 from Part II.

Corollary 3.3.2 (Corollary 3.10.11) Let L1(
→

Z), . . . , L`(
→

Z) be noncommutative rational

functions of
→

Z = {Z1, . . . , Zv}. For each vector x, suppose that the vectors L1(
→

Z)x, . . . ,

L`(
→

Z)x are linearly dependent whenever matrices Zj of compatible dimension are substituted

for Zj for all size ∆ bigger than some ∆0. Then there exist real numbers λj for j = 1, . . . , `

such that
∑̀

j=1

λjLj(
→

Z) = 0,

that is, the functions Lj(
→

Z) are linearly dependent.

We mention some basic work on positivity of commutative polynomials (not just qua-

dratic polynomials) done in Parrilo (2000); Powers and Wörmann (1998). Our algorithm is



45

somewhat like theirs, in that both use the LDLT decomposition. While positivity of com-

mutative quadratic functions is easily checked, noncommutative quadratics cause difficulties

reminiscent of what happens with non-quadratic higher order commutative polynomials.

3.3.3 Noncommutative LDU decomposition

In our approach, the LDU factorization of a matrix with noncommutative entries is

the key tool for determination of the matrix positivity of a quadratic function, and hence

the region of convexity G of noncommutative functions.

The LDU factorization applied to a symmetric matrix M of size r × r with noncom-

mutative entries provides the decomposition M = LDLT , where the r × r matrix D is

diagonal2 or contains 2 × 2 blocks with zeros on the diagonal, and the r × r matrix L is

lower triangular and normalized so that each diagonal entry equals the identity. To check

the positivity of the symmetric matrix M it suffices to check that D is purely diagonal

and to check the positivity of the entries of the diagonal matrix D. It is often very useful

(sometimes essential) to perform the LDU decomposition not on a given matrix M but on

a matrix PMQ obtained from M by permutation matrices P , Q. When M is symmetric,

we shall choose Q = P T so as to obtain PMP T = LDLT , or equivalently M = P TLDLTP .

References on LDU decomposition of matrices with commutative entries are Golub

and Loan (1983); Horn and Johnson (1996). The LDU decomposition for noncommutative

2× 2 matrices is standard and appears in many places. We do not know a reference on the

general r× r case. However, as we shall see its properties are much like the well understood

commuting case. Note that at the kth {k := 0, . . . , r − 2} step of the process above, one

can choose (r − k)-factorial permutations. The noncommutative LDLT decomposition (as

implemented in NCAlgebra) is briefly presented here.

Let a symmetric 2× 2 matrix with noncommutative entries be given by

M =

(
A BT

B C

)

with A and C symmetric elements. Then M has the following LDLT decomposition

M = LDLT =

(
I 0

BA−1 I

)(
A 0

0 C −BA−1BT

)(
I A−1BT

0 I

)
, (3.7)

2This assumes that at each step of our LDU algorithm a matrix entry called pivot is invertible. The
case where some pivot may not be invertible will be discussed in details in Theorem 3.3.3.
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provided that the noncommutative element A is invertible. Our computer algorithm auto-

matically assumes invertibility when it is needed. If the permutation

P =

(
0 I

I 0

)

is applied to both sides of M producing

PMP T =

(
C B

BT A

)
,

the decomposition is

PMP T = LDLT =

(
I 0

BTC−1 I

)(
C 0

0 A−BTC−1B

)(
I C−1B

0 I

)
. (3.8)

Note that matrix D in the two decompositions (3.7) and (3.8) above has the classical Schur

complements as its main ingredients.

Now we sketch the computer algebra algorithm for noncommutative symmetric ma-

trices of size r × r. Suppose that matrix M has r × r noncommutative entries. Then M

can be always partitioned as

M =

(
A11 BT

B C

)
(3.9)

with C a matrix of size (r−1)×(r−1) and B a matrix of size (r−1)×1 with noncommutative

entries. Now apply the 2× 2 LDLT decomposition as in (3.7) to get

(
I 0

BA−1
11 I

)(
A11 0

0 C−BA−1
11 BT

)(
I A−1

11 BT

0 I

)
.

In our symbolic algorithm we assume that if A11 is not 0, then it has an inverse denoted

A−1
11 . We call A11 the pivot for this step of the algorithm. At the next step the r−1×r−1

matrix C−BA−1
11 BT with noncommutative entries, called the residual matrix, can also

be factored as L̂D̂L̂T using a partition form analogous to (3.9). In that case M takes the

form

M =

(
I 0

BA−1
11 L̂

)(
A11 0

0 D̂

)(
I A−1

11 BT

0 L̂T

)
.

The procedure continues until the residual matrix has size 1 × 1 (in which case we are

finished) or the diagonal entry on which we need to pivot is 0. In the later case we find a

non-zero diagonal entry Akk and apply a permutation P from right and left to move this
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diagonal entry Akk to the pivot3 position. Then we proceed as before. This procedure with

permutations stops when the residual matrix R has size 1× 1 or all diagonal entries of the

residual matrix R of size greater than 1 are identically zero (and no pivot is possible).

The key property of the Noncommutative LDU Algorithm is

Theorem 3.3.3 Suppose M is a symmetric matrix of size r × r with noncommutative

rational function entries. The possibly permuted LDU algorithm outputs a matrix D with

noncommutative rational entries. Either D is diagonal,

i. in which case, whenever n×n matrices are substituted for the variables in the function

Dj, j = 1, . . . , r in D and produce matrices Dj, which for j = 1, . . . , r−1 are invertible,

then

each Dj for j = 1, . . . , r is a positive definite (resp. positive semidefinite)
matrix if and only if the rn × rn matrix M resulting from M is positive
definite (resp. positive semidefinite).

or D can be partitioned as D = diag(D̃,R),4 where D̃ is a diagonal matrix with noncom-

mutative rational entries D̃j, j = 1, . . . , d with d < r− 1, and R is a non-diagonal matrix

of size (r − d)× (r − d). We need to distinguish two situations:

ii. All entries of the matrix R are identically zero, in which case D is actually

diagonal, and the conclusion of case (i) applies.

iii. The off diagonal entries of R are not identically zero, in which case some

matrices substituted for the variables in M produce M which is neither a positive

semidefinite matrix nor a negative semidefinite matrix.

Proof. Prove (i,ii): Suppose D is diagonal with entries Dj , j = 1, . . . , d not identically

zero. Our symbolic algorithm used an expression denoting the inverse of each pivot. Note

that the pivots used in the algorithm (and assumed invertible) are exactly the diagonal

elements Dj, for j = 1, . . . ,min(d, r − 1). Thus our symbolic formulas are valid when

matrices are substituted in, provided that the resulting matrix diagonal entries Dj for

j = 1, . . . ,min(d, r−1), are invertible. Thus Dj , for j = 1, . . . , d, positive semidefinite (resp.

3A appealing way to choose Akk is to observe that each diagonal entry typically will be a rational function
of other entries in the matrix. Thus each Ajj is given by a formula of some length, and we select Akk to be
the nonzero diagonal entry of shortest length. This is a symbolic analog of the common numerical analysis
method of picking the pivot of largest size.

4diag(x1, . . . , xr) means a diagonal matrix with entries x1, . . . , xr.
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for j = 1, . . . , r, each Dj a positive definite matrix) implies that M is positive semidefinite

(resp. positive definite). Conversely, if M is positive semidefinite (resp. positive definite)

the Dj , for j = 1, . . . , d, are positive semidefinite (resp. for j = 1, . . . , r, each Dj is positive

definite) since L is invertible.

Now we prove (iii): If n×n matrices of any size n are substituted for the variables in

M and in R the resulting symmetric residual matrix R has block diagonal entries equal to

the n× n zero matrix, which implies that R has trace 0, which implies R has some positive

and some negative eigenvalues. Thus R and consequently M can not be either a positive

semidefinite matrix or a negative semidefinite matrix.

While we have presented only enough of the LDLT decomposition for noncommutative

symmetric matrices to determine positivity, in fact the NCAlgebra program can do more.

If the user chooses a certain option, NCAlgebra picks a non zero 2×2 block in R and pivots

on it. This procedure combined with permutations when needed, ultimately produces a

center matrix D which is block diagonal with blocks of size 1 × 1 or 2 × 2. This exactly

generalizes the standard behavior of the commutative case.

A further feature of our NCAlgebra implementation is that one can retrieve the se-

quence of permutations which the algorithm selected. Also one can specify exactly which

permutations are to be used and thereby override the algorithm’s automatic selection of

permutations.

A brief summary of a simplified version of the LDLT algorithm code implemented in

the NCAlgebra package follows.

Algorithm 3.3.4 (Noncommutative LDLT Decomposition)

Set k = 0, Mk = M

while k < r do

Apply desired permutation on Mk

Partition Mk as in (3.9)

LkDkL
T
k ←Mk; as in (3.7)

Append: L← Lk; D ← Dk

Let Mk be the residual Ck −BkA
−1
k BT

k

k ← k + 1

end
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NCAlgebra Command: NCLDUDecomposition[M ], gives a permuted LDU decomposi-

tion of a symmetric M .

3.4 Convexity Algorithm

This section presents our main algorithm that provides the region G in which a given

noncommutative symmetric function Γ(
→

Z) is matrix convex in
→

X.

1. Compute symbolically Q(
→

Z)[
→

H ] := HΓ(
→

X)[
→

H].

2. As Q(
→

Z)[
→

H] is second order in
→

H, it can be expressed as V [
→

H]TM
Q(

→

Z )
V [

→

H]. Extract

the matrix M
Q(

→

Z )
from this quadratic expression.

3. Apply the noncommutative LDLT decomposition on the matrix M
Q(

→

Z )
, i.e., M

Q(
→

Z )

= LDLT , to get matrix D with noncommutative entries.

4. Suppose that matrix D can be partitioned as D = diag(D̃,R), where D̃ is a diagonal

matrix with entries ρj(
→

Z), for j = 1, . . . , d̃ and R is a non-diagonal matrix of size

(r − d̃)× (r − d̃) containing zeros on the diagonal or 2× 2 blocks

Ri =


 0 ρi(

→

Z)

ρi(
→

Z)T 0




for i = d̃+ 1, . . . , r. Thus matrix D has the form

D =




ρ1(
→

Z)
. . .

ρd̃(
→

Z)

0 ρd̃+1(
→

Z)

ρd̃+1(
→

Z)T 0
. . .

0 ρr(
→

Z)

ρr(
→

Z)T 0

0




.

5. The Hessian Q(
→

Z)[
→

H] is a positive semidefinite matrix for all
→

H whenever the tuple of

matrices
→

Z = {Z1, . . . , Zv} makes the block diagonal matrix D positive semidefinite.
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Thus a set G where Γ(
→

Z) is matrix convex is given by

G =

{
→

Z : ρj(
→

Z) > 0, j = 1, . . . , d̃

}⋂{
→

Z : ρi(
→

Z) = 0, i = d̃+ 1, . . . , r

}
.

6. Note that, if M
Q(

→

Z )
is a matrix of size r×r, then there are Π = r!(r−1)! · · · 2 possible

LDLT decompositions depending on different permutations of the matrix M
Q(

→

Z )
. This

gives Π different diagonal matrices, D1, D2, . . . , DΠ. Up to the assumptions that the

NCLDUDecomposition algorithm makes about invertibility, each D i must produce a

set G. However, the inequalities produced by the diagonal D i may be much more

elegant and useful than those produced by the diagonal Dj , even though they must

produce equivalent sets G.

The main difficulty is the fact that there are Π different permutations for doing the

LDLT decomposition. Checking them all consumes computer time and leaves the user with

many choices. In our experience many permutations work to give the same answer (as will

be shown in some examples), so finding a satisfactory one appears not to be time consuming.

The set G produced by the Convexity Algorithm is the biggest possible in a certain

sense. This is the content of Theorem 3.3.1 and is described precisely in Theorem 3.8.2 of

Part II.

3.5 Examples

In this section we give several examples of the Convexity Algorithm which vary in

complication and which illustrate different points. We begin with a simple example.

Example 3.5.1 Define the function Γ(X) by

Γ(X) = GTXTAXG +XTBX +GTXTCX +XTCTXG,

where B = BT and A = AT . The Hessian of Γ(X) is given by

HΓ(X)[H] = 2(HTBH +HTCTHG+GTHTAHG+GTHTCH).

Equivalently, this quadratic expression takes the form

HΓ(X)[H] = V [H]TMHΓV [H] = 2(HT , GTHT )

(
B CT

C A

)(
H

HG

)
.
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The LDLT decomposition with no permutation applied to MHΓ is

(
I 0

CB−1 I

)(
B 0

0 A− CB−1CT

)(
I B−1CT

0 I

)
,

provided that B is invertible5

Therefore, when B is invertible and G 6= αI, for any scalar α, the necessary and

sufficient conditions for the Hessian to be positive semidefinite are

B > 0 and A− CB−1CT ≥ 0.

On the other hand, if A is invertible and a permutation is applied, the LDLT decom-

position is (
I 0

CTA−1 I

)(
A 0

0 B − CTA−1C

)(
I A−1C

0 I

)
.

For this case, the necessary and sufficient conditions are

A > 0 and B − CTA−1C ≥ 0.

3.5.1 NCAlgebra examples

Henceforth our examples will use notation which is standard in Mathematica and

NCAlgebra. This adds a level of precision and concreteness to the discussion. Also the

notation is quite transparent so it causes little reading difficulty. Sometimes for better visu-

alization, TEX notation is employed. In the course of illustrating the Convexity Algorithm

we actually show what is inside the command NCConvexityRegion[ ].

Before going through the examples, it is convenient to explain the basic notation used

in NCAlgebra. The transpose of an element x is denoted by tp[x]. The identity is denoted

1. The inverse of x is inv[x]. The product of the noncommutative elements x and y is x∗∗ y.
The product of a matrix A with noncommutative entries by another matrix B is provided

by the command MatMult[A,B].

The directional derivative, the Hessian, and the LDU decomposition, were already

introduced. They are provided from:

• Hessian[f(X,Y ), {X,H}, {Y,K}],
5The list returned by NCConvexityRegion is {B, A − CB−1CT }.
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• DirectionalD[Γ(X,Y ), {X, H}, {Y , K}],

• NCLDUDecomposition[Matrix].

The border vector and the coefficient matrix of a noncommutative quadratic function

is given by

NCMatrixOfQuadratic[Q, {H, K}].

The command NCExpand[expression] expands out noncommutative multiply’s in-

side an algebraic expression. It is the noncommutative generalization of the Mathematica

Expand[ ].

The command NCSimplifyRational[ ], simplifies an expression that includes polyno-

mials and inverses of polynomials. This works by applying a collection of simplifying rules

to the expression. The call is

NCSimplifyRational[expression]

This is in practice an essential command because the expressions obtained by other com-

mands, such as NCLDUDecomposition[ ], Hessian[ ], etc., usually are not in their simplified

form. For more details about simplification of noncommutative expressions and symbolic

implementation, the reader is referred to Helton et al. (1998).

The following examples describe the steps for checking the convexity of a noncommu-

tative function.

Example 3.5.2 Let the function Γ be given by

F := XA+ATX − (C1T −X B D1T )(Y −D1D1T )−1(C1−D1 BTX)−XBBTX

with X = XT and Y = Y T . The definition of this function F in Mathematica is:

In[6]:= F := X**A+tp[A]**X - X**B**tp[B]**X

- (tp[C1]-X**B**tp[D1])**inv[Y-D1**tp[D1]] ** (C1-D1**tp[B]**X);

The Hessian of this function is produced by the command

In[7]:= hess = 1/2 NCHessian[F, {X, H}, {Y, K}] // NCSimplifyRational;
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The left (right) border vector and the coefficient matrix Mhess are produced by the

command

In[8]:= {LeftBorder, Mhess, RightBorder} = NCMatrixOfQuadratic[hess, H, K];

The matrix Mhess from the command above in TEX format is

Mhess =




−BBT −BD1TRD1BT −BD1TR BD1TR

−RD1BT −R R

RD1BT R −R


 ,

where we have made the substitution R := (Y −D1D1T )−1. The LDLT decomposition of

Mhess is obtained by the command

In[9]:= {lu, di, up, P} = NCLDUDecomposition[Mhess] // NCSimplifyRational;

From the output of this command we obtain the diagonal matrix di, presented below in

TEX format

di =




−(Y −D1D1T )−1 0 0

0 −BBT 0

0 0 0


 .

The list returned by NCConvexityRegion is the entries of the diagonal matrix di:

{−(Y −D1D1T )−1, −BBT , 0}.

Therefore we may conclude that the function F is concave on the region G := {Y : Y −
D1D1T > 0}.

To determine that closure(G) := {Y : Y − D1D1T ≥ 0} is the biggest domain of

concavity we need to check if the border vector is linearly independent and if the region G
satisfies the Openness Property6. The left border vector “LeftBorder” is

LeftBorder = {H, C1T (Y −D1D1T )−1K, XBD1T (Y −D1D1T )−1K}.

This border vector has linearly independent7 coefficients for each H and K. To see that,

we need to analyze separately the coefficients for the H and K. The H case is trivial as

it appears only once. For the K, we need to show that the functions L1(Y ) := C1T (Y −
6See the Openness Property in Section 3.7.2 referred to in item (ii) of Theorem 3.3.1
7A rigorous treatment is given in Definition 3.7.1, where the block linearly independence property is

defined.
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D1D1T )−1 and L2(X,Y ) := XBD1T (Y − D1D1T )−1 are linearly independent, which is

immediate as L1 does not depend on X. We remark that the output of the LeftBorder

is an option in NCConvexityRegion. Also a sufficient though not necessary test for linear

independence of the LeftBorder vector entries is automatically implemented. This test is

sketch later in Example 3.5.3.

It is also evident from the strict inequality that for matrices of any compatible dimen-

sion the domain M(G) of matrices is an open set; thus G satisfy the Openness Property.

Therefore we conclude the region closure(G) := {Y : Y −D1D1T ≥ 0} is the biggest domain

of concavity for the function F .

An interesting aspect of the next example is that it shows that the MQ representation

may not be unique. This may lead one to conclude that a function is matrix positive instead

of being matrix strictly positive.

Example 3.5.3 Let x, y, h and k be symmetric noncommutative elements. Let’s define

the noncommutative function F (x, y) to be used in the example as

F (x, y) := (x− y−1)−1.

This function F in Mathematica takes the form:

In[10]:= F := inv[x - inv[y]];

Thus, the Hessian HΓ(x, y)[h, k] of this function is produced by the command

In[11]:= hess = 1/2 NCHessian[F, {x, h}, {y, k}] // NCExpand

inv[x - inv[y]] ** h ** inv[x - inv[y]] ** h ** inv[x - inv[y]] + inv[x - inv[y]] **
h ** inv[x - inv[y]] ** inv[y] ** k ** inv[y] ** inv[x - inv[y]] + inv[x - inv[y]] **
inv[y] ** k ** inv[y] ** k ** inv[y] ** inv[x - inv[y]] + inv[x - inv[y]] ** inv[y] **
k ** inv[y] ** inv[x - inv[y]] ** h ** inv[x - inv[y]] + inv[x - inv[y]] ** inv[y] **
k ** inv[y] ** inv[x - inv[y]] ** inv[y] ** k ** inv[y] ** inv[x - inv[y]]

The left (right) border vector and the coefficient matrix Mhess are produced by the

command

In[12]:= {LeftBorder, Mhess, RightBorder} = NCMatrixOfQuadratic[hess, {h, k}];



55

The Hessian of F , denoted by hess, can be rewritten in TEX format as

hess = V T Mhess V,

where V T = LeftBorder is given by

V T =

[
h(x− y−1)−1

ky−1(x− y−1)−1

]T

and the matrix Mhess is given by

Mhess =

[
(x− y−1)−1 (x− y−1)−1y−1

y−1(x− y−1)−1 y−1 + y−1(x− y−1)−1y−1

]
.

The LDLT decomposition of the coefficient matrix Mhess is given by the command

In[13]:= {lu, di, up, P} = NCLDUDecomposition[Mhess] // NCSimplifyRational;

From the output of this command we obtain the following factorization for P Mhess P T =

lu di up (
I 0

y−1 I

)(
(x− y−1)−1 0

0 y−1

)(
I y−1

0 I

)
,

where P is a permutation matrix generated automatically by our LDU algorithm. Finally,

the list returned by NCConvexityRegion is the entries of the diagonal matrix di, i.e.,

{(x− y−1)−1, y−1}.

Therefore the Hessian is matrix strictly positive on the Symbolic Inequality Domain

G := {(x, y) : y > 0 and x− y−1 > 0}. (3.10)

Now, Let’s analyze the effect of a different representation for the Hessian. Where

instead of expanding the expression for the Hessian with the command NCExpand, we

apply the command NCSimplifyRational.

In[14]:= hess = 1/2 NCHessian[F, {x, h}, {y, k}] // NCSimplifyRational

k ** h ** inv[x - inv[y]]+inv[x - inv[y]] ** h ** k - k ** x ** inv[x - inv[y]] **
h ** inv[x - inv[y]]+k ** x ** inv[x - inv[y]] ** inv[y] ** k - inv[x - inv[y]] ** h
** k ** x ** inv[x - inv[y]]+inv[x - inv[y]] ** h ** inv[x - inv[y]] ** h ** inv[x
- inv[y]] - inv[x - inv[y]] ** h ** inv[x - inv[y]] ** x ** k - inv[x - inv[y]] ** x
** k ** h ** inv[x - inv[y]] - k ** x ** inv[x - inv[y]] ** inv[y] ** k ** x **
inv[x - inv[y]]+inv[x - inv[y]] ** h ** inv[x - inv[y]] ** x ** k ** x ** inv[x -
inv[y]]+inv[x - inv[y]] ** x ** k ** x ** inv[x - inv[y]] ** h ** inv[x - inv[y]] -
inv[x - inv[y]] ** x ** k ** x ** inv[x - inv[y]] ** inv[y] ** k+ inv[x - inv[y]] **
x ** k ** x ** inv[x - inv[y]] ** inv[y] ** k ** x ** inv[x - inv[y]]
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The LeftBorder (RightBorder) vector and the coefficient matrix Mhess are produced

by the command

In[15]:= {LeftBorder, Mhess, RightBorder} = NCMatrixOfQuadratic[hess, {h, k}];

The Hessian of F can be rewritten in TEX format as hess = V T Mhess V , where V T

= LeftBorder, given by

V T =
(
k, (x− y−1)−1h, (x− y−1)−1xk

)
,

has linearly independent coefficients, and the matrix Mhess is

Mhess =




x(x− y−1)−1y−1 1− x(x− y−1)−1 −x(x− y−1)−1y−1

1− (x− y−1)−1x (x− y−1)−1 −1 + (x− y−1)−1x

−x(x− y−1)−1y−1 −1 + x(x− y−1)−1 x(x− y−1)−1y−1


 .

The LDLT decomposition of the coefficient matrix Mhess is given by the command

In[16]:= {lu, di, up, P} = NCLDUDecomposition[Mhess];

From the output of this command we obtain the following factorization for P Mhess P T =

lu di up




I 0 0

y−1 I 0

−y−1 −I I







(x− y−1)−1 0 0

0 y−1 0

0 0 0







I y−1 −y−1

0 I −I
0 0 I


 . (3.11)

Finally, the list returned by NCConvexityRegion is

{(x− y−1)−1, y−1, 0}.

Thus the region of convexity for F contains

G := {(x, y) : y > 0 and x− y−1 > 0}. (3.12)

Naturally, this is the same domain that was already determined in (3.10).

To insure that closure(G) := {(x, y) : y > 0 and x−y−1 ≥ 0} contains the biggest

region of convexity of F , we must verify hypotheses (i) and (ii) of Theorem 3.3.1. The

linear dependence of the coefficients of the border vector states, as in hypothesis (i), that

there exist λ1, λ2 scalars such that λ1I + (x − y−1)−1xλ2 = 0 for all symmetric x, y. It
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follows that the coefficients of the border vector are linearly independent. Now we say a few

words about a practical test guaranteeing linear independence of the border vector, that is

guaranteeing hypotheses (i) of Theorem 3.3.1. This test is implemented in the command

NCConvexityRegion. The idea is to declare all variables to commute; then compute a linear

combination of the coefficient functions of the border vector which is 0. If the only linear

combination is 0, then this insures that condition (i) holds. This is a conservative test and

our example passes it.

To check condition (ii) of Theorem 3.3.1, without going into the topology involved, we

just say that because the inequalities in 3.12 are strict, the set of n×n symmetric matrices

which satisfy them (for each large n) contains an open set. This suffices to satisfy (ii).

We should emphasize the fact that if we conclude that a function is matrix convex, it

could be quite possible that the function actually is matrix “strictly” convex. This happens

because we do not have a way to guarantee a unique representation for the matrix MQ.

However, the biggest possible domain of convexity of F , the “closure” of G, is uniquely

determined whatever representation is used.

Now we discuss permutations. One can observe that for this example (the 3× 3 case)

there are 12 LDLT factorizations, related to all possible permutations. We computed them

and found that four permutations provide identical decompositions to the one in (3.11), four

permutations give division8 by 0, and the other four give the following diagonal matrix:




−x+ x(x− y−1)−1x 0 0

0





− y + x−1 − (x− y−1)−1 + yx(x− y−1)−1

+ (x− y−1)−1xy + (x− y−1)−1x(x− y−1)−1

− (x− y−1)−1xyx(x− y−1)−1





0

0 0 0




. (3.13)

Example 3.5.4 Define the function Γ as

F := −X + Y − (Y +ATXB)(R +BTXB)−1(Y +BTXA) +ATXA, (3.14)

with X = XT , Y = Y T and R = RT . In Mathematica it takes the form

In[17]:= F := - X + Y - (Y+tp[A]**X**B) ** inv[R+tp[B]**X**B] ** (Y+tp[B]**X**A)

+ tp[A]**X**A;

8NCLDUDecomposition[ ] contains (automatic) logical rules for permutations to bypass division by 0.
Using this automatic permutation, which is the default, the four decompositions provide diagonal matrices
identical to the one in (3.13).
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For that function the Hessian and the coefficient matrix are obtained from the commands:

In[18]:= hess = NCHessian[F, {X,H}, {Y,K}] // NCSimplifyRational;

In[19]:= {LeftBorder, Mhess, RightBorder} = NCMatrixOfQuadratic[hess, H, K];

The LDLT decomposition of Mhess is obtained by

In[20]:= {lu, di, up, P} = NCLDUDecomposition[Mhess] // NCSimplifyRational;

From the output of this command we obtain the diagonal matrix di, presented below

di =




−2 inv[R+ tp[B] ∗ ∗X ∗ ∗B] 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



.

The list returned by NCConvexityRegion is the entries of the diagonal matrix di

above. The corresponding lower triangular matrix lu is

lu =




I 0 0 0

B I 0 0

−B 0 I 0

−B 0 0 I



.

The coefficient matrix is

Mhess = −2




I

B

−B
−B



inv[R+ tp[B] ∗ ∗X ∗ ∗B]

(
I tp[B] −tp[B] −tp[B]

)
.

Therefore the condition for negative semi-definiteness of Mhess is R+ tp[B] ∗ ∗X ∗ ∗B > 0.

In which, one concludes that the function F in (3.14) is concave on the region {X : R +

tp[B] ∗ ∗X ∗ ∗B > 0}.
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Part 3.II

Theoretical Results and Proofs
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Earlier in Section 3.3.2, we saw that positivity of the matrix MQ implies matrix

positivity of the associated quadratic function Q. Also, Example 3.3.1 in Section 3.3.1

gives a glimpse of the main linear independence idea behind the converse. Part II fully

addresses the converse; we know that the quadratic function Q is matrix positive in some

sense and we wish to conclude that the matrix MQ is also matrix positive. Our main results

show a substantial class of cases in which this is true. From these results we obtain under

weak hypotheses that our Convexity Algorithm determines exactly the correct Symbolic

Inequality Domain up to its “closure”.

Part II of this chapter is a bit redundant with Part I, so that it can be read without

constantly flipping back to Part I.

3.6 Main Theorem on Sufficient Condition for Convexity

As we now see, it is easy to prove that our Convexity Algorithm in Section 3.4 produces

a Symbolic Inequality Domain G on which a noncommutative symmetric rational function

Γ is matrix convex on G.

Remark 3.6.1 We do not analyze the full Convexity Algorithm, but we shall treat only the

case where the residual matrix R in the LDU decomposition is identically zero. The reason

we do little work on this case is that matrix D can be partitioned as

D =




ρ1(
→

Z)

. . .

ρ
d̃
(
→

Z)

0 ρ
d̃+1

(
→

Z)

ρ
d̃+1

(
→

Z)T 0

. . .

0 ρr(
→

Z)

ρr(
→

Z)T 0

0




.

This matrix D is positive semidefinite for
→

Z only if
→

Z makes ρj(
→

Z) ≥ 0 for j = 1, . . . , d̃ and

ρi(
→

Z) = 0 for i = d̃ + 1, . . . , r. The constraint ρi(
→

Z) = 0 is very demanding and typically

will force the Symbolic Inequality Domain G to violate the Openness Property. We have not

analyzed this situation carefully, since we felt confident that it would not cause difficulties in

our Convexity Algorithm. The NCConvexityRegion command lists the domain of convexity
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G for Γ(
→

Z) as those
→

Z such that

G =

{
→

Z : ρj(
→

Z) > 0, j = 1, . . . , d̃

}⋂{
→

Z : ρi(
→

Z) = 0, i = d̃+ 1, . . . , r

}
.

The strict inequality ρj(
→

Z) > 0 reflects the fact that the LDU algorithm requires invertibility

of the ρj for j = 1, . . . , d̃.

Theorem 3.6.2 (Sufficient Condition for Convexity) Let
→

Z = {
→

A,
→

X} and Γ(
→

Z) be

a noncommutative symmetric rational function. The function Γ(
→

Z) may be or may not

be hereditary9. Suppose that the coefficient matrix MHΓ of the Hessian HΓ(
→

X)[
→

H ] has a

noncommutative L(
→

Z)D(
→

Z)L(
→

Z)T decomposition with diagonal D(
→

Z) whose entries are all

matrix positive on a Symbolic Inequality Domain10 G. Then Γ(
→

Z) is matrix convex on G.

Proof. It suffices to prove that the Hessian HΓ(
→

X)[
→

H ] is a matrix positive quadratic

function for
→

Z = {
→

A,
→

X} in the Symbolic Inequality Domain G. Let HΓ(
→

X) [
→

H] be in the

form V [
→

H]TMHΓV [
→

H ], where MHΓ = L(
→

Z)D(
→

Z)L(
→

Z)T . Thus

HΓ(
→

X)[
→

H ] = V [
→

H ]TL(
→

Z)D(
→

Z)L(
→

Z)TV [
→

H ]. (3.15)

Now, substitute for
→

Z and
→

H in (3.15) any tuple of matrices
→

H and
→

Z = {
→

A,
→

X} inM(G)11 of

compatible dimension. Since D(
→

Z) has positive semidefinite entries, formula (3.15) implies

that HΓ(
→

X)[
→

H] is positive semidefinite. This says that Γ(
→

Z) is matrix convex on G.

3.7 Key Definitions

This section presents the definitions essential for the statement of our most general

theorem, which shows that no “bigger” Symbolic Inequality Domain than the G produced

by our Convexity Algorithm yields a function Γ which is matrix convex on G. We start with

a simple illustrative case and then we present the general case.

3.7.1 Definitions of linearly dependent functions and borders

To make sure there is no confusion in understanding our results and discussion of

borders we include notational discussion which looks at the border of a quadratic function

Q carefully.

9Defined in Section 3.2.1, Part I.
10Defined in Section 3.2.4, Part I.
11Defined in Section 3.2.4, Part I.
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The basic idea

Now we illustrate what we mean by linearly independent border vector. For simplicity

of exposition, the hereditary function Q is limited to be quadratic in two noncommutative

variables H1 and H2 (
→

H := {H1,H2}). In the next section, we will extend the idea to the

case of several variables. Let the hereditary quadratic function Q(
→

Z)[
→

H] take the form

Q(
→

Z)[
→

H] =

`1∑

s=1

`1∑

t=1

L1
s
T
(
→

Z)HT
1 As,t(

→

Z)H1L
1
t (

→

Z)

+ sym

`1∑

s=1

`2∑

t=1

L1
s
T
(
→

Z)HT
1 As,t+`1(

→

Z)H2L
2
t (

→

Z)

+

`2∑

s=1

`2∑

t=1

L2
s
T
(
→

Z)HT
2 As+`1, t+`1(

→

Z)H2L
2
t (

→

Z).

Where each Li
j(

→

Z) is a rational function not necessarily distinct; may even be the identity

matrix. The quantity `i is the number of times that the monomial of order two in Hi

appears. For the case above, the border of the matrix valued function Q(
→

Z)[
→

H ] has the

form

V (
→

Z)[
→

H] :=




H1L
1
1(

→

Z)

H1L
1
2(

→

Z)
...

H1L
1
`1

(
→

Z)

H2L
2
1(

→

Z)
...

H2L
2
`2

(
→

Z)




. (3.16)

In this border, the H1 and H2 parts operate independently, so we shall consider separately

the polynomials, which are the coefficients of H1 and H2:

→

L
1

(
→

Z) := {L1
1(

→

Z), . . . , L1
`1(

→

Z)} (3.17)

and
→

L
2

(
→

Z) := {L2
1(

→

Z), . . . , L2
`2(

→

Z)}. (3.18)

Definition 3.7.1 (Linearly Independent Functions Property)

For a given i, the noncommutative rational functions Li
j(

→

Z) for j = 1, . . . , `i are said to be

linearly independent functions if the only scalars λj, such that

`i∑

j=1

λjL
i
j(

→

Z) = 0
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are λ1 = λ2 = · · · = λ`i
= 0. We emphasize that the scalars λj do not depend on

→

Z. If

there exists such nonzero scalars, the functions Li
j(

→

Z) are said to be linearly dependent

functions.

As we shall see what is critical for our Convexity Algorithm is when either
→

L
1

(
→

Z) or
→

L
2

(
→

Z) is a linearly dependent set of functions. We say that the border vector V (
→

Z)[
→

H ]

in (3.16) has block linearly independent coefficients, if neither the functions
→

L
1

(
→

Z) in (3.17)

nor the functions
→

L
2

(
→

Z) in (3.18) are linearly dependent. In the next section, we repeat all

of these definitions for the most general case.

The general case

In the most general case, the quadratic function Q(
→

Z)[
→

H ] is not constrained to be

hereditary. Let’s define
→

H as

→

H := {H−h, . . . ,H−1,H1, . . . ,Hh,Hh+1, . . . ,Hg,Hg+1, . . . ,Hk}, (3.19)

where {Hj}kj=g+1 are constrained to be symmetric and Hj = HT
−j, for j = 1, . . . , h. That

is, we can separate
→

H into three different parts as follows: the first part12 {Hj}hj=−h has

the pairwise restriction that H−j = HT
j , for j = 1, . . . , h, the second part {Hj}gj=h+1 has

no restriction, the third part {Hj}hj=g+1 has each Hj constrained to be symmetric. Let I
denote the integers between −h and k except for 0. This is the index set for the Hj which

are the entries of
→

H.

Any noncommutative symmetric quadratic Q(
→

Z)[
→

H ] can be put in the form

V (
→

Z)[
→

H]TM
Q(

→

Z )
V (

→

Z)[
→

H]

where the border V (
→

Z)[
→

H] has the form

V (
→

Z)[
→

H ] :=




V mix(
→

Z)[
→

H ]

V pure(
→

Z)[
→

H]

V sym(
→

Z)[
→

H ]


 , (3.20)

12The integer 0 is not included in the index set j = −h, . . . , h of the first part, but for simplicity of notation
we do not make this explicit, since it is clear from context.
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with V mix(
→

Z)[
→

H ], V pure(
→

Z)[
→

H ], and V sym(
→

Z)[
→

H] defined as follows:

V mix(
→

Z)[
→

H] =




H−hL
−h
1 (

→

Z)
...

H−hL
−h
`−h

(
→

Z)
...

H−1L
−1
1 (

→

Z)
...

H−1L
−1
`−1

(
→

Z)

H1L
1
1(

→

Z)
...

H1L
1
`1

(
→

Z)
...

HhL
h
1(

→

Z)
...

HhL
h
`h

(
→

Z)




V pure(
→

Z)[
→

H ] =




Hh+1L
h+1
1 (

→

Z)
...

Hh+1L
h+1
`h+1

(
→

Z)
...

HgL
g
1(

→

Z)
...

HgL
g
`g

(
→

Z)




V sym(
→

Z)[
→

H ] =




Hg+1L
g+1
1 (

→

Z)
...

Hg+1L
g+1
`g+1

(
→

Z)
...

HkL
k
1(

→

Z)
...

HkL
k
`k

(
→

Z)




In order to illustrate the above definitions, we give a simple example of a quadratic

function and its border vector representation. Let the quadratic function Q(
→

Z)[
→

H ] be given

by Q(
→

Z)[
→

H ] = HT
1 ∗ H1 +H1 ∗ HT

1 + H2 ∗ HT
2 +HT

3 ∗ H3 +H4 ∗ H4, where H1, H2, and

H3 are not symmetric and H4 = HT
4 . The symbol ∗ means any expression that does not

contain Hi. For this quadratic, the border vector has the following structure:

V [
→

H] =




H1

HT
1

}
Mixed

HT
2

H3

}
Pure

H4

}
Symmetric




Note that this representation of Q(
→

Z)[
→

H ] might require simple relabeling of variables.
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For example, if Q[{H,K}] = HTAH +KBKT , then H1 = H, H2 = KT and

V [
→

H] = V pure[
→

H] =

(
H1

H2

)
. (3.21)

Indeed, the representations with only V pure[
→

H] give precisely the hereditary13 Q. Allowing

simple relabeling of variables increases the scope of such representations to include all cases

like those in example (3.21).

Definition 3.7.2 (Block Linearly Dependent Coefficients)

The border vector V (
→

Z)[
→

H ] in (3.20) has block linearly dependent coefficients if for

some i the functions Li
j(

→

Z) for j = 1, . . . , `i are linearly dependent, otherwise the border

vector V (
→

Z)[
→

H ] has block linearly independent coefficients.

The “block” nature of the definition above is because we shall often consider separately

the set
→

L
i

(
→

Z) := {Li
1(

→

Z), . . . , Li
`i
(
→

Z)}

for each i ∈ I.

3.7.2 Substituting matrices for indeterminates

In this section we discuss the substitution of matrices for indeterminates and give

some definitions. Let
→

Z = {Z1, . . . , Zv} be all indeterminates (variables) occurring in what-

ever noncommutative rational functions Γ(
→

Z) and constraints G we are studying. If these

indeterminates are replaced by matrices we must be careful to replace them by tuple of

matrices
→

Z := {Z1, . . . ,Zv} of sizes

→

Z
#

:= {m1 × n1, . . . ,mv × nv}

compatible with the function Γ(
→

Z) and the constraints G. Let Cdim denote the set of all

compatible dimensions. A partial order � on Cdim, denoted by
→

Z
#

�
→

Z
a#

, is given by

{m1 ≥ ma
1, n1 ≥ na

1, . . . ,mv ≥ ma
v, nv ≥ na

v},

and if strict inequality holds in every entry we write
→

Z
#

�
→

Z
a#

. Once a size ∆ ∈ Cdim

has been selected we letM∆ denote the set of all v tuples of matrices of size ∆. Moreover,

13Note that in our definition of hereditary the variables Hj can not be constrained to be symmetric.
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if G is a Symbolic Inequality Domain, then let M(G) (resp. M∆(G)) denote the set of all

matrices meeting the constraints defining G (resp. and lying in M∆). Often we suppress

the subscript ∆ because its presence is clear from context.

Definition 3.7.3 (Openness Property)

The domain G has the Openness Property provided that there is a size ∆0 in Cdim with the

property that when indeterminates are replaced by matrices with size ∆ � ∆0, then the set

of matrices M∆(G) is contained in the closure of the interior of M∆(G).

3.8 Theorems on Convexity and Positivity

3.8.1 Main result on convexity: Theorem 3.8.2

Theorem 3.8.2, which follows, gives a test which can in fact be implemented with a

noncommutative Gröbner basis algorithm (Fröberg (1997); Mora (1986, 1994)). The lin-

ear dependence check is purely algebraic and can be performed automatically by computer

(software willing). We have not considered seriously the practicality of the Openness Prop-

erty. However, in all the examples we have done, it is obvious that the set G obtained

satisfy it. Now we set down a class of quadratic functions for which the theory works. The

definition also serves as a reminder of Theorem 3.3.3 on LDLT decompositions.

Definition 3.8.1 (Nice Quadratic on a Symbolic Inequality Domain)

A noncommutative symmetric function Q(
→

Z)[
→

H ], which is rational in
→

Z and quadratic in
→

H, can be always put in the form V (
→

Z)[
→

H ]T MQ(
→

Z) V (
→

Z)[
→

H] with V (
→

Z)[
→

H] as in (3.20).

Suppose that the coefficient matrix MQ(
→

Z) has a noncommutative L(
→

Z) D(
→

Z) L(
→

Z)T de-

composition (we may have applied some permutation) with D(
→

Z) a diagonal matrix (no

matrix R in Theorem 3.3.3, unless all entries of the matrix R are identically zero) having

entries Dj(
→

Z), for j = 1, . . . , r − 1, each of which are zero or invertible matrices whenever

tuple of matrices
→

Z of compatible dimension in M∆(G) for large enough ∆ are substituted

for
→

Z, then we call Q(
→

Z)[
→

H ] a nice quadratic.

Theorem 3.8.2 (A Checkable Necessary and Sufficient Condition for Convexity)

Assumptions: Define
→

Z = {
→

A,
→

X} where Xj may or may not be constrained to be sym-

metric. Let Γ(
→

Z) be any noncommutative symmetric rational function, whose Hessian

HΓ(
→

Z)[
→

H ] is a nice quadratic, satisfying the following two conditions:
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i. the function Γ(
→

Z) is matrix convex for
→

Z on a Symbolic Inequality Domain G satisfying

the Openness Property for some big enough ∆0;

ii. the border vector V (
→

Z)[
→

H ] of the Hessian HΓ(
→

Z)[
→

H ] has block linearly independent

coefficients.

Conclusion: The following statements are equivalent:

a. when any tuple of matrices
→

Z in M∆(G) of compatible dimension ∆ � ∆0 is substi-

tuted into the Hessian HΓ, we obtain HΓ(
→

Z)[
→

H] ≥ 0 for all
→

H.

b. for all tuple of matrices
→

Z in the closure of M∆(G) the diagonal entries of the L(
→

Z)

D(
→

Z) L(
→

Z)T decomposition are positive semidefinite matrices (that is D(
→

Z) ≥ 0)

provided that D(
→

Z) is defined.

Proof. That (b) implies (a) is easy to prove and follows from Theorem 3.6.2. That (a)

implies (b) is difficult to prove and follows from:

• the next Theorem 3.8.3 which applies only to quadratic functions and proves under

appropriate hypotheses that HΓ(
→

Z)[
→

H] ≥ 0 implies MHΓ(
→

Z) ≥ 0 for
→

Z defined as in

(a) above;

• and that MHΓ(
→

Z) ≥ 0 implies D(
→

Z) ≥ 0, which is true since

MHΓ(
→

Z) = L(
→

Z)D(
→

Z)L(
→

Z)T

with L(
→

Z) an invertible matrix.14

3.8.2 Main result on quadratic functions: Theorem 3.8.3

This section gives results about quadratic functions. The main result is Theorem 3.8.3

that concerns positivity of a noncommutative rational function Q(
→

Z)[
→

H ] which is quadratic

in
→

H. The statement of this theorem is presented in this section and its proof is finished in

Section 3.10.

14L(
→

Z) is an invertible matrix since it is lower triangular with ones on its diagonal.
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Theorem 3.8.3 (Main Result on Quadratic Functions)

Assumptions: Let
→

H := {H−h, . . . ,Hk} be defined as in (3.19). Consider a noncom-

mutative rational function Q(
→

Z)[
→

H] which is a quadratic15 in the variables
→

H on a Symbolic

Inequality Domain G. Write Q(
→

Z)[
→

H] in the form

Q(
→

Z)[
→

H] = V (
→

Z)[
→

H ]TM
Q(

→

Z )
V (

→

Z)[
→

H].

Suppose that the following two conditions hold:

i. the Symbolic Inequality Domain G satisfies the Openness Property for some big enough

∆0;

ii. the border vector V (
→

Z)[
→

H ] of the quadratic function Q(
→

Z)[
→

H ] has block linearly inde-

pendent coefficients.

Conclusion: The following statements are equivalent:

a. when any tuple of matrices
→

Z inM∆(G) of compatible dimension ∆ � ∆0 is substituted

into Q, we obtain Q(
→

Z)[
→

H] is a positive semidefinite matrix for each tuple of matrices
→

H;

b. we have M
Q(

→

Z)
≥ 0 for all

→

Z in the closure of M∆(G) on which M
Q(

→

Z)
is defined.

Proof. Clearly (b) implies (a). The hard part is (a) implies (b). The proof of this result

consumes the following Section 3.9 and is finalized in Section 3.10.

3.9 Theorems Concerning Quadratic Functions

Before beginning the proof of Theorem 3.8.3 in earnest, we sketch some of the ideas

for the simplest type of quadratic functions. Section 3.9, which consist of Section 3.9.1

and Section 3.9.2, concerns primarily a matrix valued quadratic function Q[
→

H] of tuple
→

H of n × n matrices; there is no dependence on symbolic variables or on variables
→

Z. In

Section 3.9.1, we treat quadratic functions which are hereditary in the variables
→

H.

Later, in Section 3.10, we begin to combine the matrix results of Section 3.9.1 with

symbolic variables, and also we study quadratic functions of
→

H which also depend on
→

Z .

We reemphasize that the function Q(
→

Z)[
→

H] is quadratic in
→

H, but it need not be quadratic

in
→

Z.

15We emphasize that Q(
→

Z)[
→

H] is not restricted to be a nice quadratic.
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3.9.1 Some ideas of the proof

This section gives a very special case of Theorem 3.8.3 in order to illustrate a few of

the ideas involved and expose the readers to easy cases of the notation. This tutorial proof

takes up Section 3.9.1 and then after that the fully general proof begins.

The special case we consider is that of a hereditary quadratic function Q[
→

H]. To

assume that Q[
→

H] is a hereditary function is equivalent to imposing that
→

H has the special

form
→

H := {Hh+1, . . . ,Hg}, which in our notation says that {Hi}hi=−h and {Hj}kj=g+1 are

missing in
→

H := {H−h, . . . , H−1, H1, . . . , Hh, Hh+1, . . . , Hg, Hg+1, . . . , Hk}. Note

that we are treating a purely quadratic function Q[
→

H], in other words, Q(
→

Z)[
→

H] has no
→

Z

dependence. This special type of Q[
→

H] has the following representation

Q[
→

H] = V pure[
→

H]TMQV
pure[

→

H],

where V pure[
→

H] is defined as follows

V pure[
→

H] =




Hh+1L
h+1
1

...

Hh+1L
h+1
`h+1

...

HgL
g
1

...

HgL
g
`g




, (3.22)

with each Li
j being a fixed matrix, that is, they do not depend on matrices

→

Z.

The main result of this section, Proposition 3.9.1, is easy to prove, and serves as an

introduction to the ideas of the proof of the main Theorem 3.8.3.

Proposition 3.9.1 (Necessary Condition for Positivity)

Let Q[
→

H] be a hereditary quadratic function of tuple
→

H = {Hj}gj=h+1, where each matrix Hj

has dimension n×n. Also assume that this quadratic has a border vector of the type defined

in (3.22). Suppose that Q[
→

H] is a positive semidefinite matrix for each tuple
→

H, then either

i. the matrix MQ is positive semidefinite

or
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ii. there is an integer d ∈ [h+ 1, g] and real valued functions

λj : Rn → R, j = 1, . . . , `d,

such that
`d∑

j=1

λj(x)L
d
jx = 0, for x ∈ Rn.

We now define some sets that will be used throughout, and especially in the proof

of Proposition 3.9.1 above. Let each Li
j be fixed matrices of dimension n× n. For a given

x ∈ Rn, define the set Rpure,x
→

L
i to be

Rpure,x
→

L
i :=








HiL
i
1x

...

HiL
i
`i
x


 : all Hi ∈ Rn×n




, (3.23)

The Proof of Proposition 3.9.1 follows immediately from Lemma 3.9.2 and Proposi-

tion 3.9.3, which we now present.

Lemma 3.9.2 Let Q[
→

H] be a hereditary quadratic function of tuple
→

H of matrices of di-

mension n × n. Also assume that this quadratic has a border vector of the type defined in

(3.22). The function Q[
→

H] is positive semidefinite for all
→

H implies MQ ≥ 0, provided that

for some y the space Rpure,y
→

L
i fills out the whole space Rn`i for all i = h+ 1, . . . , g.

Proof. Let Q[
→

H] be positive semidefinite. By definition this implies that yTQ[
→

H]y ≥ 0

for all y ∈ Rn and all {Hj}gj=h+1 ∈ Rn×n. Therefore

yTQ[
→

H]y = yTV [
→

H]TMQV [
→

H]y = wTMQw ≥ 0

for all w = V [
→

H]y ∈ Rn(`h+1+···+`g) and all {Hj}gj=h+1 ∈ Rn×n. Now it suffices to prove that

for some y all vectors of the form w equals Rn(`h+1+···+`g). But this condition is directly

satisfied from the assumption that the space Rpure,y
→

L
i fills out the whole space Rn`i for all

i = h+ 1, . . . , g.

Proposition 3.9.3 For a given x ∈ Rn, let Rpure,x
→

L
i be defined as in (3.23). The following

holds:

i. If Rpure,x
→

L
i is all of Rn`i, then Li

1x,L
i
2x, . . . , L

i
`i
x are linearly independent vectors.
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ii. If Rpure,x
→

L
i is not all of Rn`i, then Li

1x, L
i
2x, . . . , L

i
`i
x are linearly dependent vectors,

and consequently there exist nontrivial scalar functions λj(x), that may depend on x,

such that

λ1(x)L
i
1x+ λ2(x)L

i
2x+ · · ·+ λ`i

(x)Li
`i
x = 0. (3.24)

Proof. For a given x ∈ Rn, let Rpure,x
→

L
i be all of Rn`i . Suppose Li

1x,L
i
2x, . . . , L

i
`i
x are

linearly dependent vectors. Without loss of generality, let Li
1x =

∑`i
j=2 λj(x) L

i
jx, where

λj(x) are scalar functions. Define sj = HiL
i
jx, then Rpure,x

→

L
i becomes

Rpure,x
→

L
i =








λ2(x)s2 + · · · + λs(x)s`i

s2
...

s`i




: some sj ∈ Rn





which can not possibly be Rn`i . This fact contradicts our assumption on Rpure,x
→

L
i being all

of Rn`i , thus Li
1x,L

i
2x, . . . , L

i
`i
x must be a linearly independent set of vectors.

To prove (ii), suppose for a given x ∈ Rn the vectors Li
1x,L

i
2x, . . . , L

i
`i
x are linearly

independent. Let

y =




w1

...

w`i




be any vector in Rn`i . Then we can choose Hi ∈ Rn×n with the property that w1 = HiL
i
1x,

w2 = HiL
i
2x, . . . , w`i

= HiL
i
`i
x. Thus Rpure,x

→

L
i is all of Rn`i .

What we have just demonstrated is only the beginning of the proof of Theorem 3.8.3

for a hereditary quadratic function. Next, we must show that the λj do not depend on

x. For the particular case we have been treating, there are several ways to do this, but

they do not all work for the general case of interest. The method we use later to prove

that the λj are independent of x uses the fact that the quadratic function depends on

the variables
→

Z (see Theorem 3.10.10 in Section 3.10). Another difficulty is that the sets

analogous to Rpure,x
→

L
i never equal the whole space for the case where Q is non-hereditary or

→

H contains symmetric elements. Fortunately these sets have co-dimension which depends

only on the dimension of the coefficient matrix MQ and does not depend on the dimension

of the matrices contained in the tuple
→

Z substituted for
→

Z (See Proposition 3.9.8). We

combine this fact about co-dimension with the algebraic dependence of the functions Q(
→

Z)

and Li
j(

→

Z) on
→

Z to complete the proof of Theorem 3.8.3 in Section 3.10.
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3.9.2 The range of the border vector of a matrix quadratic function

Earlier in Section 3.9.1, a necessary condition for positivity was presented in Propo-

sition 3.9.3 for a particular type of quadratic function. The key was a linear independence

property guaranteeing that the space Rpure,x
→

L
i is all Rn`i , that means, the co-dimension of

the space Rpure,x
→

L
i equals zero. Unfortunately, this only characterizes the unconstrained

part (the second part) of
→

H defined in (3.19). Section 3.9.2 gives similar conditions on the

other two parts of
→

H, the pairwise symmetric part (the first part) and the symmetric part

(the third part). General quadratic functions are treated in Proposition 3.9.4, and the key

property is a uniform bound on certain co-dimensions. Again, as in Section 3.9.1, we study

quadratic functions Q(
→

Z)[
→

H] with no
→

Z dependence.

First define Rsym,x
→

L
i and Rmix,x

→

L
i to be

Rsym,x
→

L
i :=








HiL
i
1x

...

HiL
i
`i
x


 : all Hi = HT

i ∈ Rn×n




, (3.25)

Rmix,x
→

L
i :=








H−iL
−i
1 x

...

H−iL
−i
`−i

HiL
i
1x

...

HiL
i
`i
x




: all H−i = HT
i ∈ Rn×n





. (3.26)

The following Proposition 3.9.4 introduces our main results concerning Rsym,x
→

L
i and

Rmix,x
→

L
i , and also summarizes similar results concerning Rpure,x

→

L
i given in Proposition 3.9.3.

Proposition 3.9.4 For a given x ∈ Rn, let Rpure,x
→

L
i , Rsym,x

→

L
i and Rmix,x

→

L
i be defined as in

(3.23) and (3.25-3.26). The following holds:

i. If Rpure,x
→

L
i is all of Rn`i, then Li

1x,L
i
2x, . . . , L

i
`i
x are linearly independent vectors.

ii. If Rpure,x
→

L
i is not all of Rn`i (resp. If Rsym,x

→

L
i has co-dimension in Rn`i greater than

`i[`i−1]/2), then Li
1x, L

i
2x, . . . , L

i
`i
x are linearly dependent vectors, and consequently

there exist nontrivial scalar functions λj(x), that may depend on x, such that

λ1(x)L
i
1x+ λ2(x)L

i
2x+ · · · + λ`i

(x)Li
`i
x = 0. (3.27)
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iii. If Rmix,x
→

L
i has co-dimension in Rn(`i+`−i) greater than `i`−i, then either Li

1x, L
i
2x, . . . ,

Li
`i
x or L−i

1 x, L−i
2 x, . . . , L−i

`−i
x are linearly dependent vectors, and consequently there

exist nontrivial scalar functions λj(x), that may depend on x, such that either

λ1(x)L
i
1x+ λ2(x)L

i
2x+ · · ·+ λ`i

(x)Li
`i
x = 0 (3.28)

or

λ1(x)L
−i
1 x+ λ2(x)L

−i
2 x+ · · ·+ λ`−i

(x)L−i
`−i
x = 0. (3.29)

Proof. The results concerning Rpure,x
→

L
i were proved in Proposition 3.9.3.

First we treat the case where the Hi are constrained to be symmetric. If (3.27) fails,

then Li
1x, . . . , L

i
`i
x are linearly independent; thus we may use Lemma 3.9.5 below to obtain

that Rsym,x
→

L
i is a space of co-dimension equal to `i(`i−1)/2. This contradicts the assumption

that Rsym,x
→

L
i has co-dimension in Rn`i greater than `i(`i − 1)/2. This proves part (ii) of

Proposition 3.9.4.

The proof of part (iii) follows the same line. If both (3.28) and (3.29) fail, then both

Li
1x, . . . , L

i
`i
x and L−i

1 x, L−i
2 x, . . . , L−i

`−i
x are linearly independent vectors; thus Lemma 3.9.6

below implies that Rmix,x
→

L
i is a space of co-dimension equal to `i`−i, contradicting the as-

sumption that Rmix,x
→

L
i has co-dimension greater than `i`−i. This completes the proof of

Proposition 3.9.4.

Now we present the Lemmas required in the proof of Proposition 3.9.4. We use H

instead of H to stand for a matrix in Rn×n in Lemma 3.9.5 and Lemma 3.9.6. This makes

the rather involved formulas easier to read.

Lemma 3.9.5 For linearly independent vectors v1, . . . , v` ∈ Rn the space S defined by

S =








Hv1
...

Hv`


 : all H = HT ∈ Rn×n





is a subspace in Rn` with co-dimension `(`− 1)/2.

Proof. Define invertible matrices P ∈ Rn×n and Q ∈ R`×` by

(
v1| · · · |v`

)
= P

(
I

0

)
Q,
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where I is the identity matrix with dimension ` and
(
v1| · · · |v`

)
denotes the matrix

whose columns are v1, . . . , v`. (Note that the hypotheses of this theorem imply n > `.) The

dimension of the space S is

dim(S) = dim











Hv1
...

Hv`


 : all H = HT ∈ Rn×n








= dim
({
H
(
v1| . . . |v`

)
: all H = HT ∈ Rn×n

})

= dim

({
HP

(
I

0

)
Q : all H = HT ∈ Rn×n

})

= dim

({
HP

(
I

0

)
: all H = HT ∈ Rn×n

})

= dim

({
P THP

(
I

0

)
: all H = HT ∈ Rn×n

})

= dim

({
H̃

(
I

0

)
: all H̃ = H̃T ∈ Rn×n

})

= n`− `(`− 1)/2.

Thus the co-dimension equals `(` − 1)/2. The last step above was a consequence of the

following argument. Partition

H̃ = `

n− `

` n− `(
H11 H12

H21 H22

)
.

Then

dim

({
H̃

(
I

0

)
: for all H̃ = H̃T

})

= dim

({(
H11

H21

)
: for all H11 = HT

11 ∈ R`×` and H21 ∈ R(n−`)×`

})

= dim
({
H11 : for all H11 = HT

11 ∈ R`×`
})

+

dim
({
H21 : for all H21 ∈ R(n−`)×`)

})
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=
`(`+ 1)

2
+ (n− `)`

= n`− `(`− 1)/2.

Lemma 3.9.6 Suppose that {ui}ri=1 and {vj}sj=1 are two sets of linearly independent vec-

tors in Rn. (The set {ui, vj}i,j need not consist of linearly independent vectors.) Then the

space S defined by

S =








Hu1

...

Hur

HT v1
...

HT vs




: for all H ∈ Rn×n





is a subspace in Rn(r+s) with co-dimension rs.

Proof. Define invertible matrices P1 ∈ Rn×n, Q1 ∈ Rr×r, P2 ∈ Rn×n, and Q2 ∈ Rs×s by

(
u1| · · · |ur

)
= P1

(
Ir

0

)
Q1,

(
v1| · · · |vs

)
= P2

(
Is

0

)
Q2,

where Ir and Is are the identity matrices with dimension r and s respectively. (Note that

the hypotheses of this theorem imply n > r and n > s.) The dimension of the space S is

dim(S) = dim











Hu1

...

Hur

HT v1
...

HT vs




: for all H ∈ Rn×n








= dim
({(

H
(
u1| . . . |ur

)
| HT

(
v1| . . . |vs

) )
:

for all H ∈ Rn×n
})
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= dim

({(
HP1

(
Ir

0

)
Q1 | HTP2

(
Is

0

)
Q2

)
: for all H ∈ Rn×n

})

= dim

({(
HP1

(
Ir

0

)
Q1 | HTP2

(
Is

0

)
Q2

)(
Q−1

1 0

0 Q−1
2

)
:

for all H ∈ Rn×n

})

= dim

({(
HP1

(
Ir

0

)
| HTP2

(
Is

0

) )
: for all H ∈ Rn×n

})

= dim

({(
P T

2 HP1

(
Ir

0

)
| P T

1 H
TP2

(
Is

0

) )
:

for all H ∈ Rn×n

})

= dim

({(
H̃

(
Ir

0

)
| H̃T

(
Is

0

) )
: for all H̃ ∈ Rn×n

})

= n(r + s)− rs.

Thus the co-dimension equals to rs. The last step above follows from the following

argument. Partition (assume r < s)

H̃ =
r

s− r
n− s

r s− r n− s


H11 H12 H13

H21 H22 H23

H31 H32 H33




. (3.30)

Then

dim

({(
H̃

(
Ir

0

)∣∣∣H̃T

(
Is

0

))
: for all H̃ ∈ Rn×n

})

= dim











H11 HT
11 HT

21

H21 HT
12 HT

22

H31 HT
13 HT

23


 : for all H̃ ∈ Rn×n as in (3.30)







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= dim({H̃ : for all H̃ ∈ Rn×n})− dim
({

(H32 H33) :

for all H32 ∈ R(n−s)×(s−r) and H33 ∈ R(n−s)×(n−s)
})

= n2 − [(n− s)(s− r) + (n− s)(n− s)]
= n(r + s)− rs

We now present a lemma concerning co-dimensions, which will be used in the proof

of Proposition 3.9.8.

Lemma 3.9.7 Suppose that each Si for i = 1, . . . , k is a subspace in Rni with co-dimension

mi, then the space S =




S1

...

Sk


 is a subspace in Rn1+···+nk with co-dimension m1+· · ·+mk.

Proof. The space S is the direct sum of the spaces




0
...

Si

...

0




, each of which has dimension

ni−mi. The dimension of S equals to the sum of the dimensions of Si, or equivalently the

co-dimension of S equals to the sum of the co-dimensions of Si, which is m1 + · · ·+mk.

Finally, we present Proposition 3.9.8, which introduces our main result concerning

the co-dimension of the range of a border vector.

Proposition 3.9.8 If there is an x ∈ Rn such that Li
1x, . . . , L

i
`i
x are linearly independent

vectors for every i ∈ I, then the following space Rall,x
→

L
has co-dimension less than or equal

to t := t1 + · · ·+ tk, where

ti =





`−i`i for i = 1, . . . , h

0 for i = h+ 1, . . . , g

`i(`i − 1)/2 for i = g + 1, . . . , k
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and Rall,x
→

L
is defined as




Rmix,x
→

L
1

...

Rmix,x
→

L
h

Rpure,x
→

L
h+1

...

Rpure,x
→

L
g

Rsym,x
→

L
g+1

...

Rsym,x
→

L
k




=








H−hL
−h
1 x

...

HhL
h
`h
x

Hh+1L
h+1
1 x

...

HgL
g
`g
x

Hg+1L
g+1
1 x

...

HkL
k
`k
x




:

for all Hi ∈ Rn×n (i ∈ I), satis-

fying the constraints H−j = HT
j

for j = 1, . . . , h and Hj = HT
j

for j = g + 1, . . . , k





Proof. It follows directly from Lemma 3.9.7, Lemma 3.9.6, and Lemma 3.9.5.

3.10 Linear Dependence of Symbolic Functions

Let ∆0 be a size sufficiently large that the domain G possesses the Openness Prop-

erty16. Let N∆0(G) be the subset of the set of all matrices meeting the inequality constraints

M(G) defined by N∆0(G) :=
⋃

∆≥∆0

M∆(G). Define also three subsets of N∆0(G), namely A,

B, and C, by

A := {
→

Z ∈ N∆0(G) : the matrix M
Q(

→

Z)
has less than or equal to t negative eigen-

values}, where t is defined in Proposition 3.9.8.

B := {
→

Z ∈ N∆0(G) : for every x with compatible dimension, there exists i ∈ I
such that the vectors Li

1(
→

Z)x, . . . , Li
`i
(
→

Z)x are linearly dependent, that is, for

each
→

Z and x, there exists λj(
→

Z, x), such that
`i∑

j=1
λj(

→

Z, x)Li
j(

→

Z)x = 0}. We

emphasize that i also depends on
→

Z and x, that is i = i(
→

Z, x).

C := B
⋂

Ac, where Ac denotes the set-theoretic complement of set A.

We will show later that the set N∆0(G) is the disjoint union of the two sets A and C. Let

A∆ be the set of tuples in A with size ∆. Similarly, C∆ is the set of tuples in C with size

∆. The next three lemmas give basic properties of the sets A, B, and C.

16See definition 3.7.3 in Section 3.7.2.
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Lemma 3.10.1 Let the sets A, B, and C be defined as above. Suppose that the quadratic

function Q(
→

Z)[
→

H] is positive semidefinite for all
→

H provided that the variables
→

Z, having

compatible dimension, are in N∆0(G). Then the set N∆0(G) is the union of the sets A and

B, that is, N∆0(G) = A
⋃

B, furthermore, N∆0(G) is the disjoint union of the sets A and

C.

Proof. Observe what happens when we replace
→

Z by tuple of matrices
→

Z of compatible

dimension. Fix a vector x. Suppose that xTQ(
→

Z)[
→

H]x ≥ 0 for all
→

H. This implies, that
→
w

T
M

Q(
→

Z)

→
w ≥ 0 for all

→
w inRall,x

→

L(
→

Z)
. Thus the number of negative eigenvalues ofM

Q(
→

Z)
is less

than or equal to the co-dimension of the space Rall,x
→

L(
→

Z)
, which by Proposition 3.9.8 either is

bounded by t or there is a d ∈ I, which depends on
→

Z and x, such that Ld
1(

→

Z)x, . . . , Ld
`d

(
→

Z)x

are linearly dependent for every vector x with compatible dimension.

As a consequence of the above result, the set N∆0(G) is the union of the sets A and

B, and consequently the disjoint union of the sets A and C. In particular, the set M∆(G)
is the disjoint union of A∆ and C∆ for each ∆ � ∆0.

Lemma 3.10.2 For every ∆ � ∆0, suppose the closure of A∆, denoted by closure(A∆),

contains M∆(G), in other words, A∆ is dense in M∆(G). Then A∆ actually equals the

whole set M∆(G).

Proof. The lemma follows directly from the fact that the eigenvalues of a symmetric

matrix continuously depend on the norm of the matrix, c.f. Appendix D of Golub and Loan

(1983).

We present some definitions about direct sum and sets which respect direct sums,

since they are important tools for proving linear dependence of the coefficient of the border

vector.

Definition 3.10.3 (Direct Sum) Our definition of the direct sum is the usual one, which

for two matrices Z1 and Z2 is given by

Z1 ⊕ Z2 :=

(
Z1 0

0 Z2

)
.

Now, we extend this definition for v tuples of matrices
→

Z := {Z1, . . . ,Zv}. For any positive

integer J , we denote by
→

Z
J

the direct sum
→

Z ⊕ · · · ⊕
→

Z of J copies of
→

Z. For instance, the
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direct sum of three v tuples of matrices
→

Z1 := {Z11, . . . ,Z1v},
→

Z2 := {Z21, . . . ,Z2v}, and
→

Z3 := {Z31, . . . ,Z3v} is given by

→

Z1 ⊕
→

Z2 ⊕
→

Z3 := {Z11 ⊕ Z21 ⊕ Z31, . . . ,Z1v ⊕ Z2v ⊕ Z3v} .

Note that from the above definition, if noncommutative functions Li
j applied to a v

tuples of matrices
→

Z produce matrices Li
j(

→

Z) ∈ Rn×n, then these functions Li
j applied to

the direct sum
→

Z
J

produce matrices Li
j(

→

Z
J

) ∈ RJn×Jn.

Definition 3.10.4 (A Set Respects Direct Sums) A set P is said to respect direct sums

if
→

Zi for i = 1, . . . , µ is contained in the set P implies that the direct sum
→

Z
J

i is also con-

tained in P for each positive integer J . Furthermore, the direct sum
→

Z
J

1 ⊕ · · · ⊕
→

Z
J

µ is also

contained in P.

We present Proposition 3.10.5 below because it foreshadow a key idea in the proof of

Theorem 3.8.3.

Lemma 3.10.5 Under the same assumptions as Lemma 3.10.1, the set C (a subset of B)

respects direct sums.

Proof. The proof is by contradiction. Pick
→

Zi ∈ C, thus
→

Zi ∈ Ac, which means M
Q(

→

Z i)

has at least t+1 negative eigenvalues. Next suppose that
→

Z
J

i is not contained in C for some

integer J . Then by Lemma 3.10.1, ZJ
i is contained in A, which by the definition of the

set A implies that M
Q(

→

Z

J

i )
has less than or equal to t negative eigenvalues. On the other

hand, by the property of direct sum, the number of negative eigenvalues of M
Q(

→

Z

J

i )
equals

J times the number of the negative eigenvalues of M
Q(

→

Z i)
. Thus, M

Q(
→

Z i)
also has less than

or equal to t negative eigenvalues, which is a contradiction. Hence,
→

Z
J

i is contained in C for

all integers J .

Similarly, we can further prove that the direct sum
→

Z
J

1 ⊕ · · · ⊕
→

Z
J

µ is also contained

in C.

3.10.1 Subsets of B which respect direct sums

The following few lemmas pertain to a subset P of B which respects direct sums. The

next lemma shows that for a finite set denoted by S, consisting of different elements in P,
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we can find a linear combination of the coefficients of the border vector which equals zero

for any
→

Z ∈ S. We actually prove something a little more general. That is,

Lemma 3.10.6 Let P be a subset of B which respects direct sums. Suppose that S is a

finite subset of P. Then, there are scalars λj(S) and an integer d(S) ∈ I (which depend

upon the choice of the set S) such that

`d(S)∑

j=1

λj(S)L
d(S)
j (

→

Z) = 0, (3.31)

for every
→

Z ∈ S.

Proof. The proof relies on taking direct sums of matrices. Write the set S as S =

{
→

Z1, . . . ,
→

Zµ}, where each
→

Zi ∈ P for i = 1, . . . , µ. For this proof, it suffices to take each

Ld
j (

→

Zi) to be in Rn×n. Choose
→

Z
∗

to be the direct sum
→

Z
n

1 ⊕ · · · ⊕
→

Z
n

µ, where each
→

Z
n

i for

i = 1, . . . , µ is the direct sum of n copies of
→

Zi. Define the vector e∗ to be

e∗ :=




e1
...

en


 ∈ Rn2

,

where the ek for k = 1, . . . , n are the standard basis elements for Rn. Also let x∗ be a vector

that contains µ copies of e∗, that is,

x∗ =




e∗

...

e∗


 ∈ Rµn2

.

Since (by assumption) the set P respects direct sum,
→

Z
∗

is also contained in P. Then, by the

definition of the set B, there exist scalars λj(
→

Z
∗

, x∗) and an integer d ∈ I (we reemphasize

that d = d(
→

Z
∗

, x∗)), such that

`d∑

j=1

λj(
→

Z
∗

, x∗)Ld
j (

→

Z
∗

)x∗ = 0.

It follows that
`d∑

j=1

λj(
→

Z
∗

, x∗)Ld
j (

→

Z
n

i )e∗ = 0, for i = 1, . . . , µ.
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This implies that for i = 1, . . . , µ,

`d∑

j=1

λj(
→

Z
∗

, x∗)Ld
j (

→

Zi)ek = 0, for k = 1, . . . , n.

Since the {ek}nk=1, is a basis for Rn, we obtain that

`d∑

j=1

λj(
→

Z
∗

, x∗)Ld
j (

→

Zi) = 0, for i = 1, . . . , µ.

Since (
→

Z
∗

, x∗) are determined by the choice of the set S, we conclude that

`d(S)∑

j=1

λj(S)L
d(S)
j (

→

Zi) = 0,

for each
→

Zi ∈ S, with λj(S) := λj(
→

Z
∗

, x∗) and d(S) := d(
→

Z
∗

, x∗). Thus we obtain equa-

tion (3.31) required for the lemma.

The next Lemma 3.10.7 extends this result from the finite set S to the bigger set

M∆(G).

Lemma 3.10.7 Let P be a subset of B which respects direct sums. For ∆ � ∆0, if there

is an open set U∆ contained in P∆ := P
⋂M∆(G), then there exist scalars λj(∆) and an

integer d(∆) ∈ I, such that
`d(∆)∑

j=1

λj(∆)L
d(∆)
j (

→

Z) = 0,

for every
→

Z ∈M∆(G).

Proof. Fix a size ∆ � ∆0. Denote by vec the map which sends a tuple of matrices
→

Z in

P∆ to their entries arranged as a vector (y1, . . . , yK) ∈ RK as follows

vec : P∆ → RK ,

where K is total number of entries in the matrices in
→

Z. The order of the arrangement does

not matter, but the same order must be used consistently. Denote vec− the inverse map of

vec. Then each entry of the matrix Li
j(

→

Z) is a rational function of the elements y1, . . . , yK .

By multiplying through by some polynomials if necessary, we can assume without loss of

generality that each entry of Li
j(

→

Z) is a polynomial in the K variables y1, . . . , yK . Let Dr
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be the maximum degree of yr among all of the polynomials which are entries of Li
j(

→

Z), for

all i and j.

Since P∆ contains an open set U∆, we can choose a finite set

S̃ := {(yv1
1 , . . . , y

vK
K ) ∈ RK , here vr = 1, . . . , Dr + 1 for all r = 1, . . . ,K},

such that for every r = 1, . . . ,K, the elements y1
r , . . . , y

Dr+1
r are distinct. That is, the values

in each coordinate of S̃ are distinct. The set S̃ is a subset of the space RK . As a consequence,

the cardinality Π of the set S̃ (the number of elements in S̃) equals Π =
K∏

r=1
(Dr + 1).

Define S = vec−(S̃) ∈ P∆. By Lemma 3.10.6, for each tuple
→

Z ∈ S, there are

constants λj(S) and an integer d(S) ∈ I, both depending on S such that

`d(S)∑

j=1

λj(S)L
d(S)
j (

→

Z) = 0, (3.32)

for every tuple of matrices
→

Z ∈ S.

Now we show that (3.32) actually holds for every
→

Z ∈ M∆(G). Note that (3.32) can

be equivalently written as

`d(S)∑

j=1

λj(S)

[
L

d(S)
j (

→

Z)

]

(p,q)

= 0, (3.33)

for every tuple of matrices
→

Z ∈ S, where

[
L

d(S)
j (

→

Z)

]

(p,q)

denotes the (p, q)th entry of

L
d(S)
j (

→

Z). By the previous argument,

[
L

d(S)
j (

→

Z)

]

(p,q)

is a polynomial in the K variables

y1, . . . , yK , and also the maximum degree on each indeterminate yr is no greater than

Dr. Clearly all the elements in S̃ give rise to matrix tuple
→

Z that satisfy the polynomial

equation (3.33) for all p and q. By the elementary theorem of algebra which says that

every nonzero polynomial in one complex variable with degree Dr has at most Dr zeros, we

conclude by the construction (cardinality Π) of the set S̃ that for every
→

Z ∈M∆(G)
`d(S)∑

j=1

λj(S)

[
L

d(S)
j (

→

Z)

]

(p,q)

= 0, for each p and q,

Thus it follows that
`d(∆)∑

j=1

λj(∆)L
d(∆)
j (

→

Z) = 0,

for every
→

Z ∈M∆(G), by choosing constants λj(∆) := λj(S) and integer d(∆) = d(S).
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Now we have obtained the linear combination λj(∆) of L
d(∆)
j (

→

Z), which is zero for all

elements
→

Z in M∆(G) for one fixed size ∆. The following lemma connects the coefficients

λj(∆) of the linear combinations between different size. It says that if we have an annihi-

lating linear combination for M∆(G), then this same combination will also be annihilated

for all size ∆′ with ∆ � ∆′.

Lemma 3.10.8 Fix a size ∆. Suppose there are scalars λj(∆) and an integer i(∆) ∈ I
such that

`i(∆)∑

j=1

λj(∆)L
i(∆)
j (

→

Z) = 0,

for every
→

Z ∈M∆(G). Then

`i(∆)∑

j=1

λj(∆)L
i(∆)
j (

→

Z) = 0,

for every
→

Z ∈M∆′(G), with ∆ � ∆′.

Proof. Let
→

∅ = {∅1, . . . , ∅v} be a tuple of zero matrices of compatible dimension. For

every
→

Z0 ∈M∆′(G) let
→

Z be

→

Z =
→

Z0 ⊕
→

∅

to get
→

Z ∈ M∆(G) with ∆ � ∆′. By assumption, there are scalars λj(∆) and an integer

i(∆) such that
`i(∆)∑

j=1

λj(∆)L
i(∆)
j (

→

Z) = 0,

for every
→

Z ∈M∆(G). Then plug in the decomposition of
→

Z given above, together with the

fact that

L
i(∆)
j (

→

Z0 ⊕
→

∅ ) = L
i(∆)
j (

→

Z0)⊕ Li(∆)
j (

→

∅ ) =


 L

i(∆)
j (

→

Z0) 0

0 0


 ,

to obtain
`i(∆)∑

j=1

λj(∆)L
i(∆)
j (

→

Z0) = 0

for every
→

Z0 ∈M∆′(G).
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So far we have shown that for every fixed size ∆, there exists an annihilating linear

combination (that may depend on the size ∆), which also holds for any size ∆′ with ∆ �
∆′. Now we show that actually there exists an annihilating linear combination for all
→

Z ∈M∆(G) that does not depend on the size ∆.

Lemma 3.10.9 Let P be a subset of B which respect direct sums. Suppose there is a

size ∆1 � ∆0, such that for every size ∆ � ∆1 there is an open set U∆ contained in

P∆ := P
⋂M∆(G). Then, there are constants λj and an integer d ∈ I (we emphasize that

λj and the integer d do not depend on the size ∆) such that

`d∑

j=1

λjL
d
j (

→

Z) = 0,

for every
→

Z ∈M(G).

Proof. Define the set Λ∆
∗ as

Λ∆
∗ :=

{
(d(∆), λ1(∆), . . . , λ`d(∆)

(∆)) :

`d(∆)∑

j=1

λj(∆)L
d(∆)
j (

→

Z) = 0,

for every
→

Z ∈M∆(G) and an integer d(∆) ∈ I
}
.

Since for every ∆ � ∆1, the set P∆ contains an open set U∆, from Lemma 3.10.7 we have

that the set Λ∆
∗ is nonempty. Thus there exists a point

(d̃(∆), λ̃1(∆), . . . , λ̃`d(∆)(∆)) ∈ Λ∆
∗

for every ∆ � ∆1. We can define a collection of sets for every ∆ � ∆1 and every integer

d̃(∆) as

Λ∆
∗ (d̃(∆)) :=

{
(λ1(∆), . . . , λ`d(∆)(∆)) : (d̃(∆), λ1(∆), . . . , λ`d(∆)(∆)) ∈ Λ∆

∗

}
.

It is clear by the construction that Λ∆
∗ (d(∆)) is a linear space, which is nontrivial since

(λ̃1(∆), . . . , λ̃`d(∆)(∆)) ∈ Λ∆
∗ (d̃(∆)) for every ∆ � ∆1. Since the integer d(∆) only has

finitely many possibilities in I there exists an infinite increasing sequence {ji}∞i=1 and an

integer d in I, such that Λ
∆ji
∗ (d) is nonempty for any i and such that

∆ji1
� ∆ji2

, for any i1 > i2.
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By Lemma 3.10.8, the dimension of the space Λ
∆ji
∗ (d) is a non-increasing sequence, which

is bounded below by 1. Thus

min
i≥1

dim(Λ
∆ji
∗ (d)) ≥ 1.

Hence
⋂
i≥1

Λ
∆ji
∗ (d) 6= ∅, and consequently there is an integer d (that does not depend on ∆)

and scalars λj(∆), such that
`d∑

j=1

λj(∆)Ld
j (

→

Z) = 0,

for every
→

Z ∈
∞⋃
i=1
M∆ji

(G).

So far we have shown that the integer d does not depend on the size ∆. The next step

is to show that the scalars λj are also independent of ∆. This is accomplished by applying

Lemma 3.10.8 successively. Thus, we conclude that

`d∑

j=1

λjL
d
j (

→

Z) = 0,

for every
→

Z ∈M(G).

From all of this we obtain the following result.

Theorem 3.10.10 Let L1(
→

Z), . . . , L`(
→

Z) be noncommutative rational functions of
→

Z =

{Z1, . . . , Zv}. Let G be a Symbolic Inequality Domain satisfying the Openness Property.

Suppose for all ∆ � ∆0 we have for each
→

Z ∈ M∆(G) of compatible dimension and each

vector x that the vectors

L1(
→

Z)x, . . . , L`(
→

Z)x

are linearly dependent. Then the functions L1(
→

Z), . . . , L`(
→

Z) are linearly dependent, that

is, there are scalars λj (that do not depend on
→

Z) such that

∑̀

j=1

λjLj(
→

Z) = 0

Proof. Form a subset of B denoted by P associated with L1(
→

Z), . . . , L`(
→

Z) by

P =

{
→

Z ∈ N∆0(G) : for each
→

Z, x there exist λ(
→

Z, x), such that

∑̀

j=1

λjLj(
→

Z)x = 0

}
.
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Now, we show that this set P respects direct sums. For t = 1, . . . , µ let
→

Zt be contained in

P. By definition of the set P, for each
→

Zt, x there exist λ(
→

Zt, x) such that

∑̀

j=1

λj(
→

Zt, x)Lj(
→

Zt)x = 0, t = 1, . . . , µ.

Let x∗ be a vector that contains J copies of x. Since Lj(
→

Z
J

t ) = Lj(
→

Zt) ⊕ · · · ⊕ Lj(
→

Zt), we

have that, for t = 1, . . . , µ,

∑̀

j=1

λj(
→

Zt, x)Lj(
→

Z
J

t )x∗ =




∑̀
j=1

λj(
→

Zt, x)Lj(
→

Zt)x 0

. . .

0
∑̀
j=1

λj(
→

Zt, x)Lj(
→

Zt)x




= 0,

and consequently
→

Z
J

t ∈ P for each t = 1, . . . , µ.

Thus, Lemma 3.10.6, Lemma 3.10.7, Lemma 3.10.8 and Lemma 3.10.9 apply to P. In

particular, Lemma 3.10.9 implies Theorem 3.10.10.

Also Theorem 3.10.10 lays behind Corollary 3.10.11, which is here repeated.

Corollary 3.10.11 Let L1(
→

Z), . . . , L`(
→

Z) be noncommutative rational functions of
→

Z =

{Z1, . . . , Zv}. For each vector x, suppose that the vectors L1(
→

Z)x, . . . , L`(
→

Z)x are linearly

dependent whenever matrices Zj of compatible dimension are substituted for Zj for all size

∆ bigger than some ∆0. Then there exist real numbers λj for j = 1, . . . , ` such that

∑̀

j=1

λjLj(
→

Z) = 0,

that is, the functions Lj(
→

Z) are linearly dependent.

Proof. In Theorem 3.10.10 take G to be everything. That is, G contains no inequality

constraints. Thus G has the Openness Property, since M∆(G) =M∆.

We need the following lemmas to complete the proof of the main Theorem.

Lemma 3.10.12 Let ∆0 be any size. Assume that T is a symmetric matrix with non-

commutative rational functions tij(
→

Z) as entries. Suppose there is an integer r such that

whenever tuple of matrices
→

Z ∈ N∆0(G) of compatible dimension are substituted for
→

Z, the

resulting matrix T (
→

Z) has at most r negative eigenvalues. Then T (
→

Z) is positive semidefi-

nite (that is, r = 0) for each
→

Z ∈M(G).
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Proof. The key fact is

T (
→

Z ⊕
→

Z) = T (
→

Z)⊕ T (
→

Z).

This implies that if T (
→

Z) has η negative eigenvalues, then T applied to the 2r-fold direct

sum
→

Z⊕· · ·⊕
→

Z has 2rη negative eigenvalues. Consequently the hypothesis 2rη ≤ r implies

that η = 0.

Lemma 3.10.13 Suppose M
Q(

→

Z)
is positive semidefinite for every

→

Z ∈ M∆(G), then

M
Q(

→

Z)
is also positive semidefinite for every

→

Z ∈M∆′(G) with ∆ � ∆′.

Proof. Use an idea similar to the one in the proof of Lemma 3.10.8.

3.10.2 Proof of Theorem 3.8.3

Proof. For any ∆ � ∆0, if A∆ is dense in M∆(G), that is, closure(A∆) ⊇ M∆(G), then

by Lemma 3.10.2, we have A∆ = M∆(G). Hence, the number of negative eigenvalues of

M
Q(

→

Z)
is uniformly bounded by t for all

→

Z ∈ M∆(G). Now we apply Lemma 3.10.12 with

r = t to obtain that, for each tuple of matrices
→

Z ∈ M∆(G) substituted for
→

Z , the matrix

M
Q(

→

Z)
is positive semidefinite. On the other hand, if A∆ is not dense in M∆(G), then by

Lemma 3.10.1 there exists an open set U∆ contained in C∆ ⊂M∆(G).

So far we have shown that for any ∆ � ∆0 one of the following must be satisfied,

either

a. the matrix M
Q(

→

Z)
is positive semidefinite for each

→

Z ∈M∆(G),

or

b. there exists an open set U∆ contained in C∆ ⊂M∆(G).

The final step is to show that if positivity of M
Q(

→

Z)
fails, then the block linear

independence of the border vector (in assumption (ii) of Theorem 3.8.3) of the quadratic

function Q also fails. Assume there is a size ∆∗ such that (a) is not satisfied. Then

by Lemma 3.10.13, (a) is not satisfied for every ∆ � ∆∗. Hence (b) is true for every

∆ � ∆∗, which by Lemma 3.10.9 (with P∆ = C∆) and Lemma 3.10.5 implies that there are

constants λj and an integer d such that
∑`d

j=1 λjL
d
j (

→

Z) = 0 for every
→

Z ∈ M(G). Thus, by

Corollary 3.10.11, the noncommutative rational functions Ld
j (

→

Z) are linearly dependent for

j = 1, . . . , `d and consequently the border V (
→

Z)[
→

H] has block linearly dependent coefficients.
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But this contradicts assumption (ii) of Theorem 3.8.3, finalizing in this way the proof of

the main Theorem 3.8.3.

Remark 3.10.14 It is enough (a weaker hypotheses) to consider square matrices of dimen-

sion n×n (when substituting matrices for indeterminate) to prove the theorems concerning

convexity and matrix positive of noncommutative rational functions.



Chapter 4

Convex Optimization over Matrix

Functions

4.1 Introduction

This chapter provides tools that can solve system and control problems, or any other

type of engineering problem that can be posed as Matrix Inequalities (MIs). To use these

tools, no knowledge of Linear Matrix Inequalities (LMIs) or how to manipulate matrix

inequalities to be expressed as LMIs is required. Furthermore, the tools presented here may

have the same advantages as the LMI framework.

To understand the motivation of this task, one must expose some of the advantages

and disadvantages of the LMI framework. The wide acceptance of LMIs stems from the

following facts: 1) if a control problem is posed as an LMI, then any solution is a global

optimum; 2) efficient LMI solvers are readily available; 3) once a control problem is posed

as an LMI, any other constraints in the form of LMIs can be added to the problem. On the

other hand, the LMI framework has the following disadvantages: 1) there is no systematic

way to produce LMIs for general classes of problems; 2) there is no way of knowing whether

or not it is possible to reduce a system problem to an LMI without actually doing it; 3)

the user must possess the knowledge of manipulating LMIs; 4) transformations via Schur

complements can lead to a large LMI representation.

If someone has the ability to check if a MI is convex and convertible to an LMI,

then the optimization problem can be solved by the many available LMI solvers. Most of

the numerical implementation of these solvers are based on the Semidefinite Programming

90
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(SDP) machinery. To cite a few of them Gahinet et al. (1995); Sturm (1999); Vandenberghe

and Balakrishnan (1997); Vandenberghe and Boyd (1995, 1996) and references therein.

Fundamental results in primal-dual interior-point methods are found in Wright (1997), and

a collection of many results on convex optimization can be found in Boyd and Vandenberghe

(2003). An elegant exposition of interior-point methods in convex optimization is found in

Renegar (2001). A large collection of control problems that can be posed as LMIs, and

algorithms used to solve them, can be found in Boyd et al. (1994); Colaneri et al. (1997).

In particular, the book by Skelton et al. (1998) demonstrates that many linear controller

design problems reduce to a single linear algebra problem having the form

ΓG∆ + (ΓG∆)T + Θ < 0,

for the unknown matrix G.

Unfortunately, if one does not have the ability to deal with LMIs, it is not clear what

one should do. An available alternative is to restate the entire optimization problem in the

form used by some particular numerical nonlinear optimization solver. In this case, since

optimization over matrix functions are inherently not smooth, there is no guarantee of a

local minimum. Furthermore, the tedious process of reformulating a matrix optimization

problem usually requires a high level of algebraic skills.

There are a few papers on solving matrix inequalities which are not linear in the

unknowns (Jarre (2000); Leibfritz and Mostafa (2002) and references therein). In Leibfritz

and Mostafa (2002), the authors presented and analyzed a numerical interior point trust

region algorithm that can be used for solving a class of nonlinear (nonconvex) semidefinite

programming problem, posed as:

min
F,L

J(F,L) s.t. h(F,L) = 0, Y (F,L) < 0, L > 0 (4.1)

where the functions h, Y : Rp×r × Sn → Sn and J : Rp×r × Sn → R are assumed to be

twice continuously differentiable. The author solved the above problem (4.1) by a barrier

method. Their formulas for the update directions naturally depend on the functions J ,

h, and Y , and its derivatives. They have applied the algorithm to a variety of numerical

examples, including static output feedback control designs. Their approach requires the

user to compute the derivatives of the matrix functions in order to implement the code,

while to use our approach the user does not need to compute derivatives, since this is

done automatically. Moreover, this thesis focuses much attention on the efficient use of the

formulas for the derivatives (see Section 4.6). Even though in this dissertation, we have
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focused on convex optimization problems over matrix inequalities, the extension of our ideas

to a nonconvex approach is immediate.

The NCSDP numerical optimization solver to be presented in this chapter can be used

to solve optimization problems corresponding to matrix inequalities. This approach does

not require any knowledge of LMIs, or how to manipulate MIs to be expressed as LMIs.

Consequently, there is no need to determine Schur complements in order to express the

matrix constraints as LMIs. Moreover, since transformations via Schur complements can

lead to an LMI representation with large matrices, the presented solver has the potential

to reduce the optimization time significantly when the dimensions of the matrices involved

are large (when compared to primal-dual numerical solvers, see Section 4.7).

The NCSDP solver is based on an implementation of the method of centers (see

Boyd and El Ghaoui (1993); Colaneri et al. (1997); Huard (1967); Lieu and Huard (1965)).

This solver is implemented in Matlab and Mathematica, and it can be split into two parts:

a symbolic and a numerical one. Roughly speaking, at the symbolic level, Mathematica

computes the gradient map Q and the Hessian map H(δX) of an auxiliary potential function

that appropriately incorporates the objective and the constraints. Thereby, producing a

linear system of equations H(δX) = Q in the update direction δX . Then, a Matlab code

numerically solves this system for δX . The method successively iterates, at the numerical

level, until the algorithm converges to an optimal solution.

To convey what it is meant for minimization over matrix functions, suppose one is

given matrices of compatible dimensions A and S where they need to solve the following

problem for symmetric matrices X and Y > 0 within the unit ball:

max
X,Y

Tr {X}

subject to

XATY −1AX −AX(XAT Y −1AX − Y )−1XAT − (Y −1XATY −1AXY −1 − Y −1)−1

−AX(I + Y −1XATY −1AX)−1 − (I +XATY −1AXY −1)−1XAT − S < 0

XX < I and Y Y < I.

Where the matrices A and S are given by

A =

[
1 −1

0 2

]
, S =

[
2 0

0 1

]
.

This type of problem is easily handled by our numerical NCSDP solver.
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This chapter is organized as follow: Section 4.2 presents the notation used, and some

important results that are needed in later sections. Section 4.3 presents the theory behind

our methodology, showing how we pose our feasibility optimization problem and the inner

product optimization problem. Section 4.4 provides a tutorial example of our methodology

using a Riccati feasibility problem. Section 4.5 extends the results presented in Section 4.3

for the more general multivariate case. Section 4.6 shows how simplifications rule can

be applied to improve the evaluation time of the numerical solver. Section 4.7 provides

numerical results of the NCSDP code implemented, comparing its performance with other

available SDP solvers, and analyzing its behavior through a variety of control problems.

4.2 Notation

This section presents the notation used throughout this chapter and some important

facts that will be needed. Although the presentation here is a bit redundant with the

notation presented in other chapters, this chapter is intended to be self-contained so that

it can be read independently of the other chapters.

4.2.1 Linear transformations on an Euclidean space

The n-dimensional Euclidean space, endowed with the usual dot product 〈x, y〉 = yTx,

is denoted by Rn. The standard basis of Rn is denoted by {e1, e2, . . . , em}, in which ei has 1

as ith component and 0’s elsewhere. The space of n×m real matrices is denoted by Rn×m.

The space of n × n symmetric matrices with real entries is denoted by Sn. In this space,

an ordering ≥ can be define as: given two matrices A,B ∈ Sn, the order A ≥ B means that

A−B is a positive semidefinite matrix, in the sense that the inner product 〈(A−B)x, x〉
is nonnegative for any vector x ∈ Rn. This space is denoted by Sn

+. If strictly inequality is

used in the definition, we obtain the space Sn
++ of positive definite matrices.

The Kronecker product of two matrices A and B is denoted by A⊗B. To define

the vecvecvec operation, let us associate the vector vec(X) ∈ Rnm with each matrix X ∈ Rn×m

by the rule

vec(X) = [X11, X21, . . . , Xn1, X12, . . . , Xn2, . . . , X1m, . . . , Xnm]T .

We provide two definitions for the inner product of two matrices A and B. The first
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definition is given by

〈A,B〉 := Tr
{
ABT

}
=
∑

i,j

AijBij

= vec(B)T vec(A) = 〈vec(A), vec(B)〉.
(4.2)

And the second definition, the symmetric case, is given by

〈A,B〉s := Tr
{
ABT +BAT

}
(4.3)

The corresponding induced norm, the Frobenius norm , is

‖X‖ =
√
〈X,X〉. (4.4)

Let us define the canonical basis E = {E11, E21, . . . , En1, E12, . . . , Enm}, where each

Eij ∈ Rn×m denotes the matrix with i, j entry 1 and all other entries 0. With this ordering,

E` means the `th component of the set E. When we refer to the matrix representation

of a linear transformation L : Rp×q → Rn×m, we mean the representation relative to the

canonical basis E and Ẽ in Rp×q and Rn×m respectively.

L : Rp×q −→ Rn×m
yvec

yvec

M : Rpq −→ Rnm

Figure 4.1: Isomorphism of the mapping X −→ vec(X).

With this notation, the matrix that represents a linear transformation L : Rp×q →
Rn×m is the matrix M ∈ Rnm×pq, as illustrated by Figure 4.1, such that

M vec(X) = vec(L(X)) (4.5)

for all X ∈ Rp×q (Lemma 4.3.2 in Horn and Johnson (1999)). This representation is unique

and depends solely on the map L. The existence and uniqueness is immediate from the fact

that any linear operator on a finite dimensional space has a unique matrix representation

relative to a given basis (Lemma 4.2.3). This can also be deduced from the fact that: (1)

the map vec : Rp×q → Rpq is an isomorphism; (2) any linear transformation T : Rpq → Rnm

has a unique matrix representation relative to a given basis.

Suppose that L : Rp×q → Rn×m is a linear operator1, then the unique adjoint

operator L? : Rn×m → Rp×q satisfies

〈L(X), Y 〉 = 〈X,L?(Y )〉 (4.6)

1The name operator, transformation and map are used interchangeably.
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for all X ∈ Rp×q and Y ∈ Rn×m. A map L is said to be self-adjoint if L = L?. It will be

shown that a linear transformation L is self-adjoint if and only if the matrix M representing

L is real and symmetric.

An example of a self-adjoint operator L(X) is the map X → AXB + ATXBT :

Rn×n → Rn×n, for given A,B ∈ Rn×n. The matrix representation for L is given by

M = BT ⊗ A+ B ⊗ AT , where the symbol ⊗ stands for the Kronecker product. It should

be emphasized that the map L(X) being self-adjoint does not necessarily imply that the

matrix2 L(X) is symmetric for a given matrix X.

To prove that L(X) = AXB +ATXBT is a self-adjoint operator, one needs to verify

that for any X,Y ∈ Rn×n, the adjoint relation (4.6) holds with L(X) = L?(X). This is

accomplished by the following manipulations:

〈L(X), Y 〉 = Tr
{
(AXB +ATXBT )Y T

}

= Tr
{
X(BY TA+BTY TAT )

}

= Tr
{
XL?(Y )T

}

= 〈X,L?(Y )〉.

(4.7)

The adjoint map L?(Y ) is therefore given by Y → AY B+ATY BT , from which one prompt-

ly concludes that L(X) = L?(X). Symmetry of the matrix representation M comes from

the fact that the Kronecker product (BT ⊗A)T equals B⊗AT . Many properties of functions

on matrices can be found in Horn and Johnson (1999).

After this example, we should state and prove a simple but very useful result, Theo-

rem 4.2.1, which says that if L : Rp×q → Rp×q is a self-adjoint linear transformation, then

its matrix representation M ∈ Rpq×pq is real and symmetric. This theorem is a particular

case of a more general result which holds for any self-adjoint linear transformation on finite-

dimensional inner-product3 spaces. This is a standard result available in many textbooks

like MacLane and Birkhoff (1999) and Michel and Herget (1981).

Theorem 4.2.1 Let L : Rp×q → Rp×q be a linear transformation. Then L is self-adjoint

if and only if its matrix representation M is real and symmetric.

Proof. Follows immediately from Proposition 4.2.2.

2We do not use different symbols to distinguish a map L(X) from its matrix value L(X) for a given X,
as done in the previous chapter 3.

3An inner-product space is sometimes called a pre-Hilbert space. If the space is also complete, then it
is said to be a Hilbert space.
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Proposition 4.2.2 Let E and Ẽ be canonical basis in Rp×q and Rn×m respectively. The

matrix representation (relative to E, Ẽ) of each linear transformation

L : Rp×q → Rn×m

is the transpose of the matrix representation (relative to Ẽ, E) of its adjoint map

L? : Rn×m → Rp×q.

Proof. From Lemma 4.2.3, the matrix representation M of L given by Mij = 〈L(Ej), Ẽi〉
satisfies Eq. (4.8). By an analogous argument, the matrix M̃, for the adjoint L?, is M̃ji =

〈L?(Ẽi), Ej〉. Using the symmetry property of the inner product and the adjoint relation

(4.6), we obtain

M̃ji = 〈L?(Ẽi), Ej〉 = 〈Ej , L
?(Ẽi)〉 = 〈L(Ej), Ẽi〉 = Mij .

Hence, M = M̃T , as asserted.

Lemma 4.2.3 Let L : Rp×q → Rn×m be a linear transformation, and take E and Ẽ to

be canonical basis in Rp×q and Rn×m respectively. Then the matrix representation M of L

satisfies

M vec(X) = vec(L(X)) (4.8)

for all X ∈ Rp×q, and it is uniquely determined by

Mij = 〈L(Ej), Ẽi〉.

Proof. For X ∈ Rp×q, let {ζj} be the coordinates that represent X relative to the basis

E, i.e., X =
∑

j ζjEj . By linearity of the vec operator and of the map L, we have

vec(X) =
∑

j

ζj vec(Ej) and vec(L(X)) =
∑

j

ζj vec(L(Ej)). (4.9)

To find the matrix representation M, Eq. (4.8) must hold for all X ∈ Rp×q. Substituting

(4.9) in (4.8) gives

M vec(X) = vec(L(X))
∑

j

ζjM vec(Ej) =
∑

j

ζj vec(L(Ej))

∑

j

ζj vec(Ẽi)
T M vec(Ej) =

∑

j

ζj vec(Ẽi)
T vec(L(Ej))
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This choice of basis has the property that Ej
vec−→ ej . Thus, the above equations simplify to

∑

j

ζjMij =
〈∑

j

ζj vec(L(Ej)), vec(Ẽi)
〉

=
〈∑

j

ζjL(Ej), Ẽi

〉
.

Hence Mij = 〈L(Ej), Ẽi〉 as asserted.

4.2.2 Noncommutative symmetric rational functions

That our goal is to use symbolic computation to compute the gradient and the Hessian

of the functions to be optimized, we abstract the notion of function on matrices to that of

function on variables which are symbolic noncommutative elements. The presentation here

is from Section 3.2.1 of Chapter 3.

What occurs in practice are functions F which are polynomial or rational in non-

commutative variables (often referred to as indeterminate) with coefficient that are real

numbers. Noncommutative rational functions of X are polynomials in X and in in-

verses of polynomials in X. Examples of noncommutative symmetric functions are

F (A,B,X) = AX +XAT − 3

4
XBBTX, X = XT ,

F (A,D,X, Y ) = XTAX +DYDT +XY XT , Y = Y T and A = AT , (4.10)

and

F (A,D,E,X, Y ) = AT (XDX +XTDXT )A+E(XY XT +XTY X)ET , (4.11)

with Y = Y T and D = DT .

It is also assumed that there is an involution on these rational functions which is

denoted by the superscript T , and which will play the role of transpose later when we

substitute matrices for the indeterminate.

Often we should think of some indeterminates as knowns and other indeterminates

as unknowns and be concerned primarily about a function’s properties with respect to

unknowns. For example, in function (4.11) when we are mainly concerned about behavior

such as convexity of F in X,Y we write F (A,D,E,X, Y ) simply as F (X,Y ). We call a

noncommutative function F (A,X) symmetric provided that F (A,X)T = F (A,X).
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First directional derivatives

The first directional derivative of a noncommutative rational function F (A,X)

with respect to X in the direction δX is defined in the usual way

DF (X)[δX ] := lim
t→0

1

t
(F (X + tδX)− F (X)) =

d

dt
F (X + tδX)

∣∣∣∣
t=0

For example, the first directional derivative of F (X) in (4.10) with respect to X along the

direction δX is

DXF (X,Y )[δX ] = δT
XAX +XTAδX + δXY X

T +XY δT
X .

It is easy to check that derivatives of symmetric noncommutative rational functions always

have the form

DF (X)[δX ] = sym

{
k∑

i=1

AiδXBi

}
. (4.12)

where the sym operator, defined as sym[M ] = M +M T , is used to make an expression

symmetric. As an example, the above derivative can be written in the form (4.12), by

defining k = 1 and

A1 = XTA, B1 = 1

A2 = 1, B2 = Y XT

Second directional derivatives

The second directional derivative of a noncommutative rational function is obtained

from the second order terms of a Taylor expansion of F (X + tδX) about t = 0 ∈ R:

F (X + tδX) = F (X) +DF (X)[δX ] t+D2F (X)[δX , δX ] t2 + · · ·

Thus, the second directional derivative D2F (X)[δX , δX ] of F (X) is defined by

D2F (X)[δX , δX ] =
d2

dt2
F (X + tδX)

∣∣∣
t=0

.

An analogous more general expression holds for more variables. For example, the second

directional derivative of F (X,Y ) in (4.11) with respect to X along the direction δX is

D2F (X,Y )[δX , δX ] = 2
(
AT (δXDδX + δT

XDδ
T
X)A+E(δXY δ

T
X + δT

XY δX)ET
)
. (4.13)
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One can easily show that the second directional derivative of a symmetric noncommutative

rational function F (X) with respect to one variable X in the direction δX has the form

D2F (X)[δX , δX ] =

sym





w1∑

j=1

MjδXNjδXTj +

w2∑

j=1+w1

MjδX
TNjδXTj +

w3∑

j=1+w2

MjδXNjδX
TTj



 . (4.14)

As an example, the second directional derivative given in (4.13) can be expressed in the

form (4.14) by defining w1 = 1, w2 = 2, w3 = 3, and

M1 = 2AT , N1 = D, T1 = A

M2 = 1/2E, N2 = Y, T2 = ET

M3 = 1/2E, N3 = Y, T3 = ET

4.2.3 Equivalence between different notions of derivatives

We now provide very briefly some connections between different notions of derivatives.

For a more complete exposition and proof see Graves (1935); Hildebrandt and Graves (1927);

Luenberger (1969); Lusternik and Sobolev (1961); Ortega and Rheinboldt (2000).

The definition of the directional derivative of a noncommutative rational function

F (X) presented in the previous section did not assume any norm topology. However, in

the derivatives to be taken for the barrier, it will be assumed a topology provided by the

trace operator. Depending upon the choice of the inner product, one may have different

interpretations for the derivatives. To provide the definition for the gradient and the Hessian

map, we shall introduce the definitions of Gateaux and Fréchet differentials.

Definition 4.2.4 (Gateaux differential) Let V and W be normed spaces. Let F (X) :

C ⊂ V → W. If for some X in the interior of C, and δX ∈ V, the limit

lim
t→0

1

t
[F (X + tδX)− F (X)] = DF (X)[δX ]

exists, then F (X) is said to have a Gateaux differential at X in the direction δX , which

we denote by DF (X)[δX ].

Definition 4.2.5 (Gateaux derivative) If the transformation DF (X)[δX ] : V ×V → W
exists for all δX and is linear in δX , then F (X) is said to be Gateaux-differentiable at X,

and the Gateaux derivative F ′(X) satisfies

lim
t→0

1

t

∥∥∥F (X + tδX)− F (X)− tF ′(X)δX

∥∥∥ = 0.
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The map F ′(X) is a linear operator from V to W, which depends, in general, on X. This

map is unique and it follows that DF (X)[δX ] = F ′(X)δX .

In the most general case, the Gateaux differential of F (X) may exist at X for all

δX ∈ V, and yet F (X) does not have a Gateaux derivative at X.

Definition 4.2.6 (Fréchet differential) Let F (X) : C ⊂ V → W with V and W normed

spaces. Let X and δX be arbitrary elements in V. Then the map F (X) is Fréchet differ-

entiable at X in the interior of C, if there exists a map DF (X)[δX ] : V × V → W which is

linear and continuous with respect to δX such that

lim
δX→0

1

‖δX‖
∥∥F (X + δX)− F (X)−DF (X)[δX ]

∥∥ = 0.

This transformation can be written as DF (X)[δX ] = F ′(X)δX , where the linear operator

F ′(X) : V → W is the Fréchet derivative of F (X), which depends, in general, on X.

Remark 4.2.7 If the Fréchet differential exists, then the Gateaux differential exists, and

they are equal.

Remark 4.2.8 If the Gateaux differential exists for all X in an open neighborhood of a

point X0 and if it is uniformly continuous in X and continuous in δX , then the Fréchet

differential exists in this neighborhood, and they are equal.

Remark 4.2.9 (Equivalence of the definitions) For the type of rational matrix valued

functions assumed in this thesis, any one of the above definitions of derivatives implies the

other one.

If the transformation DF (X)[δX ] is a linear functional (in the direction δX), whose

range lies in W ⊂ R, then it follows from the Riesz representation theorem4 that given any

inner product 〈·, ·〉, this functional can be represented as

DF (X)[δX ] = 〈Q(X), δX 〉, (4.15)

with Q(X) : V → V defined as the gradient map. Evidently, this representation will

depend on the choice for the inner product.

4The Riesz representation theorem says that every continuous linear functional (similarly, every sesquilin-
ear form) on a Hilbert space can be represented in terms of an inner product (Kreyszig (1989); Reed and
Simon (2000)).
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Following similar ideas, we can also define the second derivative D2F (X)[δX , δX ] of

the transformation F (X) : C ⊂ V → W as the limit

lim
t→0

1

t

[
F ′(X + tδX)− F ′(X)

]
= D2F (X)[δX , δX ],

provided it exists. If the transformation D2F (X)[δX , δX ] : V ×V ×V → W is a sesquilinear

form in δX , whose range lies in W ⊂ R, then from the Riesz representation theorem4, we

know that given any inner product 〈·, ·〉 the map D2F (X)[δX , δX ] can be represented as

D2F (X)[δX , δX ] = 〈H(X, δX ), δX 〉, (4.16)

with H(X, δX ) : V × V → V being the Hessian map, which is linear in the direction δX .

Evidently, this representation depends on the choice of the inner product.

Remark 4.2.10 Since ultimately one of the main concerns will be producing and solving

a linear system of equations of the “form” H(δX) = Q for the update direction δX , the

dependence on X is usually omitted in the notation for the gradient Q and for the Hessian

map H(δX).

Lemma 4.2.11 Let F (X) : Rp×q → Sn. Assume that the inner product 〈·, ·〉 is the one

given in (4.2), then it follows that

D2F (X)[δX , δX ] = 〈H(δX), δX 〉 = vec(δX)T H vec(δX )

where H(δX) : Rp×q → Rp×q is the Hessian map and H ∈ Rpq is the unique matrix repre-

sentation for H(δX).

Proof. It follows directly from (4.16) and (4.5) (or equivalently Lemma 4.2.3).

Corollary 4.2.12 An immediate consequence of the above Lemma 4.2.11 is: if

D2F (X)[δX , δX ] ≥ 0 for all δX ,

then the Hessian matrix H is positive semidefinite. If strictly inequality is used, one finds

that H is a positive definite matrix.
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4.2.4 Preliminary results about the barrier function

This section presents some important facts concerning the log-det function. Let the

barrier function Θ(X) be defined as:

Θ(X) = log detF (X)−1 : G → R, (4.17)

with the domain G given by

G = {X ∈ V : F (X) > 0}

and F (X) a self-adjoint noncommutative rational function. Then its directional derivative,

along the direction δX ∈ V, is the linear form in δX given by

DΘ(X)[δX ] = −Tr
{
F (X)−1DF (X)[δX ]

}
.

And its second directional derivative is the quadratic form in δX given by

D2Θ(X)[δX , δX ] =Tr
{(
F (X)−1 DF (X)[δX ]

)2}

− Tr
{
F (X)−1D2F (X)[δX , δX ]

}
.

(4.18)

The proof is quite simple and follows by applying the definition of directional derivative

and the following result provided in Horn and Johnson (1999):

d

dt
log detA(t) = Tr

{
A(t)−1 d

dt
A(t)

}
.

In order to obtain the representation for the gradient and the Hessian map of the

barrier Θ(X), using the definitions introduced in the previous Section 4.2.3, we need to

specify an inner product. For this purpose, we take the inner product 〈·, ·〉s given in (4.3).

Thus the gradient Q is given by

DΘ(X)[δX ] = 〈Q, δX 〉s = Tr
{
δXQT + QδT

X

}
,

and the Hessian map H(δX) is obtained from

D2Θ(X)[δX , δX ] = 〈H(δX ), δX〉s = Tr
{
δXH(δX)T + H(δX)δT

X

}
.

Obtaining the algebraic linear system of equation

The linear system of equations (which basically has the form H(δX) = Q) that will

provide the update direction δX is obtained by setting the directional derivative of a second-

order approximation of the barrier function Θ(X) to zero:

0 = D
(
DΘ(X)[δX ] +

1

2
D2Θ(X)[δX , δX ]

)
[δV ], ∀δV . (4.19)
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Using the notation just introduced for the gradient Q and the Hessian H(δX), the above

equation becomes

0 = D
(

Tr
{
δX(1/2H(δX )−Q)T + (1/2H(δX )−Q)δT

X

})
[δV ], ∀δV .

Which, after taking the directional derivative along the direction δV , reduces to

0 =
1

2
Tr
{
δV (H(δX )− 2Q)T + (H(δX)− 2Q)δT

V + δXH(δV )T + H(δV )δT
X

}
, ∀δV .

Since the Hessian is a self-adjoint map, it follows that

Tr
{
δXH(δV )T

}
= 〈δX ,H(δV )〉 = 〈H(δX), δV 〉 = Tr

{
H(δX)δT

V

}
.

And consequently the optimality condition reduces to,

0 = Tr
{
δV (H(δX)−Q)T + (H(δX)−Q)δT

V

}
, for all δV .

Equivalently

0 = 〈H(δX)−Q, δV 〉s, for all δV .

It is now clear that there are two “different” ways to produce the linear system of

equations, i.e., to determine the Hessian map H(δX) and the gradient term Q:

1. One can take the directional derivatives of the Taylor expansion (4.19), and manipulate

the final formula to be expressed in the form

Tr
{
δV (H(δX)−Q)T + (H(δX)−Q)δT

V

}
,

determining in this way Q and H(δX).

2. Or, one can just determine Q and H(δX) respectively from the definitions provided in

(4.15) and (4.16).

In this chapter, we have determined Q and H(δX) directly by taking all the necessary

directional derivatives.

Convexity of the barrier

We now present another important fact concerning this barrier. Let the map F (X) :

Rp×q → Sn be self-adjoint, and assume that the set

G = {X ∈ Rp×q : F (X) > 0}
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is nonempty and bounded, then if the barrier

Θ(X) = log detF (X)−1 : G → R

is real analytic and strictly convex for all X ∈ G, it has a unique minimizer

X∗
Θ = argmin

X
{Θ(X) : X ∈ G} .

We refer to this minimizer X∗
Θ as the analytic center of the matrix inequality F (X) > 0.

Since the barrier Θ(X) is the composition of the log-det function with a rational

matrix valued function F (X), which is well defined on the domain G, it follows that the

barrier Θ(X) is real analytic (i.e., in each small region it has a convergent power series

expansion). It is easy to show that the barrier is convex if F (X) is a concave function. To

see this, recall the expression for D2Θ(X)[δX , δX ] given in (4.18), and note that

Tr
{(
F (X)−1DF (X)[δX ]

)2} ≥ 0 for all δX ∈ Rp×q

and that (assuming F (X) concave)

−Tr
{
F (X)−1D2F (X)[δX , δX ]

}
≥ 0 for all δX ∈ Rp×q.

Thus

D2Θ(X)[δX , δX ] ≥ 0 for all δX ∈ Rp×q.

Which from Corollary 4.2.12 implies that the Hessian matrix H of the barrier function

Θ(X) is a positive semidefinite matrix.

For the specific case where F (X) is an LMI, having the representation F (x) = F0 +
∑m

i=1 Fixi, with F0 ∈ Sn and Fi ∈ Sn for i = 1, . . . ,m, a necessary and sufficient condition

for the log-det barrier to be strictly convex is that the matrices Fi be linearly independent

(Boyd et al. (1994)). However, for the more general case, where F (X) : Rp×q → Sn is

a matrix function, the characterization is more elaborate. Naturally, strictly convexity of

the barrier is equivalent to the Hessian map H(δX) being invertible. However, imposing

stronger assumptions on the function F (X), such as being strictly concave on its domain

or its first directional derivative DF (X)[δX ] being an invertible map, the barrier will be

strictly convex.

4.3 Convex Optimization over Matrix Functions

The numerical optimization solver for matrix functions is now presented. We shall

demonstrate our approach for two classes of problem: the eigenvalue minimization problem

and the more general inner product minimization problem.
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In this section, the presentation is limited to the univariate case, which only considers

functions of a single variable. Later, in Section 4.5, the results are generalized to the

multivariate case, which considers functions of several variables.

4.3.1 The eigenvalue minimization problem

Let C be a bounded convex domain in Rp×q. For each i = 1, . . . ,m, let the map

Fi(X) : C → Sni be concave. Then, the eigenvalue optimization problem can be posed as:

find α∗, if one exists, such that

α∗ = min {α : (X,α) ∈ closure(G)} , (4.20)

where the feasibility set5 G is the convex domain given by

G =
{
(X,α) ∈ C × R : αI − F1(X) > 0, F2(X) > 0 , . . . , Fm(X) > 0

}
.

In this setup, the maximum eigenvalue of F1(X) is minimized inside the convex region

provided by the set of matrix inequalities Fj(X) > 0 for j = 2, . . . ,m, as a function of a

single variable X. Section 4.5 expands the idea to the multivariate case, where the Fi can

be functions of several variables X1, . . . , Xr.

4.3.2 The inner product minimization problem

We now pose a variation on the previous optimization problem. Let C be a bounded

convex domain in Rp×q. For each i = 1, . . . ,m, let the map Fi(X) : C → Sni be concave.

Then, our main problem, the inner product minimization problem, can be posed as:

find t∗, if one exists, such that

t∗ = min {Tr {X} : X ∈ closure(G)} , (4.21)

where the feasibility set G is the convex domain given by

G =
{
X ∈ C : Fi(X) > 0, i = 1, . . . ,m

}
.

This type of problem incorporates the above eigenvalue minimization problem as a particular

case, where, instead of a univariate problem inX, we would have an optimization problem in

5The notation closure(G) means the closure of G.
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the unknownsX and α ∈ R, and we also would have to redefine appropriately the constraint

F1(α,X) := αI − F1(X); in addition, in place of Tr {X} we would have Tr {α} = α.

The inner product problem is solved using the method of centers presented in the

next Section 4.3.3.

4.3.3 Method of centers

The presentation here has its roots mainly in Boyd and El Ghaoui (1993). We present

the method of centers (also called Huard’s method of centers) and show how to use it in order

to solve the two problems stated above in (4.20) and (4.21). Other important references on

the method of centers are Huard (1967); Lieu and Huard (1965); Nesterov and Nemirovskii

(1994).

A more general formulation of the minimization problem

Let C be a bounded convex domain6 in Rp×q. Let the function f(X) : C → R be

convex, and for each i = 1, . . . ,m the map Fi : C → Sni be concave. Then, the constrained

optimization problem (COP) that we are interested in can be posed as:

find fopt, if one exists, such that

fopt = min {f(X) : X ∈ closure(G)} , (COP)

where the feasibility domain G is given by

G =
{
X ∈ C : Fi(X) > 0, i = 1, . . . ,m

}
.

It is well known that, without the loss of generality, we can assume f(X) to be linear.

Since it is always possible to define a new cost function f(X, ξ) = ξ and add the constraint

ξ − f(X) > 0 to the domain G.

The method of centers

The idea behind the method is to replace the above constrained problem (COP) by

a sequence of unconstrained convex minimization problems whose solutions eventually tend

6The set C imposes some regularity assumption on the set G. Actually one can relax this assumption and
let C be the entire Euclidean space, provided that the closure of {X : Fi(X) > 0, i = 1, . . . , m} is a compact
set.
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to the set of optimal solutions of (COP). This approach is in the context of interior penalty

methods, which was described in the classical monograph of Fiacco and McCormick (1990).

For a more practical presentation of optimization methods see Gill et al. (1999).

This sequence of unconstrained problems has to incorporate the inequality constraint

imposed by the functions Fi(X) in the sense that its solutions have to always be feasible

interior points for (COP). In order to accomplish this, one needs to define a barrier function

for the feasibility domain G. This barrier function, denoted by Θ(X), has to be a smooth

strongly7 convex function such that Θ(X) → ∞ for points converging to the boundary of

the set G. A usual barrier8 is the one given by

Θ(X) = −
m∑

i=1

log detFi(X) : G → R.

With the barrier Θ(X) defined in this way, the original problem (COP) could be

approximated by a family of unconstrained problems of the form

X∗(γ) = argmin {γf(X) + Θ(X) : X ∈ G} , (4.22)

where γ > 0 is a penalty parameter. Under some mild conditions, the solution X ∗(γ) of

(4.22) approaches the set of optimal solutions of (COP) as γ →∞. This technique belongs

to the well known class of barrier methods. The method we are interested in is not quite

yet this one, instead of the above parameterization, the method of centers is based on the

following family of unconstrained minimizations

min Υγ(X) + Θ(X),

with γ > f(X), and the barrier function Υγ given by

Υγ(X) = ζ log (1/(γ − f(X)) : Gγ → R, ζ ≥ 1

Gγ = {X ∈ G : f(X) < γ} .
(4.23)

It follows therefore, that the original constrained optimization problem (COP) can be ap-

proximated by a sequence of convex unconstrained optimization problems of the form

X∗(γ) = argmin {φγ(X) : X ∈ Gγ} , (UOP)

7A function f(X) is said to be strongly convex, provided there exists a constant k such that its Hessian
map H(δX) satisfies 〈H(δX), δX〉 ≥ k‖δX‖ for all δX .

8Section 4.2.4 presents some important properties about this function.
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with the unconstrained auxiliary potential function φγ(X) given by

φγ(X) = ζ log (1/(γ − f(X))−
m∑

i=1

log detFi(X) : Gγ → R, ζ ≥ 1.

The decrease of the parameter γ has to be done in such a way that the method

maintains feasibility at each iteration and that the sequence {γk} is guaranteed to converge

to fopt (the minimum values of the objective function). The formula for updating γ, at

some iteration k, is given by

γk+1 = (1− θ)f(Xk) + θγk, 0 < θ < 1. (4.24)

Under mild hypotheses (see Section 4.2.4), for fixed γ > f opt, the analytic center X∗(γ) of

(UOP) is well defined and unique. It is evident that for a decreasing sequence of parameters

{γk} the corresponding sequence of minimizers {X ∗(γk)} form a path, the so called path of

center. It can be shown that this curve is analytic and has a limit as γ → f opt. Usually

the most desired result is the lim
k→∞

X∗(γk) → Xopt, a solution of (COP). A weaker result,

but one that is frequently useful, is the lim
k→∞

f(X∗(γk)) → fopt. See Boyd and El Ghaoui

(1993); Fiacco and McCormick (1990).

Let Xk denote X∗(γk). Using these facts, one possible algorithm based on the method

of centers can be described by

Algorithm 4.3.1 Method of centers.

Fix θ such that 0 < θ < 1;

Choose feasible X0 and γ0 such that X0 ∈ Gγ0 ;

k ← 0;

while not converged do

γk+1 ← (1− θ)f(Xk) + θγk;

Solve Xk+1 = argmin
{
φγk+1(Xk) : Xk ∈ Gγk+1

}
;

k ← k + 1;

end while

There are two important comments concerning this algorithm:

1. The bound γk+1 used in the determination of the analytic center of φγk+1(Xk), is

given by the formula

γk+1 = (1− θ)f(Xk) + θγk,
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never produces infeasible starting points Xk and γk+1, since

γk+1 − f(Xk) = θ(γk − f(Xk)) > 0,

and consequently f(Xk) < γk+1, thereby satisfying the feasibility set Gγk+1 given in

(4.23).

2. Evidently, the expensive part of the algorithm is the inner loop, the part that computes

the analytic center using Newton’s method:

Xk+1 = argmin
{
φγk+1(Xk) : Xk ∈ Gγk+1

}
.

This is the scope of Section 4.3.5. The book by Nesterov and Nemirovskii (1994)

provides a complete convergence analysis of Newton’s methods for a general class of

self-concordant barrier function. Another fundamental source is the classical mono-

graph of Ortega and Rheinboldt (2000).

From now on, we take the cost function f(X) to be Tr {X}. This leads to the

inner product minimization problem (4.21). For this cost function, and assuming that the

constraint F (X) is linear in X, we give a simple proof of convergence. This proof is basically

a copy of the proof presented in Boyd et al. (1994) for the LMI case (a similar proof for LMIs

is also available in Colaneri et al. (1997)). First, let us characterize the analytic center, the

point X∗(γ). For simplicity of exposition, assume that m = 1 and ζ = 1 (the generalization

for m > 1 is immediate). The unconstrained potential function becomes:

φγ(X) = log (1/(γ − Tr {X})− log detF (X).

The point X∗(γ) is characterized by setting the derivative of φγ(X) to zero. Using the

derivatives given in Section 4.2.4 and Eq. (4.36), the optimality condition is given by

−Tr
{
F (X∗(γ))−1DF (X∗(γ))[δX ]

}
+ (γ − Tr {X∗(γ)})−1 Tr {δX} = 0, ∀δX .

To proceed, assume the kth iteration and substitute Xk−Xopt for δX in the above equation.

This gives

Tr
{
F (Xk)−1

(
F (Xk)− F (Xopt)

)}
=
(
γk − Tr

{
Xk
})−1

Tr
{
Xk −Xopt

}
.

Since Tr
{
F (Xk)−1F (Xopt)

}
≥ 0, we conclude that

n ≥ 1

γk − Tr {Xk}
(
Tr
{
Xk
}
− fopt

)
, (4.25)
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where n equals the dimension of the range of F (X), and f opt = Tr
{
Xopt

}
, which hold true

at the solution. From (4.24), it follows that

f(Xk) := Tr
{
Xk
}

= (γk+1 − θγk)/(1 − θ).

Replacing the expression for Tr
{
Xk
}

in (4.25) yields

(
γk+1 − fopt

)
≤ n+ θ

n+ 1

(
γk − fopt

)
,

which naturally is the result in Boyd et al. (1994). This last equation shows that the

method converges at least geometrically whenever F (X) is linear in X. Moreover, the

stopping criteria

γk − Tr
{
Xk
}
< ε/n

guarantees (from (4.25)) that the solution is found within the precision ε > 0 imposed by

the designer. Suggestions for improving the speed of this method are provided in Boyd

et al. (1994); Colaneri et al. (1997); Roubi (2001).

4.3.4 Feasibility problem

It will be necessary to find feasible starting points X 0 and γ0 to be used in the

algorithm 4.3.1. This is a feasibility problem that can be solved by the method of centers.

The idea is simple, and it suffices to solve the following convex minimization problem

α∗ = min {α : (X,α) ∈ closure(G)} , (FP)

where the feasibility set G is the convex domain given by

G =
{

(X,α) ∈ C ×R : Fi(X) + α Ini > 0, i = 1, . . . ,m
}
,

with α being a scalar and each Ini being the identity matrix of dimension ni.

To apply the method of centers to solve the above feasibility problem (FP), an initial

feasible guess has also to be provided, however, for this type of problem, this guess is trivially

obtained by choosing X0 to be any matrix in C and by setting γ0 > α0 > max
i
‖Fi(X

0)‖2.
If the solution α∗ is negative, then the corresponding minimizer X ∗ has the property that

Fi(X
∗) > 0 for each i = 1, . . . ,m. In practice, the algorithm can stop as soon as the

objective αk is less than zero at some iteration k. However, if the scalar γk is positive for

all iterations, then the sequence {γk} converges to some scalar γ∗ > 0, and consequently

the problem is infeasible and there is no X such that Fi(X) > 0 for all i = 1, . . . ,m.
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Remark 4.3.2 An example of this technique is presented in Section 4.4, where the goal

is to find a feasible solution to the matrix Riccati inequality, that is, to find a symmetric

matrix X such that

AX +XAT −XRX +Q > 0.

This is a standard expression that appears frequently in many control applications.

4.3.5 Solving for the analytic center

The original convex optimization problem (COP) has now been replaced by a sequence

of unconstrained convex minimization problems of the form (UOP) for a decreasing sequence

of scalars {γk} provided by formula (4.24). In other words, the problem reduces to finding

update directions which leads toward the central path for fixed values of γ. To find those

directions, Newton’s method is applied by minimizing an approximation, the second-order

Taylor series expansion, of the potential function φγ(X). In a vague sense, these procedures

can be summarized as follows:

1. Compute the second-order Taylor expansion of φγ(X + δX) in some direction δX

φγ(X) +Dφγ(X)[δX ] +
1

2
D2φγ(X)[δX , δX ].

2. The Newton step δ∗X must satisfy the necessary optimality conditions for the following

quadratic minimization problem

δ∗X ∈ argmin

(
Dφγ(X)[δX ] +

1

2
D2φγ(X)[δX , δX ]

)
.

3. This first-order necessary optimality condition is algebraically given by

0 = D
[
Dφγ(X)[δX ] +

1

2
D2φγ(X)[δX , δX ]

]
[δV ], ∀δV . (4.26)

4. Finally, find a Newton update δ∗X satisfying Eq. (4.26) for all δV .

Before presenting the main result of this chapter, Theorem 4.3.5, which concerns the

determination of the update direction as the solution of the algebraic condition (4.26), given

in step 3, some preliminary facts are now introduced.

Even though the goal is to determine the update direction δX for the general multi-

variate case, we first present the univariate case where the barrier

Θ(X) = − log detF (X)
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depends on a single constraint F (X). Later, Section 4.5 will show how to expand the idea

to handle multiple constraints Fi(X), and the more general setup where each constraint

Fi(X1, . . . , Xr) can be a function of several variables X1, . . . , Xr. Thus, the unconstrained

auxiliary potential function φγ(X) is given by:

φγ(X) = ζ log (1/(γ − f(X))− log detF (X),

where the map F (X) is concave, and f(X) : Rp×q → R is the trace operator, f(X) =

Tr {X}. Later, in Section 4.4, we will provide the derivation for the eigenvalue minimization

problem, by means of a tutorial example.

Since we shall be taking derivatives of the potential function φγ(X) using symbolic

computation, the F (X) needs to be visualized as being a function on a symbolic unknown

X rather than on a matrix of given dimension. Thus, from now on, F (X) is a noncom-

mutative rational function of the unknown X. The same idea would extends accordingly

if F (X1, . . . , Xr) were a multivariate function on a tuple r of matrices X1, . . . , Xr. The

dependence of γ in the notation is also suppressed, since γ is just a constant and does not

play any role in subsequent derivations. We also abbreviate F (X)−1 by just F−1.

To obtain the update direction δX , we have to take directional derivatives of the

potential φγ(X), however, to simplify the exposition, it is useful to split this potential into

two parts: the cost term Υγ(X) and the constraint term Θ(X), given respectively by

Υγ(X) = ζ log (1/(γ −Tr {X}) , Θ(X) = − log detF (X). (4.27)

Thus, let us first assume that the potential function contains only the constraint term

Θ(X) and is given by

φ(X) = − log detF (X). (4.28)

For this “simplified” potential, Lemma 4.3.3 below will provide the formulas for the update

direction δX . After proving Lemma 4.3.3, the next step will be to incorporate the cost

term Υγ(X) into the potential function φ(X), enabling us to prove a more general result,

Proposition 4.3.4.

Lemma 4.3.3 Let V be a subspace of Rp×q and C be a convex domain in V. Let the map

F (X) : C → Sn be concave. Consider the following potential function

φ(X) = − log detF (X) : G → R,



113

where the feasibility domain G is given by

G =
{
X ∈ C ⊂ V : F (X) > 0

}
.

Then the update direction δ∗X toward the central path for the above potential satisfies the

following symbolically computable algebraic linear equation:

Tr
{
δV (H(δX)−Q)T + (H(δX )−Q)δT

V

}
= 0, for all δV ∈ V, (4.29)

or equivalently

〈(H(δX )−Q), δV 〉s = 0, for all δV ∈ V,

where H(δX) is linear in δX and Q is an independent term that does not contain δX .

Moreover, Q and H(δX) are given by

Q =

k∑

i=1

AT
i F (X)−1BT

i ,

and

H(δX) =
k∑

i=1

k∑

j=1

AT
i F

−1AjδXBjF
−1BT

i +
k∑

i=1

k∑

j=1

AT
i F

−1BT
j δ

T
XA

T
j F

−1BT
i

− 1

2

w1∑

j=1

NT
j δ

T
XM

T
j F

−1T T
j +MT

j F
−1T T

j δ
T
XN

T
j

− 1

2

w2∑

j=1+w1

NjδXTjF
−1Mj +NT

j δXM
T
j F

−1T T
j

− 1

2

w3∑

j=1+w2

TjF
−1MjδXNj +MT

j F
−1T T

j δXN
T
j

where the terms A, B, M , N , T are obtained from the first and second directional derivatives

of F (X) which have the form9

DF (X)[δX ] = sym

{
k∑

i=1

AiδXBi

}
, (4.30)

and

D2F (X)[δX , δX ] =

sym





w1∑

j=1

MjδXNjδXTj +

w2∑

j=1+w1

MjδX
TNjδXTj +

w3∑

j=1+w2

MjδXNjδX
TTj



 . (4.31)

9Recall the expressions (4.12) and (4.14) in Section 4.2.2.
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Proof of Lemma 4.3.3

Proof. To start, let us consider the second-order Taylor expansion of φ(X). To compute

the quadratic approximation of φ(X), we take δX to be the update directions for X, so that

the series expansion of φ(X) up to the second term is given by

φ(X) +Dφ(X)[δX ] +
1

2
D2φ(X)[δX , δX ] + · · ·

Now, we are ready to write down the requisites which will provide the update direction

toward the analytic centers. Recall that the Newton step δ∗X has to satisfy the first-order

necessary optimality conditions for the following quadratic minimization problem

δ∗X ∈ argmin

(
Dφ(X)[δX ] +

1

2
D2φ(X)[δX , δX ]

)
.

Which is equivalently described by the following algebraic equation

0 = D
(
Dφ(X)[δX ] +

1

2
D2φ(X)[δX , δX ]

)
[δV ], ∀δV . (4.32)

Therefore, we will be taking directional derivatives along the direction δV of the potential

φ(X) as a function of δX . Recalling Section 4.2.4, the first directional derivative of

φ(X) = − log detF (X),

with respect to X along the direction δX has the linear form in δX given by

Dφ(X)[δX ] = −Tr
{
F−1DF (X)[δX ]

}
, (4.33)

and the second directional derivative has the quadratic form in δX given by

D2φ(X)[δX , δX ] =Tr
{(
F−1DF (X)[δX ]

)2}

− Tr
{
F−1D2F (X)[δX , δX ]

}
.

(4.34)

In order to compute (4.32) let us apply separately the directional derivative in each

one of the terms:

D
(
Dφ(X)[δX ]

)
[δV ] and D

(1

2
D2φ(X)[δX , δX ]

)
[δV ].

Substituting the expressions given in (4.30) and (4.31) into (4.33) and (4.34), the first

directional derivative is given by

Dφ(X)[δX ] = −Tr

{
F−1 sym

{
k∑

i=1

AiδXBi

}}

= −Tr

{
sym

{
δX

k∑

i=1

BiF
−1Ai

}}
,
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and the second directional derivative is

D2φ(X)[δX , δX ] = Tr





(
F−1 sym

{
k∑

i=1

AiδXBi

})2




−Tr



F

−1 sym





w1∑

j=1

MjδXNjδXTj









−Tr



F

−1 sym





w2∑

j=1+w1

MjδX
TNjδXTj









−Tr



F

−1 sym





w3∑

j=1+w2

MjδXNjδX
TTj







 .

(4.35)

Note that the direction δX appears linearly in Dφ(X)[δX ] as already expected. Con-

sequently, it is clear that the independent term Q will be provided from

D
(
Dφ(X)[δX ]

)
[δV ] = −Tr

{
sym

{
δV

k∑

i=1

BiF
−1Ai

}}

= −Tr
{
δV QT + QδT

V

}
.

Thus, the gradient term Q is given by

Q =

k∑

i=1

AT
i F

−1BT
i .

Now, it remains to deal with the quadratic term D2φ(X)[δX , δX ]. Its directional

derivative, regarded as a function of δX , along the direction δV will provide the Hessian map

H(δX). Since the manipulation to obtain H(δX) is somewhat long and does not provide any

interesting insight, we present the final result here and provide the details of the derivation

in Appendix B.1.

Let us split the second directional derivative of the barrier (4.35) in four parts, H1,

H2, H3, and H4, so that the directional derivative in δV can be applied to each one of the

terms separately:

H1(δX) =
1

2
Tr





(
F−1 sym

{
k∑

i=1

AiδXBi

})2


 ,

H2(δX) = −Tr



F

−1 sym





w1∑

j=1

MjδXNjδXTj







 ,
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H3(δX) = −Tr



F

−1 sym





w2∑

j=1+w1

MjδX
TNjδXTj







 ,

H4(δX) = −Tr



F

−1 sym





w3∑

j=1+w2

MjδXNjδX
TTj







 .

After applying directional derivatives (see Appendix B.1), the first term H1 provides

H1(δX) = 2

k∑

i=1

AT
i F

−1




k∑

j=1

AjδXBj


F−1BT

i

+ 2

k∑

i=1

AT
i F

−1




k∑

j=1

BT
j δ

T
XA

T
j


F−1BT

i

the second term H2 provides

H2(δX) = −
w1∑

j=1

NT
j δ

T
XM

T
j F

−1T T
j +

w1∑

j=1

MT
j F

−1T T
j δ

T
XN

T
j

the third term H3 provides

H3(δX) = −
w2∑

j=1+w1

NjδXTjF
−1Mj +

w2∑

j=1+w1

NT
j δXM

T
j F

−1T T
j

and the fourth term H4 provides

H4(δX) =

w3∑

j=1+w2

TjF
−1MjδXNj +

w2∑

j=1+w2

MT
j F

−1T T
j δXN

T
j

The final term is

D

(
1

2
D2φ(X)[δX , δX ]

)
[δV ] =

1

2

4∑

i=1

DHi(δX )[δV ] = Tr
{
δV H(δX)T + H(δX)δT

V

}

with

H(δX) =
1

2

4∑

i=1

Hi(δX).

Thus, the Hessian map H(δX) is given by

H(δX) =

k∑

i=1

k∑

j=1

AT
i F

−1AjδXBjF
−1BT

i +

k∑

i=1

k∑

j=1

AT
i F

−1BT
j δ

T
XA

T
j F

−1BT
i

− 1

2

w1∑

j=1

NT
j δ

T
XM

T
j F

−1T T
j +MT

j F
−1T T

j δ
T
XN

T
j

− 1

2

w2∑

j=1+w1

NjδXTjF
−1Mj +NT

j δXM
T
j F

−1T T
j

− 1

2

w3∑

j=1+w2

TjF
−1MjδXNj +MT

j F
−1T T

j δXN
T
j
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To complete the proof, just note that the optimality condition (4.32) can now be equivalently

written as

Tr
{
δV (H(δX )−Q)T + (H(δX )−Q)δT

V

}
= 0, for all δV ∈ V,

with Q and H(δX) as given above.

Adding the term Υγ(X) to the potential

The previous Lemma 4.3.3 did not account for the term

Υγ(X) := ζ log (1/(γ − Tr {X}) .

However, the goal is to determine the update direction δX for the general unconstrained

auxiliary potential function φγ(X) containing the term Υγ(X). Thus, the potential is given

by

φγ(X) = ζ log (1/(γ − Tr {X})− log detF (X).

Since we have already taken all the necessary derivatives for the term

Θ(X) = − log detF (X),

it now remains to determine the directional derivatives of the cost term Υγ(X). Once those

derivatives are computed, the resulting expressions will be accordingly added to the expres-

sions for H(δX) and Q provided in Lemma 4.3.3. Thus, we proceed by taking directional

derivatives of Υγ(X) along the direction δX . The first derivative is given by

DΥγ(X)[δX ] = ζ (γ −Tr {X})−1 Tr {δX} , (4.36)

and the second by

1

2
D2Υγ(X)[δX , δX ] =

1

2
ζ
(
(γ − Tr {X})−1 Tr {δX}

)2
. (4.37)

Now, to determine the expressions to be added to the terms H(δX) and Q, we must

consider (4.36) and (4.37) as a function of δX and take their directional derivatives along

the direction δV . Thus, for (4.36) we have

ζ (γ − Tr {X})−1 Tr {δV } =⇒ Q̂ = −1

2
ζ (γ − Tr {X})−1 I, (4.38)

and for (4.37), we have

ζ (γ − Tr {X})−2 Tr {δX}Tr {δV } =⇒ Ĥ(δX ) =
1

2
ζ (γ − Tr {X})−2 Tr {δX} I. (4.39)
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Since we have just obtained the expressions Q̂ and Ĥ(δX ) which should be added to

the gradient term Q and the Hessian map H(δX), the previous Lemma 4.3.3 can now be

generalized to Proposition 4.3.4.

Proposition 4.3.4 Let V be a subspace of Rp×q and C be a convex domain in V. Let the

map F (X) : C → S be concave. Consider the following unconstrained auxiliary potential

function

φγ(X) = ζ log
(
1/(γ − Tr {X})

)
− log detF (X) : Gγ → R, ζ ≥ 1,

where the feasibility domains G and Gγ are respectively given by

G =
{
X ∈ C ⊂ V : F (X) > 0

}
, Gγ = {X ∈ G : Tr {X} < γ} .

Then the update direction δ∗X toward the central path for the above potential is the solution

of the following symbolically computable algebraic linear equation:

Tr
{
δV (H(δX )−Q)T + (H(δX)−Q)δT

V

}
= 0, for all δV ∈ V, (4.40)

or equivalently

〈(H(δX )−Q), δV 〉s = 0, for all δV ∈ V,

where H(δX) is linear as regarded as a function of δX , and Q is an independent term that

does not contain δX . Moreover, Q and H(δX) are given by

Q =
k∑

i=1

AT
i F (X)−1BT

i −
1

2
ζ (γ − Tr {X})−1 I,

and

H(δX) =

k∑

i=1

k∑

j=1

AT
i F

−1AjδXBjF
−1BT

i +

k∑

i=1

k∑

j=1

AT
i F

−1BT
j δ

T
XA

T
j F

−1BT
i

− 1

2

w1∑

j=1

NT
j δ

T
XM

T
j F

−1T T
j +MT

j F
−1T T

j δ
T
XN

T
j

− 1

2

w2∑

j=1+w1

NjδXTjF
−1Mj +NT

j δXM
T
j F

−1T T
j

− 1

2

w3∑

j=1+w2

TjF
−1MjδXNj +MT

j F
−1T T

j δXN
T
j

+
1

2
ζ (γ − Tr {X})−2 Tr {δX} I,

where the terms A, B, M , N , T are obtained from the first and second directional derivatives

of F (X) as given by (4.30) and (4.31).
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Proof. Follows directly by adding (4.38) and (4.39) to the results provided in the previous

Lemma 4.3.3.

In the next section, we shall eliminate the quantifier for all δV from the above algebraic

linear system (4.40), to produce an explicit conventional linear system of equations, which

δX must satisfy. This is the result provided in Theorem 4.3.5.

4.3.6 The Structure of the linear subproblem

An important feature inherited from the theory behind noncommutative rational func-

tions is that the Newton direction is obtained as the solution of a “matrix” algebraic linear

equation. Basically, this algebraic linear system of equations has the following structure:

N∑

i

AiδXBi +

N∑

i

BT
i δXAT

i = Q,

where the A’s and B’s are expressions obtained by collecting the terms on the left and on

the right side of the update direction δX that appear inside the Hessian map H(δX), and Q,

an independent term which does not contain δX . (The entire Section 4.6 is devoted on the

issue of collecting terms on an expression.) Following the definitions given in Konstantinov

et al. (2000), the map

δX →
N∑

i

AiδXBi +

N∑

i

BT
i δXAT

i

has been defined as a Sylvester operator and the integer 2N has been defined as the

Sylvester index.

The result of Proposition 4.3.4, the algebraic linear equation (4.40), can be further

specialized depending upon the structure of the underlying subspace V; in other words, if

there is or is not some restriction imposed on X. For this purpose, let us define V⊥ to be

the orthogonal complement of V. Moreover, just by appropriately defining variables Ai and

Bi, the Hessian map H(δX) from Proposition 4.3.4 can be expressed in the equivalent form

H(δX) =

c1∑

i=1

AiδXBi +

c2∑

j=c1+1

Ajδ
T
XBj + C Tr {δX} ,

where the integer c1 is the Sylvester index associated with δX , and the number c2− (c1 +1)

is the Sylvester index associated with δT
X . The term C is the cost term given by C =

1/2ζ(γ −Tr {X})−2I. Note that C is a scalar multiple of the identity matrix.

To be able to solve the linear system of equations (4.40) for δX , the structure of the

underlying subspace V must be specified. We describe three different situations that appear

frequently:
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1. The subspace V equals Rp×q, so that the unknown X can be any matrix in Rp×q.

Then the orthogonal complement of V contains only the null vector, and

〈(H(δX)−Q), δV 〉s = 0 for all δV ∈ V =⇒ H(δX)−Q = 0. (4.41)

Thus
c1∑

i=1

AiδXBi +

c2∑

j=c1+1

Ajδ
T
XBj + C Tr {δX} = Q.

2. The subspace V equals Sp, so that the unknown X is restricted to being symmetric.

Therefore, the subspace V⊥ is the set of all skew-symmetric matrices, and

〈(H(δX)−Q), δV 〉s = 0 for all δV ∈ V (4.42)

implies that

H(δX) + H(δX)T − (Q + QT ) = 0.

Thus
c2∑

i=1

BT
i δXAT

i +AiδXBi + C Tr {δX} = Q + QT .

3. The unknownX is restricted to being a scalar multiple of the identity, that is, X = σI,

for some scalar σ. Thus the orthogonal complement of V is given by

δ⊥V = {X : 0 = 〈X,σI〉} = {X : Tr {X} = 0},

and consequently

〈(H(δX)−Q), δV 〉s = 0 for all δV ∈ V =⇒ Tr {H(δX)−Q} = 0. (4.43)

Which can be equivalently written as

Tr

{
c2∑

i=1

AiBi + C
}
δX = Tr {Q} , δX ∈ R.

Having thus expressed the structure of the underlying subspace V, the main result of

this chapter, Theorem 4.3.5 is now presented.

Theorem 4.3.5 Let V be a subspace of Rp×q and C be a convex domain in V. Let the map

F (X) : C → S be concave. Consider the following unconstrained auxiliary potential function

φγ(X) = ζ log
(
1/(γ − Tr {X})

)
− log detF (X) : Gγ → R, ζ ≥ 1,
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where the feasibility domains G and Gγ are respectively given by

G =
{
X ∈ C ⊂ V : F (X) > 0

}
, Gγ = {X ∈ G : Tr {X} < γ} .

Then, depending upon the structure of the underlying subspace V, the update direction δ∗X

toward the central path for the above potential is the solution of one of the following sym-

bolically computable algebraic linear equation:

1. The subspace V equals Rp×q, so that the unknown X can be any matrix in Rp×q:

c1∑

i=1

AiδXBi +

c2∑

j=c1+1

Ajδ
T
XBj + C Tr {δX} = Q.

2. The subspace V equals Sp, so that the unknown X is restricted to being symmetric:

c2∑

i=1

BT
i δXAT

i +AiδXBi + C Tr {δX} = Q + QT .

3. The unknown X is restricted to being a scalar multiple of the identity, that is, X = σI,

for some scalar σ:

Tr

{
c2∑

i=1

AiBi + C
}
δX = Tr {Q} , δX ∈ R.

For this expressions, Q is the gradient term, which does not contain δX , given by

Q =
k∑

i=1

AT
i F

−1BT
i −

1

2
ζ (γ −Tr {X})−1 I.

The term C is the cost term given by C = 1/2ζ(γ − Tr {X})−2I. And, by an appropriate

relabeling, the terms Ai and Bi are obtained from the Hessian map H(δX) presented in

Proposition 4.3.4.

Proof. Follows directly from Proposition 4.3.4 by expressing the linear system of equations

(4.40) according to the structure of the underlying subspace V given by (4.41)–(4.43).

The above results provide the necessary conditions that the update δX must satisfy

in order to be a Newton direction toward the central path of the unconstrained auxiliary

potential function φγ(X).
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4.3.7 Solving the linear subproblem

An important question, which remains unanswered, is how any one of the above linear

system of equations can be solved efficiently. To address this issue, this section presents

a basic approach that uses the vec operation. By applying some properties of the vec

operation (see Horn and Johnson (1999)), it can be shown that any of the above algebraic

linear systems can be transformed into the equivalent vector form:

Hv = g, (4.44)

where H is the Hessian matrix, which by Corollary 4.3.7 is a symmetric matrix, g is the

gradient vector, and v is the vector of unknowns. Depending upon the restriction on X,

these parameters are given by one of the following cases:

1. The subspace V equals Rp×q, then10

H =

c1∑

i=1

BT
i ⊗Ai +




c2∑

j=c1+1

BT
i ⊗Ai


Π + vec(C) vec(I)T and g = vec(Q),

where Π is a permutation matrix such that Πvec(δX ) = vec(δT
X ).

2. The subspace V equals Sp, then10

H =

c2∑

i=1

BT
i ⊗Ai +

c2∑

i=1

Ai ⊗ BT
i + vec(C) vec(I)T and g = vec(Q + QT ).

3. The subspace V equals σI, for some scalar σ, then

H = Tr

{
c2∑

i=1

AiBi + C
}

and g = Tr {Q} .

The final equation (4.44) is now in the conventional vector form, and can be solved

by any conventional linear system solver. However, this “brute force” procedure does not

take advantage of the particular structure of H(δX). Naturally, after applying the vec

operation, the linear system (4.44) somehow contains this “nice” structure; however, from

the knowledge of the author, there is no known practical algorithm that can solve the linear

system (4.44) taking into account the structure of H(δX) for any arbitrary Sylvester index

N .
10The definition of inner product, given in Section 4.2, is used to obtain that

Tr {δX} = vec(I)T vec(δX).
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For the simpler case when N = 1, so that H(δX) = AδXB + BT δXAT , one has a

“Lyapunov” type of algebraic equation, for which there are many available numerical and

analytical results (see Golub and Loan (1983)). However, in the most general form where

the Sylvester index can be any number, there is no satisfactory numerical algorithm, or even

theoretical results, that can take advantage of the structure of the system. Some works in

this area are Konstantinov et al. (2000). Since most of the running time of the numerical

solver is spent on solving the algebraic linear system, a satisfactory theory and algorithm

would be valuable. We leave this major open area of work for others, although Section 4.6

describes some basics ways to improve speed.

It is important to show that the Hessian map H(δX) : V → V is self-adjoint. This

result is presented in the following Lemma 4.3.6.

Lemma 4.3.6 The Hessian map H(δX) : V → V, in Proposition 4.3.4, is a self-adjoint

operator.

Proof. To prove this Lemma, let us first recall the expression for the Hessian map given

by

H(δX) =
k∑

i=1

k∑

j=1

(AT
i F

−1Aj)δX (BjF
−1BT

i ) + (AT
i F

−1BT
j )δT

X (AT
j F

−1BT
i )

− 1

2

w1∑

j=1

NT
j δX

TMT
j F

−1T T
j +MT

j F
−1T T

j δX
TNT

j

− 1

2

w2∑

j=1+w1

NT
j δXM

T
j F

−1T T
j +NjδXTjF

−1Mj

− 1

2

w3∑

j=1+w2

MT
j F

−1T T
j δXN

T
j + TjF

−1MjδXNj

The cost term C Tr {δX} has been omitted from this expression, given that it is a scalar

multiple of identity.

The definition of an adjoint operator presented in Section 4.2 implies that for any

Y ∈ V the adjoint map H?(δX ) must satisfy:

〈H(δX ), Y 〉 = 〈δX ,H?(Y )〉
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Thus, in order for the map H(δX) to be self-adjoint, one must show that H(δX) = H?(δX).

The manipulations are as follows:

〈H(δX), Y 〉 = Tr








k∑

i=1

k∑

j=1

(AT
i F

−1Aj)δX(BjF
−1BT

i )


Y T





+ Tr








k∑

i=1

k∑

j=1

(AT
i F

−1BT
j )δT

X(AT
j F

−1BT
i )


Y T





− Tr






1

2

w1∑

j=1

NT
j δX

TMT
j F

−1T T
j +MT

j F
−1T T

j δX
TNT

j


Y T





− Tr






1

2

w2∑

j=1+w1

NT
j δXM

T
j F

−1T T
j +NjδXTjF

−1Mj


Y T





− Tr






1

2

w3∑

j=1+w2

MT
j F

−1T T
j δXN

T
j + TjF

−1MjδXNj


Y T





= Tr



δX

k∑

i=1

k∑

j=1

(BjF
−1BT

i )Y T (AT
i F

−1Aj)





+ Tr



δX




k∑

i=1

k∑

j=1

(BiF
−1Aj)Y (BjF

−1Ai)








− 1

2
Tr



δX




w1∑

j=1

TjF
−1MjY Nj +NjY TjF

−1Mj








− 1

2
Tr



δX




w2∑

j=1+w1

MT
j F

−1T T
j Y

TNT
j + TjF

−1MjY
TNj








− 1

2
Tr



δX




w3∑

j=1+w2

NT
j Y

TMT
j F

−1T T
j +NjY

TTjF
−1Mj








= Tr
{
δXH?(Y )T

}

= 〈δX ,H?(Y )〉

Therefore

H?(Y ) =

k∑

i=1

k∑

j=1

(AT
i F

−1Aj)Y (BjF
−1BT

i ) + (AT
i F

−1BT
j )Y T (AT

j F
−1BT

i )

− 1

2

w1∑

j=1

NT
j Y

TMT
j F

−1T T
j +MT

j F
−1T T

j Y
TNT

j
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− 1

2

w2∑

j=1+w1

NT
j YM

T
j F

−1T T
j +NjY TjF

−1Mj

− 1

2

w3∑

j=1+w2

MT
j F

−1T T
j Y N

T
j + TjF

−1MjY Nj

and consequently H?(δX) = H(δX) as claimed.

An immediate consequence of the above Lemma 4.3.6 is the following Corollary 4.3.7

Corollary 4.3.7 The matrix representation H for the Hessian map H(δX) is symmetric.

Proof. Follows directly from the above Lemma 4.3.6 and from Theorem 4.2.1 on page 95.

4.3.8 An algorithm to solve the inner loop

The previous section has just presented the algebraic condition that the update di-

rection should satisfy in order to be a Newton direction toward the analytic center of the

unconstrained auxiliary potential function φγ(X). Thus, this section presents an algorithm

based on a modified Newton’s method which solves the analytic center:

Xk+1 = argmin
{
φγ(Xk) : Xk ∈ Gγ

}

for fix scalar γ . This algorithm is described by the following steps:

Algorithm 4.3.8 Modified Newton’s method.

Let vk denote the update vk = vec(δXk);

Fix γ. Let X0 ∈ Gγ ;

Fix N ; k ← 0;

while k < N and not converged do

Evaluate gk and Hk;

Compute vk such that Hkvk = gk;

Xk+1 ← Xk + σkδXk

by choosing σk such that F (Xk+1) > 0;

end while

The step length σ is chosen such that F (Xk+1) > 0. We mention a few choices for σ.

In the convex programming context, Nesterov and Nemirovskii (1994) provided a formula
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which always gives feasible steps. Defining τ =
√
gT H−1g, their step length σ is given by

σ =

{
1/(1 + τ) , if τ > 1/4

1 , otherwise
(4.45)

For the LMI context, the work by Boyd et al. (1994) suggested that an exact line

search produces faster convergence of the method of centers. However, Colaneri et al.

(1997) provided a sub-optimal line search, which is computationally cheaper than the exact

line search. This suboptimal line search σ is given by the following formula

µ = λmax

[
F (x)−1/2(F (x)− F (0))F (x)−1/2

]

σ = 1/(1 + µ)
(4.46)

Once the line search has been selected, the stopping criteria is given by τ < ε1 or

µ < ε2, for some small enough positive scalars ε1, ε2.

4.4 A Feasibility Example: Riccati Inequality

This section provides a tutorial presentation of the proposed methodology applied to

the problem of finding feasible solutions to the matrix Riccati inequality. Let us consider

the mapping Ric(X) : Sn → Sn given by

X → AX +XAT −XRX +Q

with R ∈ Sn
+ and Q ∈ Sn. This expression is present in many control applications, and it is

known as the Riccati equation. To cite a few examples, it appears in the: Linear Quadratic

Regulator (LQR), H∞ central controller, output covariance controller, Kalman filtering,

and many others. See Boyd et al. (1994); Colaneri et al. (1997); Skelton et al. (1998); Zhou

et al. (1996). The book by Lancaster and Rodman (1995) is a good source on the properties

of the algebraic Riccati equation and its solutions.

One standard problem that appears frequently, is the one of finding feasible solutions

to the matrix Riccati inequality, that is,

find X such that Ric(X) > 0 (4.47)

This is a convex problem. The easiest way to see this, is by restating the problem using the

Schur complement in the equivalent LMI form:

find X such that

[
AX +XAT +Q XR̃

R̃X I

]
> 0 (4.48)
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with R̃ being the Cholesky factorization of R. There are many numerical algorithms avail-

able to solve LMIs. Most implementations are based on the Semidefinite Programming,

SDP, machinery. See Gahinet et al. (1995); Sturm (1999); Vandenberghe and Balakrishnan

(1997); Vandenberghe and Boyd (1995) and references therein. In the literature, one can

find specific implementations which are, in practice, very efficient, to deal with Riccati’s.

Thus, we do not claim that our code is efficient for this specific class of problem

4.4.1 Solving the feasibility problem

We now attempt to solve the feasibility problem (4.47) in its natural setup: find

matrix X such that Ric(X) > 0. For this purpose let us assume that set

R = {X : Ric(X) > 0}

is nonempty and bounded, or equivalently, the spectrum of Ric(X) is bounded11 on the set

R. This fact enforces the property that the larger set G, given in (4.50), is bounded for

fixed value of α. It is evident that to compute a solution to the feasibility problem (4.47),

it suffices to solve the following convex minimization problem

α∗ = min {α : (X,α) ∈ closure(G)} (4.49)

where the feasibility set G is the convex domain given by

G = {(X,α) : F (X,α) > 0}

F (X,α) = AX +XAT −XRX +Q+ αI

(4.50)

As stated above, the idea is to maximize the minimum eigenvalue of the Ric(X) operator.

This type of optimization is a special case of the problem of minimizing the maximum gen-

eralized eigenvalue of symmetric definite pencils (Boyd and El Ghaoui (1993); Nesterov and

Nemirovskii (1994); Overton (1988)). The article by Helton and Merino (1997, 1998) pro-

vides second-order optimality conditions for minimizing the largest eigenvalue of nonlinear

matrix inequalities.

To use the method of centers to solve the optimization problem given in (4.49), an

initial feasible guess is needed. This is trivially obtained by choosing X 0 to be any ma-

trix in Sn and by setting α0 > ‖Ric(X0)‖2. A few comments are in order now: (1) the

optimum α∗ is bounded from below, since Ric(X) is bounded; (2) for fix scalar γ, the

11The spectrum of Ric(X) is bounded whenever R ∈ Sn
++. It is always possible to impose convex con-

straints on X to guarantee boundedness, for example, X2 < σI for σ > 0.
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set {(X,α) ∈ G : α < γ} is bounded; (3) the minimization problem (4.49) may not have a

unique solution, in the sense that, for the attained bound α∗, which is unique, there may

exist many minimizers X∗ such that (X∗, α∗) ∈ closure(G). However, if such solution α∗

is negative, then any corresponding minimizer X ∗ has the property that Ric(X∗) > 0. An

algorithm to detect feasibility, should stop in practice, as soon as the objective αk is less

than zero at some iteration k.

4.4.2 Describing the central path

In order to implement an algorithm to solve the feasibility problem (4.49), using the

method of centers, one needs to be able to compute Newton steps toward the analytic

center of some conveniently chosen potential function. For this purpose, let us define the

unconstrained auxiliary potential function φγ(X,α) as described in Theorem 4.3.5 from

Section 4.3.5 (with Tr {X} replaced by α). Thus, the potential φγ(X,α) is given by

φγ(X,α) = ζ log(1/(γ − α)) − log detF (X,α) : Gγ → R (4.51)

where

Gγ = {(X,α) ∈ G : α < γ}

The parameter ζ is taken to be ζ = n (see comments on Section 2.4.3 of Boyd et al. (1994)).

The analytic center for the potential φγ(X,α) is the path given by

(X∗(γk), α∗(γk)) = argmin
{
φγk(X,α) : (X,α) ∈ Gγ

}
(4.52)

Solving for the analytic center

The optimization problem (4.49) has now been replaced by a sequence of uncon-

strained minimization problems in the form (4.52) for a decreasing sequence of scalars {γ k}
provided by formula (4.24) from Section 4.3.3. In this way, we are interested in finding

update directions which lead toward to the central path of (4.52). To find those directions,

Newton’s method is applied to minimize an approximation (the second-order Taylor series

expansion) of the potential function φ(X,α). In a vague sense, these procedures can be

summarized as follow:

1. Compute the second-order Taylor expansion of φγ(X,α) in some direction δ = (δX , δα)

φγ(X,α) +Dφγ(X,α)[δ] +
1

2
D2φγ(X,α)[δ, δ]
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2. The Newton step δ∗ = (δ∗X , δ
∗
α) satisfies the necessary optimality conditions for the

following quadratic minimization problem

δ∗ ∈ argmin

(
Dφγ(X,α)[δ] +

1

2
D2φγ(X,α)[δ, δ]

)

3. This first-order necessary optimality condition is algebraically given by

0 = D
(
Dφγ(X,α)[δ] +

1

2
D2φγ(X,α)[δ, δ]

)
[δV1 ], ∀δV1 .

0 = D
(
Dφγ(X,α)[δ] +

1

2
D2φγ(X,α)[δ, δ]

)
[δV2 ], ∀δV2 .

(4.53)

4. Finally, find a Newton update δ∗ = (δ∗X , δ
∗
α) satisfying (4.53) for all δV1 , δV2 .

We shall go through each step precisely. For clarity of notation, let us omit the

subscript γ in φγ(X,α). So, to compute the quadratic approximation of φ(X,α), we take δX

and δα to be the update directions for X and α respectively. Thus, assuming X ∗ = X + δX

and α∗ = α+ δα, the series expansion of φ(X,α) up to the second term is given by

φ(X∗, α∗) = φ(X,α) +Dφ(X,α)[δX ] +
1

2
D2φ(X,α)[δX , δX ]

+Dφ(X,α)[δα] +
1

2
D2φ(X,α)[δα, δα] + D2 φ(X,α)[δX , δα] + · · · (4.54)

Directional derivatives of F (X,α)

In order to compute the derivatives in Eq. (4.54), we need to have at hand the first

and second directional derivatives of F (X,α). Recalling that X is symmetric, and therefore

so is the update direction δX , the first directional derivative of F (X,α) in the direction δX

is given by

DF (X,α)[δX ] = (A−XR)δX + δX(AT −RX)

= sym {(A−XR)δX}

and the second directional derivative is

D2F (X,α)[δX , δX ] = − sym {δXRδX}

For the direction δα, the first and second directional derivatives are easily found to be

DF (X,α)[δα] = δα I and D2F (X,α)[δα, δα] = 0
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Having the above derivatives available, we are ready to take the directional derivatives

needed by (4.54). However, to clarify the exposition, by identifying the contributions of each

term in the expressions for the derivatives, the potential function φ(X,α) is split term by

term as:

φ1(X,α) = − log detF (X,α) and φ2(X,α) = −n log(γ − α)

We also abbreviate F (X,α) to just F .

Directional derivatives of φ1(X,α) = − log detF (X,α)

The first and second directional derivative of φ1(X,α) in the direction δX are given

by

Dφ1(X,α)[δX ] = −Tr
{
F−1DF [δX ]

}

= −Tr
{
F−1 sym {(A−XR)δX}

}

D2φ1(X,α)[δX , δX ] = Tr
{(
F−1DF [δX ]

)2}− Tr
{
F−1D2F [δX , δX ]

}

= Tr

{(
F−1 sym {(A−XR)δX}

)2
}

+ Tr
{
F−1 sym {δXRδX}

}

The second directional derivative of φ1(X,α) taken first in the direction δX and after in the

direction δα is given by

D2 φ1(X,α)[δX , δα] = Tr
{
F−1(DF [δα])F−1(DF [δX ])

}

= Tr
{
F−1δαF

−1 sym {(A−XR)δX}
}

= D2 φ1(X,α)[δα, δX ]

Finally the first and second directional derivatives of φ1(X,α) along δα are

Dφ1(X,α)[δα ] = −Tr
{
F−1δα

}
and D2φ1(X,α)[δα, δα] = Tr

{
F−2δα2

}

Directional derivatives φ2(X,α) = −n log(γ − α)

We need to find the directional derivatives of φ2(X,α) relative to δX and δα. For δX

we have

Dφ2(X,α)[δX ] = 0 and D2φ2(X,α)[δX , δX ] = 0
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and for δα we have

Dφ2(X,α)[δα] = Tr

{
δα

(γ − α)
I

}

and

D2φ2(X,α)[δα, δα] = Tr

{
δα2

(γ − α)2
I

}

The second derivative of φ2(X,α) taken first in the direction δX and after in the direction

δα (and vice-versa) is given by

D2φ2(X,α)[δX , δα] = 0 = D2φ2(X,α)[δα, δX ]

Optimality conditions

Now we are ready to write down the optimality conditions which will provide the

update direction. These conditions are the first-order necessary optimality conditions for

problem (4.52), obtained by taking directional derivatives of the Taylor expansion φ(X +

δX , α + δα), given by Eq. (4.54), as a function of δX and δα in the directions δV1 and δV2

respectively.

Let us define δX1 = δX and δX2 = δα. Then, from the directional derivatives just

computed, the expression for the second-order approximation

φ̃ =
2∑

i=1

Dφ(X,α)[δXi ] +
1

2

2∑

i=1

2∑

j=1

D2 φ(X,α)[δXi , δXj ] (4.55)

becomes

φ̃ = φ̃1(δX) + φ̃2(δX , δα) + φ̃3(δα)

with

φ̃1(δX) = −Tr
{
F−1 sym {(A−XR)δX}

}

+
1

2
Tr

{(
F−1 sym {(A−XR)δX}

)2
}

+
1

2
Tr
{
F−1 sym {δXRδX}

}

φ̃2(δX , δα) = Tr
{
F−1δαF

−1 sym {(A−XR)δX}
}

φ̃3(δα) = Tr

{
δα

(γ − α)
I

}
+

1

2
Tr

{
δα2

(γ − α)2
I

}

Since there are two independent variables δX and δα, we have to set to zero the

directional derivative of Eq. (4.54), first as a function of δX in the direction δV1 , and second

as a function of δα in the direction δV2 .
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Optimality conditions along the direction δX

To accomplish the first step, we should compute

D

(
Dφ(X,α)[δX ] +

1

2
D2φ(X,α)[δX , δX ] + D2 φ(X,α)[δX , δα]

)
[δV1 ] = 0 (4.56)

That is, we should set to zero the directional derivative of (4.55) as a function of δX along

the direction δV1 :

D

(
φ̃1(δX) + φ̃2(δX , δα)

)
[δV1 ] = 0

To compute this expression, let us expand the terms φ̃1(δX) and φ̃2(δX , δα). The term

φ̃1(δX ) becomes

φ̃1(δX) = −Tr

{
F−1

(
(A−XR)δX + δX(A−XR)T

)}

+
1

2
Tr

{
F−1(A−XR)δXF

−1(A−XR)δX

+ F−1(A−XR)δXF
−1δX(A−XR)T + δXRδX

+ δXRδX + F−1δX(A−XR)TF−1(A−XR)δX

+ F−1δX(A−XR)TF−1δX(A−XR)T

}

and the term φ̃2(δX , δα) becomes

φ̃2(δX , δα) = Tr

{
F−1δαF

−1

(
(A−XR)δX + δX(A−XR)T

)}

It remains to compute the expressions for Dφ̃1(δX)[δV1 ] and Dφ̃2(δX)[δV1 ]. After a

few manipulations, the term Dφ̃1(δX)[δV1 ] is given by

Dφ̃1(δX)[δV1 ] = Tr

{
δV1

(
F−1δX(A−XR)TF−1(A−XR)− F−1(A−XR)

+
1

2
RδXF

−1 +
1

2
F−1δXR+ F−1(A−XR)δXF

−1(A−XR)

)

+

(
(A−XR)TF−1(A−XR)δXF

−1 +
1

2
F−1δXR+

1

2
RδXF

−1

− (A−XR)TF−1 + (A−XR)TF−1δX(A−XR)TF−1

)
δV1

}

and the term Dφ̃2(δX)[δV1 ] is given by

Dφ̃2(δX)[δV1 ] = Tr

{
δV1

(
F−1δαF

−1(A−XR)

)
+

(
(A−XR)TF−1δαF

−1

)
δV1

}
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Therefore, the algebraic linear system of equations given by (4.56) becomes:

Tr
{
δV1(H1(δX , δα)−Q1)

T + (H1(δX , δα)−Q1)δV1

}
= 0 (4.57)

with H1(δX , δα) and Q1 given by

Q1 = (A−XR)TF−1

H1(δX , δα) = H11(δX) + H12(δα)

=
1

2
F−1δXR+

1

2
RδXF

−1 + (A−XR)TF−1(A−XR)δXF
−1

+ (A−XR)TF−1δX(A−XR)TF−1 + (A−XR)TF−1δαF
−1

Since the unknown X is restricted to being symmetric (so is δX) the subspace V1 equals

S. Consequently, its orthogonal complement V⊥
1 is the set of all skew symmetric matrices.

Therefore,

〈(H1(δX , δα)−Q1), δV1〉s = 0 −→ H1(δX , δα) + H1(δX , δα)T − (Q1 + QT
1 ) = 0

Thus, we obtain the following linear system in δX and δα

Q1 + QT
1 = H11(δX) + H12(δα)

sym
{
F−1(A−XR)

}
= sym

{
F−1δXR+ F−1δX(A−XR)TF−1(A−XR)

+ F−1(A−XR)δXF
−1(A−XR)

}

+ sym
{
F−1δαF

−1(A−XR)
}

(4.58)

Optimality conditions along the direction δα

Now we should follow a similar procedure for the direction δα. We begin by taking

directional derivatives of the second-order expansion of φ(X,α) given by (4.54) as a function

of δα in the direction δV2 :

D

(
Dφ(X,α)[δα] +

1

2
D2φ(X,α)[δα , δα] + D2 φ(X,α)[δX , δα]

)
[δV2 ] = 0

Which, after some manipulations, becomes

Tr
{
δV2(H2(δX , δα)−Q2)

T + (H2(δX , δα)−Q2)δV2

}
= 0 (4.59)
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with H2(δX , δα) and Q2 given by

Q2 =
1

2

(
F−1 − 1

(γ − α)
I

)

H2(δX , δα) = H21(δX ) + H22(δα)

= F−1δX(A−XR)TF−1 +
1

2

(
F−2 +

1

(γ − α)2
I

)
δα

In contrast to the previous case, it should be recognized that Eq. (4.59) does not

necessarily imply that the relation H2 + HT
2 − (Q2 + QT

2 ) = 0 holds true, since δV2 is not

free to be all matrices in Sn. In this case, the unknown α (and δα) is a scalar multiple of

the identity. If δ⊥V2
is defined as the orthogonal complement of the space of all the matrices

having the form δV2 = σI, for some scalar σ, then

δ⊥V2
= {X : 〈X,σI〉 = 0} = {X : Tr {X} = 0}

Consequently what holds is that Eq. (4.59) implies Tr
{
H2 + HT

2 − (Q2 + QT
2 )
}

= 0. Thus,

we have the following linear system in δX and δα

Tr
{
Q2 + QT

2

}
= Tr {H21(δX )}+ Tr {H22(δα)}

Tr

{
F−1 − 1

(γ − α)
I

}
= Tr

{
sym

{
F−1(A−XR)δXF

−1
}}

+ Tr

{(
F−2 +

1

(γ − α)2
I
)
δα

}
(4.60)

The algebraic linear system of equations

As expected, we have just obtained two equations, (4.58) and (4.60), in two unknowns

δX and δα. Therefore, to find the Newton directions δX and δα, we need to simultaneously

solve the linear system of equations:

H11(δX) + H12(δα) = Q1 + QT
1

Tr {H21(δX)}+ Tr {H22(δα)} = Tr
{
Q2 + QT

2

} (4.61)

To solve this system, we need to apply the vec operation, transforming the matrix repre-

sentation (4.61) into the equivalent vector form:

Hv = g
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Before applying the vec operation to the first equation H11(δX)+H12(δα) = Q1 +QT
1 ,

let us rewrite this equation using a suitable choice of variables A and B as:

sym

{
4∑

i=1

(
Ai

11δXBi
11

)}
+ sym

{
A1

12 δα B1
12

}
= Q1 + QT

1 (4.62)

where

A1
11 = F−1(A−XR) B1

11 = F−1(A−XR)

A2
11 = F−1 B2

11 = (A−XR)TF−1(A−XR)

A3
11 =

1

2
F−1 B3

11 = R

A4
11 = R B4

11 =
1

2
F−1

A1
12 = F−1 B1

12 = F−1(A−XR)

and

Q1 = (A−XR)TF−1

Applying the vec operation to both sides of (4.62), gives

4∑

i=1

(
(Bi

11)
T ⊗Ai

11 +Ai
11 ⊗ (Bi

11)
T
)

vec(δX)

+
(
(B1

12)
T ⊗A1

12 +A1
12 ⊗ (B1

12)
T
)

vec(I)δα = vec(Q1 + QT
1 ) (4.63)

In a similar way, the second equation

Tr {H21(δX)}+ Tr {H22(δα)} = Tr
{
Q2 + QT

2

}

can be equivalently written as

Tr
{(
B1

21A1
21 + (A1

21)
T (B1

21)
T
)
δX
}

+ Tr

{
2∑

i=1

(
Ai

22 δα Bi
22

)}
= Tr

{
Q2 + QT

2

}
(4.64)

with

A1
21 = F−1(A−XR) B1

21 = F−1

A1
22 = F−1 B1

22 = F−1

A2
22 =

1

(γ − α)
I B2

22 =
1

(γ − α)
I

and

Q2 =
1

2

(
F−1 − 1

(γ − α)
I

)
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Recalling the inner product rule given in (4.2), the above equation (4.64) becomes

vec(B1
21A1

21 + (A1
21)

T (B1
21)

T )T vec(δX) + Tr

{
2∑

i=1

(
Ai

22Bi
22

)}
δα = Tr {Q2 + Q2} (4.65)

The final equations (4.63) and (4.65) are now easily represented in the vector form

Hv = g

where H is the Hessian matrix, g is the gradient vector, and v is the vector of unknowns.

These parameters are given by

H =

[
H11 H12

H21 H22

]
, v =

(
vec(δX)

δα

)
, and g =

(
vec(Q1 + QT

1 )

Tr
{
Q2 + QT

2

}
)

with

H11 =
4∑

i=1

(
(Bi

11)
T ⊗Ai

11 +Ai
11 ⊗ (Bi

11)
T
)

= (A−XR)TF−1 ⊗ F−1(A−XR) + F−1(A−XR)⊗ (A−XR)TF−1

+ F−1 ⊗R+R⊗ F−1 + F−1 ⊗ (A−XR)TF−1(A−XR)

+ (A−XR)TF−1(A−XR)⊗ F−1

H12 =
[
(B1

12)
T ⊗A1

12 +A1
12 ⊗ (B1

12)
T
]
vec(I)

=
[
(A−XR)TF−1 ⊗ F−1 + F−1 ⊗ (A−XR)TF−1

]
vec(I)

H21 = vec(B1
21A1

21 + (A1
21)

T (B1
21)

T )T

= vec
(
F−2(A−XR) + (A−XR)TF−2

)T

= HT
12

H22 = Tr

{
2∑

i=1

(
Ai

22Bi
22

)}
= Tr

{
F−2 +

1

(γ − α)2
I

}

The above Hessian matrix H is symmetric. This follows from Theorem 4.2.1, by

noting that H12(δα) is the adjoint map of H21(δX), and that H11(δX) and H22(δα) are

self-adjoint maps.

4.4.3 A feasibility algorithm using the method of centers

This section introduces an algorithm that can be used to solve the feasibility problem

just presented.
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A

Algorithm 4.4.1 Feasibility algorithm using the method of centers.

Fix θ such that 0 < θ < 1;

Choose feasible X0, α0, and γ0 such that (X0, α0) ∈ Gγ0 ;

k ← 0;

while γk > 0 and not converged do

γk+1 ← (1− θ)αk + θγk;

Solve (Xk+1, αk+1) = argmin
{
φγk+1(Xk, αk) : (Xk, αk) ∈ Gγk+1

}
;

k ← k + 1;

end while

To find a feasible starting point (X0, α0, γ0), it suffices to choose a symmetric matrix

X0 (as e.g. X0 = I) and to set γ0 > α0 > ‖Ric(X0)‖. Note that the parameter γk, given

by γk+1 = (1− θ)αk + θγk, never produces infeasibility, since

γk+1 − αk = θ(γk − αk) > 0

Thus, the arguments Xk, αk, γk+1 are always feasible starting points for the next iterate. If

at some iteration k the scalar γk is negative, then the problem is feasible and the respective

Xk is such that Ric(Xk) > 0. However, if the scalar γk is positive for all k, then the

sequence {γk} converges to some scalar γ∗ > 0, and consequently the problem is infeasible

and there is no X such that Ric(X) > 0.

Describing the inner loop

This section describes an algorithm based on a modified Newton’s method, which

solves the analytic center:

(Xk+1, αk+1) = argmin
{
φγ(Xk, αk) : (Xk, αk) ∈ Gγ

}

for fix scalar γ . This algorithm can be described by the following steps:
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Algorithm 4.4.2 Modified Newton’s method.

Let vk denote the update (vk)T = (vec(δXk)T , δαk)T ;

Fix γ. Assume (X0, α0) ∈ Gγ ;

Fix N ; k ← 0;

while k < N and not converged do

Evaluate gk and Hk;

Compute vk such that Hkvk = gk;

(Xk+1, αk+1)← (Xk, αk) + σk(δXk , δαk )

by choosing σk such that F (Xk+1, αk+1) > 0;

end while

A few choices for the step length σ were presented in the previous Section 4.3.8. We

will not discuss which one is more efficient. In order to run this feasibility problem as a

tutorial, we use the formula provided in Nesterov and Nemirovskii (1994). Thus, the step

length σ is given by

σ =

{
1/(1 + τ) , if τ > 1/4

1 , otherwise
(4.66)

with τ =
√
gT H−1g. The stopping criteria is thus given by τ < ε, for some small enough

positive scalar ε.

4.4.4 Numerical results for the feasibility problem

This section presents the numerical results for the Riccati feasibility problem (4.49),

using algorithm 4.4.1 and algorithm 4.4.2. The problem12 is:

find α∗ = minα subject to

AX +XAT −XRX +Q+ αI > 0

X > 0.

If α∗ is negative, then the Riccati inequality is feasible and a symmetric matrix X > 0

exists such that

Ric(X) := AX +XAT −XRX +Q > 0.

12A copy of the Matlab code used to solve this problem is provided in Section C.1. This code is very simple
and is mainly intended to illustrate the proposed methodology. The major code NCSDP implemented by
the author to solve the experiments in this thesis is not provided, since it would take excessively many pages.
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However, the feasibility problem as presented in (4.49) did not impose the constraint that

X should be a positive definite matrix; in many control applications, this is required. Thus,

we now demonstrate how to incorporate the constraint X > 0 into the formulation. This is

accomplished13 with no great difficulty by adding the barrier Θ3(X) = − log detX to the

unconstrained auxiliary potential function φγ(X,α). The directional derivatives of Θ3(X)

along the direction δX are given by

Dθ3(X)[δX ] = −Tr
{
X−1δX

}

and
1

2
D2θ3(X)[δX , δX ] =

1

2
Tr
{
(X−1δX)2

}
.

Thus, we only need to modify (4.61) by adding the term 1
2X

−1 to the gradient map Q1 and

the term 1
2X

−1δXX
−1 to the map H11(δX).

Trade-off between inner and outer iterations

For this first numerical experiment, the Riccati feasibility code is executed using four

different values of the centralization parameter θ given by

θ =
[
0.01, 0.1, 0.3, 0.6

]
.

The matrices used in this experiment are given by

A =




−0.3508 −1.1081 0.7508

0.8920 −0.0259 0.5001

1.5782 −1.1106 −0.5172


 , R =




1.5696 −0.2331 0.0688

−0.2331 0.2617 −0.0276

0.0688 −0.0276 0.5717


 ,

Q =




−1.4228 0.1976 −0.1470

0.1976 −1.6930 1.1355

−0.1470 1.1355 1.3836


 .

Table 4.1 presents the result for θ = 0.01, Table 4.2 for θ = 0.3, and finally Table 4.3

for θ = 0.6. The results are presented with six digits of accuracy. Figure 4.2 shows the

results for all the values of the parameter θ. In these tables, the first column, Iter, shows

the total number of iterations required to achieve the global minimum within an accuracy

of 10−5, i.e., The code stops when the error on the upper bound γ between two successive

iterations, γk+1− γk, is less than 10−5. The second column, NeNe, shows the total number

13The constraint X > 0 is included in the feasibility code presented in Section C.1.
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of Newton steps required to compute the analytic center using Nesterov-Nemirosvky step

length, within an accuracy of 10−3. The third column shows the value of the imposed upper

bound γ for the specific iteration, and the last column presents the value of α attained at

the end of the current iteration.

Iter NeNe γ α

1 21 5.703920 3.847762

2 17 3.866323 2.775534

5 17 1.822595 1.635819

10 16 1.467689 1.463884

15 16 1.461376 1.461333

17 16 1.461316 1.461309

18 16 1.461309 1.461306

Table 4.1: θ = 0.01

Iter NeNe γ α

1 11 5.993920 4.018843

5 7 2.452164 1.975021

10 6 1.569275 1.509191

15 6 1.469455 1.464607

20 6 1.461847 1.461521

26 6 1.461325 1.461312

27 6 1.461316 1.461309

Table 4.2: θ = 0.3

Iter NeNe γ α

1 9 6.293920 4.196176

5 5 3.680773 2.668827

10 4 2.247156 1.862534

20 4 1.535658 1.493563

25 4 1.481364 1.469567

30 4 1.466495 1.463398

35 4 1.462627 1.461707

48 4 1.461341 1.461319

49 4 1.461332 1.461315

Table 4.3: θ = 0.6

0 5 10 15 20 25 30 35 40 45 50
1

2

3

4

5

6

7

PSfrag replacements

Iteration

γ

θ=0.01
θ=0.1
θ=0.3
θ=0.6

Figure 4.2: Influence of the parameter

θ on the method of centers

The initial feasible guess for this experiment was X 0 = I, α0 = ‖Ric(X0)‖ + 1,

and γ0 = α0 + 1. For all the four centralization parameter θ, the solution converged to

γ = 1.4613. Given that this is a positive number, the problem is infeasible and there is no

X > 0 such that Ric(X) > 0, for this set of data. The iteration log for the case θ = 0.3 will

soon be presented.

As illustrated from the above tables, the trade-off between the number of inner itera-

tions, NeNe, and the number of outer iterations, Iter, is characteristic of Barrier methods,
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in particular, the method of centers (Boyd and El Ghaoui (1993)). For θ = 0.01, 18 it-

erations (297 Newton steps) are required to reduce the objective value within 10−5 of the

optimal value. For θ = 0.1, the number of iterations is 20 (189 Newton steps). For θ = 0.3,

27 iterations (171 Newton steps) are required. Finally for θ = 0.6, the total number of

iterations is 49 (205 Newton steps). Since the cost of numerically computing the update

directions (Newton steps) is high, it is desirable to achieve the fewest number of inner it-

erations as possible. On the other hand, increasing θ may lead to a large number of outer

iterations. From Figure 4.2, the parameter θ = 0.3 seems to be a good choice as it provides

fast convergence, 27 iterations (few number of outer iterations), while keeping the number

of inner iterations (171 Newton steps) low.

Presenting the iteration log for θ = 0.3

This section presents the iteration log for the specific case where the centralization

parameter is θ = 0.3. The results are presented below in Table 4.4, where the first column

NeNe shows the number of Newton steps required to compute the analytic center using

the Nesterov-Nemirosvky step length given by (4.66), within an accuracy of 10−3, i.e., the

stopping criteria is τ < 10−3. This computation is performed for each fixed value of the

upper bound parameter γ, at each iteration. The second column shows the norm of the

gradient vector g, the third column shows τ , the fourth column present the step length σ,

the fifth column shows the value of α, and the last two columns presents the minimum and

the maximum eigenvalue of the Hessian matrix H. The code stops when the error on the

upper bound γ between two successive iterations, γk+1 − γk, is less than 10−5. Note that

the table does not show every iteration.

Table 4.4: Iteration log for θ = 0.3

NeNe ‖g‖ τ σ α λmin(H) λmax(H)

Iteration 1 γ = 5.993920

1 9.6E+00 1.9E+00 0.3 5.6004145 2.2E+00 3.9E+01

2 7.1E+00 1.8E+00 0.4 5.4780753 1.8E+00 2.5E+01

3 5.2E+00 1.7E+00 0.4 5.3193023 1.5E+00 1.7E+01
...

...
...

11 2.8E-02 8.0E-03 1.0 4.0198197 1.1E+00 1.6E+01

continued on next page
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continued from previous page

NeNe ‖g‖ τ σ α λmin(H) λmax(H)

12 9.0E-03 2.6E-03 1.0 4.0190821 1.1E+00 1.6E+01

13 2.9E-03 8.6E-04 1.0 4.0188435 1.1E+00 1.6E+01

Iteration 2 γ = 4.6113664

1 3.5E+00 1.2E+00 0.5 3.8406879 1.5E+00 1.6E+01

2 2.3E+00 9.4E-01 0.5 3.6384409 1.5E+00 1.8E+01

3 1.3E+00 6.6E-01 0.6 3.4404751 1.6E+00 2.0E+01
...

...
...

7 3.2E-02 8.4E-03 1.0 3.2081156 1.8E+00 2.6E+01

8 1.1E-02 2.7E-03 1.0 3.2075432 1.8E+00 2.6E+01

9 3.6E-03 8.8E-04 1.0 3.2073622 1.8E+00 2.6E+01
...

...

Iteration 26 γ = 1.4613251

1 3.3E+05 1.1E+00 0.5 1.4613168 1.3E+02 8.4E+10

2 2.0E+05 8.5E-01 0.5 1.4613149 1.3E+02 5.9E+10

3 1.0E+05 4.8E-01 0.7 1.4613134 1.3E+02 5.3E+10

4 3.5E+04 1.6E-01 1.0 1.4613127 1.3E+02 6.6E+10

5 6.7E+02 3.0E-03 1.0 1.4613127 1.3E+02 7.8E+10

6 3.7E-01 2.0E-06 1.0 1.4613127 1.3E+02 7.8E+10

Iteration 27 γ = 1.4613164

1 5.6E+05 1.1E+00 0.5 1.4613116 1.3E+02 2.5E+11

2 3.5E+05 8.5E-01 0.5 1.4613105 1.3E+02 1.8E+11

3 1.8E+05 4.8E-01 0.7 1.4613096 1.3E+02 1.6E+11

4 6.0E+04 1.6E-01 1.0 1.4613092 1.3E+02 2.0E+11

5 1.2E+03 3.0E-03 1.0 1.4613092 1.3E+02 2.3E+11

6 6.4E-01 1.8E-06 1.0 1.4613092 1.3E+02 2.3E+11

As seen from Table 4.4 above, the prescribed accuracy is reached within 27 iterations,

with γ = 1.4613164 and α = 1.4613092. Since α is a positive number, the problem is

infeasible and there is no X > 0 such that AX +XAT −XRX +Q > 0. The value of the

symmetric matrix X > 0 corresponding to the achieved α is

X =




0.1429 0.0062 0.1300

0.0062 0.7850 0.6378

0.1300 0.6378 0.8539



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with its eigenvalues given by

λ(X) =
(
0.07050, 0.24573, 1.46567

)

For this X, the eigenvalues of Ric(X) = AX +XAT −XRX +Q are

λ (Ric(X)) =
(
−1.46130, −1.46130, −0.91451

)

which show that there are only two eigenvalues binding at the optimal value of α. From

Table 4.4, one finds that the condition number of the Hessian is large when α approaches

the optimal solution. This ill-conditioning in the Hessian is a well known fact with respect

to barrier methods (see Murray (1971); Wright (1992a,b); Wright and Orban (2001) and

reference therein). This behavior is highly influenced by the set of constraints that are

or are not active (binding) at the solution. It is not an immediate task to determine the

set of active constraints in the semidefinite programming formulation (the relation between

the binding eigenvalues and the unknown X). This thesis does not investigate this ill-

conditioning problem.

An inner product minimization problem

This section presents one more experiment, in which an inner product optimization

problem is solved instead of the feasibility problem. We take the same Riccati inequality as

before, and solve

find X∗ = argminTr {X}, such that

AX +XAT −XRX +Q > 0 (4.67)

Note that this problem does not impose the constraint X > 0.

Considering the development presented in the previous sections, the modifications

now proposed with regards to the feasibility code are minimal. Basically, the difference is

that the inner product case above is a function of one single variable X. There is no α

dependence. Thus, the equation (4.57) used in the feasibility problem now reduces to:

Q = (A−XR)TF−1

H(δX) =
1

2
F−1δXR+

1

2
RδXF

−1 + (A−XR)TF−1(A−XR)δXF
−1

+ (A−XR)TF−1δX(A−XR)TF−1.



144

Since there is no inner product part included in the feasibility problem, we shall add the

terms relating to the cost function, Tr {X}, to the above equations. As shown from Propo-

sition 4.3.4, this is a trivial step and it suffice to include an extra term to the gradient Q

and another one to the Hessian H(δX). Thus, the final expressions become:

Q = (A−XR)TF−1 − 1

2
(γ − Tr {X})−1I

H(δX) =
1

2
F−1δXR+

1

2
RδXF

−1 + (A−XR)TF−1(A−XR)δXF
−1

+ (A−XR)TF−1δX(A−XR)TF−1 +
1

2
(γ − Tr {X})−2I.

The example-code that runs this inner product minimization problem is available in

Section C.2. The iteration log for this experiment is presented in Table 4.5, where the

notation is the same as the one used in previous tables. To run this experiment, a feasible

starting point is needed; this is easily obtained by invoking the feasibility code14. The

numerical data used for this experiment are given by

A =

[
1.4789 −0.6841

1.1380 −1.2919

]
, R =

[
0.8585 −0.1979

−0.1979 0.6785

]

Q =

[
1.4884 −0.6966

−0.6966 −0.2463

]
.

The centralization parameter was taken to be θ = 0.3. Not all the iterations are presented in

Table 4.5. The stopping criteria was again 10−5 for the objective and 10−3 for the analytic

center.

Table 4.5: An inner product minimization problem

NeNe ‖g‖ τ σ Tr {X} λmin(H) λmax(H)

Iteration 1 γ = 0.2459247

1 4.7E+01 1.0E+00 0.5 0.2011414 6.0E-01 2.2E+03

2 3.2E+01 1.0E+00 0.5 0.1788383 6.0E-01 1.0E+03

3 2.1E+01 1.0E+00 0.5 0.1453416 6.0E-01 4.5E+02

4 1.4E+01 1.0E-00 0.5 0.0951365 6.0E-01 2.0E+02
...

...
...

11 5.4E-01 4.3E-01 0.7 -1.5339932 8.0E-01 2.4E+00

continued on next page

14The feasibility code stops as soon as the objective is negative.
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NeNe ‖g‖ τ σ Tr {X} λmin(H) λmax(H)

12 2.0E-01 1.7E-01 1.0 -1.7350971 8.3E-01 2.4E+00

13 3.6E-03 2.3E-03 1.0 -1.7369562 8.7E-01 2.5E+00

14 3.0E-06 2.0E-06 1.0 -1.7369554 8.7E-01 2.5E+00

Iteration 2 γ =-1.1420914

1 1.7E+00 6.5E-01 0.6 -1.9563699 1.1E+00 7.0E+00

2 8.8E-01 4.4E-01 0.7 -2.1720246 1.3E+00 4.7E+00

3 3.5E-01 2.0E-01 1.0 -2.3312987 1.5E+00 4.0E+00

4 1.8E-02 1.0E-02 1.0 -2.3395406 1.8E+00 3.9E+00

5 1.9E-05 1.4E-05 1.0 -2.3395506 1.8E+00 3.9E+00
...

...

Iteration 43 γ = -4.0397834

1 1.8E+05 6.8E-01 0.6 -4.0397910 3.4E+09 7.1E+10

2 1.0E+05 5.3E-01 0.7 -4.0397935 3.8E+09 3.8E+10

3 5.0E+04 3.3E-01 0.8 -4.0397958 4.5E+09 2.4E+10

4 1.8E+04 1.3E-01 1.0 -4.0397972 5.2E+09 1.8E+10

5 1.1E+03 8.8E-03 1.0 -4.0397973 5.7E+09 1.6E+10

6 4.0E+00 3.2E-05 1.0 -4.0397973 5.8E+09 1.6E+10

Iteration 44 γ = -4.0397931

1 2.4E+05 6.8E-01 0.6 -4.0397990 5.8E+09 1.2E+11

2 1.3E+05 5.3E-01 0.7 -4.0398009 6.5E+09 6.5E+10

3 6.6E+04 3.3E-01 0.8 -4.0398026 7.6E+09 4.0E+10

4 2.3E+04 1.3E-01 1.0 -4.0398037 8.8E+09 3.0E+10

5 1.4E+03 8.8E-03 1.0 -4.0398038 9.8E+09 2.7E+10

6 5.2E+00 3.2E-05 1.0 -4.0398038 9.8E+09 2.7E+10

From the above Table 4.5, the prescribed accuracy is reached within 44 iterations, with

the upper bound given by γ = −4.0397931 and the final values for the objective given by

Tr {X} = −4.0398038. The corresponding symmetric matrix X is

X =

[
−0.60215 −0.46865

−0.46865 −3.43764

]
.

For this X, the eigenvalues of Ric(X) = AX +XAT −XRX +Q are given by

λ(Ric(X)) =
(
0.00004, 0.00002

)
.
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Thus, the constraint are active (the eigenvalues are binding) at the solution. The condition

number of the Hessian for this example remains bounded.

4.5 Extending the Results to the Multivariate Case

The previous Section 4.3 limited the presentation to the univariate case, by considering

uniquely a function F (X) of one variable X. This current section extends the results to

the multivariate case by considering functions on several variables X1, . . . , Xr. However,

we will not attempt to provide a detailed presentation of the derivations, as done in the

previous section, but rather, the exposition will be concise. Thus, the derivations will be

based on the results provided in Section 4.3 for the univariate case.

To introduce the multivariate case, let us start by posing a more general form of our

convex optimization problem for matrix functions. For j = 1, . . . , r, let Cj be a bounded

convex domain in Rpi,qi . Denote by C the usual Cartesian product C = C1 × · · · × Cr. For

each i = 1, . . . ,m, let the map Fi(X1, . . . , Xr) : C → Sni be concave. Then, the inner

product minimization problem is posed as:

find t∗, if one exists, such that

t∗ = min {Tr {X1} : X1 ∈ closure(G)}

where the feasibility set G is the convex domain given by

G =
{
(X1, . . . , Xr) ∈ C : Fi(X1, . . . , Xr) > 0

}
.

4.5.1 Unconstrained auxiliary potential function

The idea behind the method of centers is to approach the above constrained opti-

mization problem with a sequence of unconstrained optimization problems which minimize

a potential function. Thus, the auxiliary potential function has to be generalized to the

multivariate case:

φγ(X1, . . . , Xr) = log (1/(γ − Tr {X1}))−
m∑

i=1

log detFi(X1, . . . , Xr).

The aim is to determine the algebraic linear system of equations which will provide the

update directions toward to the central path given by φγ(X1, . . . , Xr). For the multivariate
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case, there will be r update directions δX1 , . . . , δXr , since there are r unknowns X1, . . . , Xr.

Therefore, the linear system will have dimension r× r. Basically, it will have the following

form:
H11(δX1) + H12(δX2) + · · · + H1r(δXr ) = Q1

H21(δX1) + H22(δX2) + · · · + H2r(δXr ) = Q2

...
...

...
...

Hr1(δX1) + Hr2(δX2) + · · · + Hrr(δXr ) = Qr

where each one of the Hessian Hij(δXj ) is a Sylvester operator (defined in Section(4.3.6)),

a linear map on the update δXj , which has the form15:

Hij(δXj ) =

N∑

`

Ai,j
` δXjBi,j

` +

N∑

`

(Bi,j
` )T δT

Xj
(Ai,j

` )T

and the gradient term Qi is an independent expression that does not contain the updates

δXj .

To build this system, one needs to take directional derivatives of a second-order Taylor

expansion of the auxiliary potential function φγ(X1, . . . , Xr). For clarity of notation, let

us omit the subscript γ in φγ(X1, . . . , Xr). Also, let us use an arrow over a variable to

indicate that the variable is a list of elements, e.g.,
→

X = {X1, . . . , Xr}. So, to compute the

quadratic approximation of φ(
→

X), let us denote by δXi the update directions for each Xi.

Thus, assuming X∗
i = Xi + δXi , the series expansion of φ(

→

X) up to the second-order term

is given by

φ(X∗
1 , . . . , X

∗
r ) = φ(

→

X) +
r∑

i=1

Dφ(
→

X)[δXi ] +
1

2

r∑

i=1

r∑

j=1

D2 φ(
→

X)[δXi , δXj ]. (4.68)

Recall that the first-order optimality conditions, which will provide the update direc-

tions δX1 , . . . , δXr , are obtained by taking directional derivatives of the Taylor expansion

φ(X1 + δX1 , . . . , Xr + δXr ), given by (4.68), as a function of δX1 , . . . , δXr in the directions

δV1 , . . . , δVr . Since there are r independent variables δX1 , . . . , δXr , we first set to zero the

directional derivative of (4.68) as a function of δX1 in the direction δV1 , providing the first

equation

H11(δX1) + H12(δX2) + · · ·+ H1r(δXr) = Q1.

Second, we set to zero the derivative of (4.68) as a function of δX2 in the direction δV2 ,

providing the linear system

H21(δX1) + H22(δX2) + · · ·+ H2r(δXr) = Q2.

15The notation presented in this formula for Hij(δXj
) is over simplified. The actual formula is presented in

Proposition 4.5.1. However, the emphases here is on the linear form (the Sylvester form) of the expressions.
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And so on.

4.5.2 Notation for the multivariate case

In Section 4.2, it was shown that the directional derivative of a noncommutative

rational function has the representation:

DF (X)[δX ] = sym

{
k∑

i=1

AiδXBi

}
.

However, for the multivariate case, the notation becomes a bit more complex, since it must

be clear which function and which variables are being considered. Thus, the notation for

the first directional derivative of Fi(X1, . . . , Xr) in the direction δXt is:

DFi(
→

X)[δXt ] = sym





k(i,t)∑

`=1

Ai,t
` δXtB

i,t
`



 (4.69)

where the subscript i corresponds to the function and the subscript t to the direction. For

example, the notation for the first directional derivative of F3(X1, . . . , Xr) in the direction

δX2 is represented by:

DF3(
→

X)[δX2 ] = sym





k(3,2)∑

`=1

A3,2
` δX2B

3,2
`



 .

For the second directional derivative, the notation is more involved, since there are two

different directions. Thus, the second directional derivative of Fi(X1, . . . , Xr) taken first16

in the direction δXt and second in the direction δXs is represented by

D2 Fi(
→

X)[δXt , δXs ] =

sym

{ w1(i,ts)∑

`=1

M i,ts
` δXtN

i,ts
` δXsT

i,ts
` +

w2(i,ts)∑

`=1+w1(i,ts)

M i,ts
` δT

Xt
N i,ts

` δXsT
i,ts
`

+

w3(i,ts)∑

`=1+w2(i,ts)

M i,ts
` δXtN

i,ts
` δT

Xs
T i,ts

` +

w4(i,ts)∑

`=1+w3(i,ts)

M i,ts
` δT

Xt
N i,ts

` δT
Xs
T i,ts

`

}
(4.70)

16The subscript ts denotes: first in the direction t and second in the direction s. However, it is immaterial

the order in which the derivatives are taken, since D2 Fi(
→

X)[δXt , δXs ] = D2 Fi(
→

X)[δXs , δXt ].
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However, for the specific case where the directional derivatives are taken along the same

direction δXt , the formulas reduce to

D2 Fi(
→

X)[δXt , δXt ] = sym

{w1(i,t)∑

`=1

M i,t
` δXtN

i,t
` δXtT

i,t
`

+

w2(i,t)∑

`=1+w1(i,t)

M i,t
` δT

Xt
N i,t

` δXtT
i,t
` +

w3(i,t)∑

`=1+w2(i,t)

M i,t
` δXtN

i,t
` δT

Xt
T i,t

`

}
(4.71)

Which is equivalent to the univariate case given by expression (4.14) from Section 4.2.

4.5.3 Deriving the optimality condition

We should now proceed with the derivatives, however, since the cost term

log (1/(γ − Tr {X1}))

in the potential φ(
→

X) is exactly the same as the one in the univariate case, we concentrate

the efforts in manipulating only the Barrier term given by

Θ(
→

X) = −
m∑

i=1

log detFi(X1, . . . , Xr).

And later, we add the contributions from the cost term.

Analogous to the derivation in the previous Section 4.3, the gradient term Qt is

obtained from the first-order approximation of the potential function:

D
(
DΘ(

→

X)[δXt ]
)
[δVt ].

Thus, we first need to take the derivative of the potential Θ(
→

X) in the direction δXt . From

the formulas for the derivative of the log det function (see Section 4.2), we have:

DΘ(
→

X)[δXt ] = −Tr

{
m∑

i=1

F−1
i DFi(

→

X)[δXt ]

}

= −Tr





m∑

i=1

F−1
i sym





k(i,t)∑

`=1

Ai,t
` δXtB

i,t
`









= −Tr



sym





m∑

i=1

k(i,t)∑

`=1

F−1
i Ai,t

` δXtB
i,t
`









= −Tr



sym



δXt

m∑

i=1

k(i,t)∑

`=1

Bi,t
` F

−1
i Ai,t

`








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Now, regarding the above result as a function of δXt , we need to compute its first derivative

along the direction δVt :

D
(
DΘ(

→

X)[δXt ]
)
[δVt ] = −Tr



sym



δVt

m∑

i=1

k(i,t)∑

`=1

Bi,t
` F

−1
i Ai,t

`









= −Tr
{
δVtQ

T
t + Qtδ

T
Vt

}
.

Thus, we obtain the gradient term Qt as

Qt =

m∑

i=1

k(i,t)∑

`=1

(Ai,t
` )TF−1

i (Bi,t
` )T

for 1 ≤ t ≤ r.

The first-order approximation of the potential function provided the gradient term Qt.

On the other hand, the formulas for the Hessian maps H11(δX1), H12(δX2), . . . , Hrr(δXr)

are obtained by taking directional derivatives of the second-order approximation of the

potential function

1

2

r∑

s=1

r∑

t=1

D2 φ(
→

X)[δXs , δXt ]

along the direction δVt , for 1 ≤ t ≤ r. Since the above expression is linear as a function of

either one of the directions δXt or δXs , the formula for each Hts(δXs), for 1 ≤ t < s ≤ r, is

given by

Hts(δXs) =
1

2
D

(
D2 φ(

→

X)[δXt , δXs ] + D2 φ(
→

X)[δXs , δXt ]

)
[δVt ]

= D

(
D2 φ(

→

X)[δXt , δXs ]

)
[δVt ]

(4.72)

For the particular case where 1 ≤ t = s ≤ r, the map Htt is given by

Htt(δXt) =
1

2
D

(
D2 φ(

→

X)[δXt , δXt ]

)
[δVt ].

Since the Hessian is self-adjoint, each Hst(δXt) is the adjoint map of Hts(δXs).

To find the expressions for the above formulas, the second derivative of the potential

function needs to be computed. Since we are not considering the cost term yet, we just

present the formulas for the second directional derivative of the barrier Θ(
→

X), taken first

in the direction δXt and second in the direction δXs :

D2 Θ(
→

X)[δXt , δXs ] = Tr

{
m∑

i=1

F−1
i DFi(

→

X)[δXs ]F
−1
i DFi(

→

X)[δXt ]

}

− Tr

{
m∑

i=1

F−1
i D2 Fi(

→

X)[δXt , δXs ]

} . (4.73)
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Again, for the specific case where the directional derivatives are taken along the same

direction δXt , the formulas reduce to

D2 Θ(
→

X)[δXt , δXt ] = Tr

{
m∑

i=1

(
F−1

i DFi(
→

X)[δXt ]

)2
}

− Tr

{
m∑

i=1

F−1
i D2 Fi(

→

X)[δXt , δXt ]

}.

Which is equivalent to the univariate case presented in Section 4.2.2. In this way, the

formula for the map Htt(δXt), for t = 1, . . . , r, is easily obtained from Lemma 4.3.3 by

noting that instead of a single function F (X) we have
∑m

i=1 Fi(
→

X):

Htt(δXt) =

m∑

i=1

k(i,t)∑

`=1

k(i,t)∑

η=1

(Ai,t
` )TF−1

i Ai,t
η δXtB

i,t
η F

−1
i (Bi,t

` )T

+

m∑

i=1

k(i,t)∑

`=1

k(i,t)∑

η=1

(Ai,t
` )TF−1

i (Bi,t
η )T δT

Xt
(Ai,t

η )TF−1
i (Bi,t

` )T

− 1

2

m∑

i=1

w1(i,t)∑

`=1

(N i,t
` )T δX

T
t (M i,t

` )TF−1
i (T i,t

` )T + (M i,t
` )TF−1

i (T i,t
` )T δX

T
t (N i,t

` )T

− 1

2

m∑

i=1

w2(i,t)∑

`=1+w1(i,t)

(N i,t
` )T δXt(M

i,t
` )TF−1

i (T i,t
` )T +N i,t

` δXtT
i,t
` F−1

i M i,t
`

− 1

2

m∑

i=1

w3(i,t)∑

`=1+w2(i,t)

(M i,t
` )TF−1

i (T i,t
` )T δXt(N

i,t
` )T + T i,t

` F−1
i M i,t

` δXtN
i,t
`

where the terms A, B, M , N , T are obtained from the first and second directional derivatives

of Fi(
→

X) given by (4.69) and (4.71).

We should now proceed deriving the formulas for Hts(δXs), for the case where 1 ≤
t < s ≤ r, presented in (4.72), by first evaluating expression (4.73) and later substituting

the result inside (4.72). Considering the expressions for the first and second directional
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derivative of Fi(
→

X), the expression for D2 Θ(
→

X)[δXt , δXs ] becomes

D2 Θ(
→

X)[δXt , δXs ] =

Tr





m∑

i=1

F−1
i sym





k(i,s)∑

`=1

Ai,s
` δXsB

i,s
`



F−1

i sym





k(i,t)∑

η=1

Ai,t
η δXtB

i,t
η









− Tr

{
m∑

i=1

F−1
i sym

{ w1(i,ts)∑

`=1

M i,ts
` δXtN

i,ts
` δXsT

i,ts
` +

w2(i,ts)∑

`=1+w1(i,ts)

M i,ts
` δT

Xt
N i,ts

` δXsT
i,ts
`

+

w3(i,ts)∑

`=1+w2(i,ts)

M i,ts
` δXtN

i,ts
` δT

Xs
T i,ts

` +

w4(i,ts)∑

`=1+w3(i,ts)

M i,ts
` δT

Xt
N i,ts

` δT
Xs
T i,ts

`

}}
(4.74)

To compute the above second directional derivative, let us split this expression into

five parts, H1, H2, H3, H4 and H5, so that the directional derivative can be applied to each

one of the terms separately:

H1 =
1

2
Tr





m∑

i=1

F−1
i sym





k(i,s)∑

`=1

Ai,s
` δXsB

i,s
`



F−1

i sym





k(i,t)∑

η=1

Ai,t
η δXtB

i,t
η









H2 = −1

2
Tr

{
m∑

i=1

F−1
i sym

{
w1(i,ts)∑

`=1

M i,ts
` δXtN

i,ts
` δXsT

i,ts
`

}}

H3 = −1

2
Tr

{
m∑

i=1

F−1
i sym

{ w2(i,ts)∑

`=1+w1(i,ts)

M i,ts
` δT

Xt
N i,ts

` δXsT
i,ts
`

}}

H4 = −1

2
Tr

{
m∑

i=1

F−1
i sym

{ w3(i,ts)∑

`=1+w2(i,ts)

M i,ts
` δXtN

i,ts
` δT

Xs
T i,ts

`

}}

H5 = −1

2
Tr

{
m∑

i=1

F−1
i sym

{ w4(i,ts)∑

`=1+w3(i,ts)

M i,ts
` δT

Xt
N i,ts

` δT
Xs
T i,ts

`

}}

.

After applying directional derivatives (See Appendix B.2), the first term H1 provides

H1(δXs) =
m∑

i=1

k(i,s)∑

`=1

k(i,t)∑

η=1

(
(Ai,t

η )TF−1
i Ai,s

` δXsB
i,s
` F−1

i (Bi,t
η )T

)

+
m∑

i=1

k(i,s)∑

`=1

k(i,t)∑

η=1

(
(Ai,t

η )TF−1
i (Bi,s

` )T δT
Xs

(Ai,s
` )TF−1

i (Bi,t
η )T

)

the second term H2 gives

H2 = −
m∑

i=1

w1(i,ts)∑

`=1

(M i,ts
` )TF−1

i (T i,ts
` )T δT

Xs
(N i,ts

` )T
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the third term H3 gives

H3 = −
m∑

i=1

w2(i,ts)∑

`=1+w1(i,ts)

N i,ts
` δXsT

i,ts
` F−1

i M i,ts
`

the fourth term H4 provides

H4 = −
m∑

i=1

w3(i,ts)∑

`=1+w2(i,ts)

(M i,ts
` )TF−1

i (T i,ts
` )T δXs(N

i,ts
` )T

and finally the fifth term H5 gives

H5 = −
m∑

i=1

w4(i,ts)∑

`=1+w3(i,ts)

N i,ts
` δT

Xs
T i,ts

` F−1
i M i,ts

`

The final term

Hts(δXs) =
1

2

5∑

i=1

Hi

is thus given by

Hts(δXs) =
1

2

m∑

i=1

k(i,s)∑

`=1

k(i,t)∑

η=1

(
(Ai,t

η )TF−1
i Ai,s

` δXsB
i,s
` F−1

i (Bi,t
η )T

)

+
1

2

m∑

i=1

k(i,s)∑

`=1

k(i,t)∑

η=1

(
(Ai,t

η )TF−1
i (Bi,s

` )T δT
Xs

(Ai,s
` )TF−1

i (Bi,t
η )T

)

− 1

2

m∑

i=1

w1(i,ts)∑

`=1

(M i,ts
` )TF−1

i (T i,ts
` )T δT

Xs
(N i,ts

` )T

− 1

2

m∑

i=1

w2(i,ts)∑

`=1+w1(i,ts)

N i,ts
` δXsT

i,ts
` F−1

i M i,ts
`

− 1

2

m∑

i=1

w3(i,ts)∑

`=1+w2(i,ts)

(M i,ts
` )TF−1

i (T i,ts
` )T δXs(N

i,ts
` )T

− 1

2

m∑

i=1

w4(i,ts)∑

`=1+w3(i,ts)

N i,ts
` δT

Xs
T i,ts

` F−1
i M i,ts

`

We conclude this section by presenting Proposition 4.5.1 which summarizes the results

obtained for the multivariate case.

Proposition 4.5.1 For j = 1, . . . , r, let Vj be a subspace of Rpj ,qj and Cj be a bounded

convex domain in Vj. Denote by C the usual Cartesian product C = C1 × · · · × Cr. For each
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i = 1, . . . ,m, let the map Fi(X1, . . . , Xr) : C → Sni be concave. Let ζ ≥ 1. Consider the

following unconstrained auxiliary potential function

φγ(X1, . . . , Xr) = ζ log (1/(γ − Tr {X1}))−
m∑

i=1

log detFi(X1, . . . , Xr) : Gγ → R,

where the feasibility domain G is given by

G =
{
(X1, . . . , Xr) ∈ C : Fi(X1, . . . , Xr) > 0

}
,

and the domain Gγ is given by

Gγ = {X1 ∈ G : Tr {X1} < γ}

Then the update directions δ∗X1
, . . . , δ∗Xr

toward the central path for the above potential is

the solution of the following symbolically computable algebraic linear system of equations:

Tr



δV1

(
r∑

s=1

H1s(δXs)−Q1

)T

+

(
r∑

s=1

H1s(δXs)−Q1

)
δT
V1



 = 0,

for all δV1 ∈ V1

Tr



δV2

(
r∑

s=1

H2s(δXs)−Q2

)T

+

(
r∑

s=1

H2s(δXs)−Q2

)
δT
V2



 = 0,

for all δV2 ∈ V2

...
...

...

Tr



δVr

(
r∑

s=1

Hrs(δXs)−Qr

)T

+

(
r∑

s=1

Hrs(δXs)−Qr

)
δT
Vr



 = 0,

for all δVr ∈ Vr

or equivalently

〈(H1s(δXs)−Q1), δV1〉s = 0, for all δV1 ∈ V1

〈(H2s(δXs)−Q2), δV2〉s = 0, for all δV1 ∈ V2

...
...

〈(Hrs(δXs)−Qr), δVr 〉s = 0, for all δV1 ∈ Vr

where each Hts(δXs) is linear in δXs, and Qt is an independent term that does not contain

the update directions. Moreover, the gradient terms are given by

Q1 =
m∑

i=1

k(i,1)∑

`=1

Bi,1
` F−1

i Ai,1
` −

1

2
ζ (γ − Tr {X1})−1 I



155

and for 2 ≤ t ≤ r

Qt =

m∑

i=1

k(i,t)∑

`=1

Bi,t
` F

−1
i Ai,t

`

The Hessian map, for the case where 1 ≤ t < s ≤ r, is given by

Hts(δXs) =
1

2

m∑

i=1

k(i,s)∑

`=1

k(i,t)∑

η=1

(
(Ai,t

η )TF−1
i Ai,s

` δXsB
i,s
` F−1

i (Bi,t
η )T

)

+
1

2

m∑

i=1

k(i,s)∑

`=1

k(i,t)∑

η=1

(
(Ai,t

η )TF−1
i (Bi,s

` )T δT
Xs

(Ai,s
` )TF−1

i (Bi,t
η )T

)

− 1

2

m∑

i=1

w1(i,ts)∑

`=1

(M i,ts
` )TF−1

i (T i,ts
` )T δT

Xs
(N i,ts

` )T

− 1

2

m∑

i=1

w2(i,ts)∑

`=1+w1(i,ts)

N i,ts
` δXsT

i,ts
` F−1

i M i,ts
`

− 1

2

m∑

i=1

w3(i,ts)∑

`=1+w2(i,ts)

(M i,ts
` )TF−1

i (T i,ts
` )T δXs(N

i,ts
` )T

− 1

2

m∑

i=1

w4(i,ts)∑

`=1+w3(i,ts)

N i,ts
` δT

Xs
T i,ts

` F−1
i M i,ts

`

and the terms Htt(δXt), for t = 1, . . . , r, are given by:

Htt(δXt) =

m∑

i=1

k(i,t)∑

`=1

k(i,t)∑

η=1

(Ai,t
` )TF−1

i (Bi,t
η )T δT

Xt
(Ai,t

η )TF−1
i (Bi,t

` )T

+

m∑

i=1

k(i,t)∑

`=1

k(i,t)∑

η=1

(Ai,t
` )TF−1

i Ai,t
η δXtB

i,t
η F

−1
i (Bi,t

` )T

− 1

2

m∑

i=1

w1(i,t)∑

`=1

(N i,t
` )T δX

T
t (M i,t

` )TF−1
i (T i,t

` )T + (M i,t
` )TF−1

i (T i,t
` )T δX

T
t (N i,t

` )T

− 1

2

m∑

i=1

w2(i,t)∑

`=1+w1(i,t)

(N i,t
` )T δXt(M

i,t
` )TF−1

i (T i,t
` )T +N i,t

` δXtT
i,t
` F−1

i M i,t
`

− 1

2

m∑

i=1

w3(i,t)∑

`=1+w2(i,t)

(M i,t
` )TF−1

i (T i,t
` )T δXt(N

i,t
` )T + T i,t

` F−1
i M i,t

` δXtN
i,t
`

with H11(δX1) containing the cost term:

1

2
ζ (γ − Tr {X1})−2 Tr {δX1} I
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4.6 Improving the Evaluation Time for the Linear Subprob-

lem

It was briefly stated that an important question is how one can symbolically simplify

the expressions that appear in the linear subproblem in such a way that when we substitute

matrices for the symbols which appear in these expressions, the evaluation time is reduced,

thereby improving the overall time spent by the linear solver. This section addresses this

issue more closely.

4.6.1 The algebraic equation

Recall that the algebraic linear system of equations, which provides the necessary

conditions that the update δX must satisfy in order to be a Newton direction, has basically

the following structure:
N∑

i

AiδXBi +

N∑

i

BT
i δXAT

i = Q (4.75)

where the A’s and B’s are obtained by collecting the terms on the left and on the right

side of the update direction δX that appear inside the Hessian map H(δX), and Q is an

independent term that does not contain δX . In this expression, the integer 2N has been

defined as the Sylvester index.

The next subsection explains in further detail how the evaluation time of our linear

solver can be reduced by collecting the terms which appear in the expressions for the Hessian

map; in other words, the aim is to represent the Hessian map H(δX) with the Sylvester index

N as small as possible.

4.6.2 Basic ideas on collecting terms in an expression

Even though we will not present the details of how our optimization code is imple-

mented, we expose the fact that the algorithm can be split into two parts: a symbolic part

and a numerical part.

Roughly speaking, at the symbolic level, Mathematica computes the first and second

directional derivatives of the unconstrained auxiliary potential function φγ(X), which in-

corporate the objective and the constraints. From those derivatives one obtain the maps

for the Hessian H(δX) and for the Gradient Q, producing in this way an algebraic linear
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equation like (4.75). As already emphasized, the aim is to simplify symbolically the fi-

nal expressions such that when we substitute matrices for the symbols, the time spent on

formulas evaluation can be minimized.

To attain this goal, we should observe that even if two symbolic rational functions

may at a first glance, look different, they in fact can be totally equivalent. This happens

frequently inside noncommutative rational functions containing a large number of terms.

It is also important to collect terms in an expression. This is illustrated by a very simple

example which, in practices, appears in a more complex fashion. Suppose one has an

expression like

A1δX + · · ·+ApδX

To evaluate this expression, after the δX and the Ai have been replaced by matrices, one

would need p matrix additions and also p matrix multiplications. On the other hand,

collecting the above expression in δX gives

(

p∑

i=1

Ai)δX

Now, the Sylvester index has dropped from p to 1, and one needs p matrix additions and

only one matrix multiplication.

The process of collecting terms in an expression may not be unique. Suppose that

H(δX) is given by

H(δX) = AδXA
T +XT δXX +BδXB

T −AδXX −XT δXA
T +BδXA

T +AδXB
T (4.76)

The Sylvester index in this case is seven. This expression can be collected in at least two

different ways, having the same number of terms. One possibility is:

H(δX) = (A−XT )δX(A−XT )T + (A+B)δX(A+B)T −AδXAT =

3∑

i=1

AiδXBi

for Ai and Bi given by

A1 = (A−XT ), A2 = (A+B), A3 = −A
B1 = (A−XT )T , B2 = (A+B)T , B3 = AT

Another one is

H(δX) = (A+B −XT )δX (A+B −XT )T +BδXX +XT δXB
T =

3∑

i=1

AiδXBi
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for Ai and Bi given by

A1 = (A+B −XT ), A2 = B, A3 = XT

B1 = (A+B −XT )T , B2 = X, B3 = BT

In both cases the Sylvester index decreased to N = 3. There is yet another possible way to

collect terms in the expression (4.76). This is presented in the next subsection where our

NCCollectSylvester command is introduced.

4.6.3 Implementing a simple NCCollectSylvester command

The recipe presented here was implemented in NCAlgebra/Mathematica and is used

by our optimization code for solving matrix inequalities. The idea is as follows:

1. The user identifies the terms in which the expression should be collected. In the

example given by expression (4.76), this term is δX .

2. Now, we build a “right list” of terms that multiplies δX from the right side (including

δX itself). For the expression (4.76), we would obtain

RightList={δXAT , δXX, δXB
T}.

3. For each element inside RightList, we add together all the terms that multiplies this

element from the left side, thereby producing a list which is defined as “CollectList.”

To apply this idea to our example, using the above RightList, we proceed as follows:

the first element δXA
T in RightList appears inside the expression (4.76) in the terms

AδXA
T , BδXA

T , and −XT δXA
T , thus the first entry in CollectList is (A+B−XT );

in a similar fashion, the element δXX in RightList appears in the expression (4.76) as

XT δXX −AδXX, thereby providing the second entry in CollectList given by (XT −
A); finally the element δXB

T appears in the expression (4.76) as AδXB
T + BδXB

T ,

thereby providing the term (A+B) as the third entry in CollectList. Thus, we obtain

CollectList={(A +B −XT ), (XT −A), (A+B)}.

4. The collected expression is now readily obtained by combining together the CollectList

and the RightList.

H(δX) = (A+B −XT )δXA
T + (XT −A)δXX + (A+B)δXB

T (4.77)
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The above “right sided” implementation of the collecting algorithm begins by building

a list of multipliers from the right side of δX . Evidently, a similar implementation can also

be done by obtaining a “left list” of terms that multiplies δX from the left side, instead of

the right side. In this way, we can implement two collect commands that differ only by the

side in which the process of collecting begins, thus, we can have a NCRightSylvester[]

command and a NCLeftSylvester[] command. The implementation used in our NCSDP

optimization code is nothing more than a single collect command, defined as NCCollect-

Sylvester[expr, var], that sequentially applies both commands NCRightSylvester[] and

NCLeftSylvester[] to the expression. Thus, the command NCCollectSylvester[expr, var]

collects the Sylvester terms of expression expr according to the element var. Now, we

show how to use this command in NCAlgebra/Mathematica language17. First, define the

expression (4.76) in Mathematica as:

In[21]:= P := A ** DX ** tp[A] + tp[X] ** DX ** X + B ** DX ** tp[B] - A ** DX ** X - tp[X]

** DX ** tp[A] + B ** DX ** tp[A] + A ** DX ** tp[B];

To collect this expression in DX (which represents δX), we apply our NCCollectSylvester[]

command to the expression P using the following syntax:

In[22]:= NCCollectSylvester[P, DX]

This command outputs the expression:

(A + B) ** DX ** tp[B] + (A + B - tp[X]) ** DX ** tp[A] + (-A + tp[X]) **
DX ** X

Which, as expected, is the same expression as the one given in (4.77).

Based on these ideas, a few important questions can be formulated. For instance, given

an expression for the Hessian map H(δX) it is fundamental to know what is the minimum

Sylvester index associated with this expression and if there exists a theory that shows how

to provide this minimum Sylvester index. It is also a fundamental question to know how

many different ways of collecting an expression achieving this minimal Sylvester index are

possible. Once the formula for the minimum is obtained, can a practical Collect algorithm be

implemented which guarantees this minimum Sylvester index? These fundamental questions

remain open.

17In NCAlgebra, tp[] stands for transpose and the noncommutative multiplication is represented by **.
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4.6.4 Illustrating our NCCollectSylvester command by an example

The previous examples were presented in order to illustrate what we mean by col-

lecting terms in an expression, and did not present any numerical evidence validating the

usefulness of the idea. Thus, we now explore the main point of this section: the time saving

obtained on formulas evaluation by applying our NCCollectSylvester command. For this

purpose, let us use the optimization problem presented in Section 4.7. The example is the

following eigenvalue minimization problem

minλmax(CXC
T )

subject to

0 < F (X) := A1X +XAT
1 −XR−1

1 X +Q1−
(AT

2X +XA2)
(
A3X +XAT

3 −XR−1
3 X +Q3

)−1
(AT

2 X +XA2)

0 < G(X) := A3X +XAT
3 −XR−1

3 X +Q3

with all the matrices having dimension n× n.

As already described, we need to compute symbolically, at the level of Mathematica,

the Hessian of a potential function. For the above example, the auxiliary potential function

is given by the following formula

φγ(X) = − log detF (X) − log detG(X)− log det γI − CXCT

where γ is a scalar which is not relevant here. The above expression φγ(X) is a function of

the unknown X. If the update direction is taken to be δX , the Hessian map H(δX), as a

function of δX , will have a structure similar to:

H(δX) =

N∑

i

AiδXBi +

N∑

i

BT
i δXAT

i

where the A’s and B’s are noncommutative rational expressions, functions of the symbols

C, A1, A2, A3, R1, R3, Q1, Q3, X. To find the update direction δX , we must be able to

solve the algebraic linear system of equations given by

H(δX) = Q (4.78)

where Q is the gradient map obtained from the first directional derivative of φγ(X) along

the direction δX . As already described, using the vec operation, the above system can be

equivalently written as

Hv = g (4.79)
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where H =
∑N

i BT
i ⊗Ai +

∑N
i Ai⊗BT

i , g = vec(Q), and the unknown is now v = vec(δX).

We do not show the formulas for H(δX) and Q, since these expressions are quite large

and will consume several pages. What is important is the fact that the formula for H(δX)

as computed originally, before applying any simplification rule, has 1014 Sylvester terms.

However, after applying our NCCollectSylvester command, the Sylvester index decreases to

just N = 43.

In order to numerically solve the linear system given in (4.79) one needs:

1. to substitute matrices for the symbols appearing in the expressions for the Ai and Bi;

2. to evaluate the Hessian matrix H by applying 2N Kronecker products:

H =

N∑

i

BT
i ⊗Ai +

N∑

i

Ai ⊗ BT
i

These are the two main steps where collecting terms in the expression for H(δX) can sig-

nificantly affect the evaluation time.

Time saving obtained by applying NCCollectSylvester

To find out how much time is actually saved at the numerical level, the NCSDP code is

executed using the collected formulas for H(δX) with N = 43, and the not collected formula

for H(δX) with N = 1014. For this set of experiments, the size n of the matrices involved

assume the following values n = 4, 8, 16, 32, 64. For each one of this size, we execute ten

times the inner loop where the linear system (4.79) is numerically solved. We also measure

the overall CPU time (over 10 iterations) spent on the above items 1 (formula evaluations)

and 2 (Kronecker product). In this way, we can analyze how the time spent on formula

evaluations behaves as a function of the size of the matrices involved in the expressions, as

well as the Sylvester index.

The results are presented in Table 4.6, where C stand for the Collected case (the

Sylvester index is N = 43), and NC stands for the Not Collected case (the Sylvester index

is N = 1014). In this table, the row labeled “ratio” is the ratio between the Not Collect

column and the Collect column. The time spent on solving the linear system, presented

in the row labeled “Solv. System,” is not affected by the expression being or not being

collected. The other labels are as follows: MS for matrix size, SI for the Sylvester index,

FE for formula evaluation, KP for Kronecker product, and LS for the linear solver.
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MS 4 8 16 32 64

SI C NC C NC C NC C NC C NC

FE 0.46 2.12 0.45 1.95 0.73 2.79 2.6 9 17 64

KP 0.02 0.28 0.04 0.55 0.90 14.05 23 226 1166 4467

LS 0.01 0.01 0.02 0.02 0.36 0.33 15 14 588 543

Ratio NC/C NC/C NC/C NC/C NC/C

FE 4.6 4.3 3.8 3.5 3.8

KP 14 13.8 15.6 9.8 3.8

Table 4.6: Timing (seconds): formulas evaluation, Kronecker products, and linear solver

The results provided in Table 4.6 show that collecting terms in the expression for the

Hessian map H(δX) represents a huge saving, since the average time spent on substituting

matrices for the symbols that appear in the expressions for the Ai and Bi when the expres-

sions are not collected is approximately four times longer than the time for the collected

case (row labeled Formula Eval). Collecting the expressions significantly improves the time

spent on evaluating Kronecker products: the timing improved by a factor of approximately

14 for matrices of dimension 16 and under. In this same range of matrix size, the overall

time spent (over 10 iterations) on numerically solving the equation Hv = g for the unknown

v was relatively insignificant. However, for matrices of size 32 and over, the ratio between

the Collected and Not Collected case for the time spent on Kronecker products decreases

with the dimension of the matrices. For matrices of size 32 this ratio is 9.8, and for matri-

ces of size 64 the ratio18 goes down to 3.8. Moreover, the time spent on solving the linear

subproblem becomes significantly larger than the time spent on substituting matrices for

the symbols. The computer used for these experiments was a dual processor Pentium III

(Coppermine), with 1004.530 MHz cpu clock, 4GB of RAM, 4GB of SWAP, running Linux

(kernel 2.4.18-27.7.xsmp) and Matlab version 6.1.0.450 (R12.1).

We have just seen that for matrices of large size, the time spent on numerically solving

the linear system of equations Hv = g for the unknown v becomes large. To understand

this fact better, suppose the dimension of the matrices involved is chosen to be n = 32.

Thus, the unknown matrix X having size 32×32 implies that the unknown vector v and the

system to be solved will have size 322 = 1024. (Our implementation at this point does not

take advantage of the symmetry). If one could solve the linear system of equations for δX

in its original structured form given by H(δX) = Q, without applying Kronecker products

18We believe that for matrices of dimension 32 and over, a considerable amount of time might be spent
on allocating dynamically memory for the matrix H at each inner loop. This fact may have interfered with
the ratio.
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and keeping the dimensions of the linear system low, a huge saving on the numerical linear

solver would probably be attained. This is an open area which we hope will be pursued by

others.

4.6.5 Applying our NCCollectSylvester command to a variety of matrix

inequalities

Another interesting experiment is to analyze how the Sylvester index behaves by

applying our NCCollectSylvester command to a variety of formulas. We would like to find

out how much reduction of the Sylvester index can be accomplished by applying our collect

command to a variety of matrix inequalities which appear in control design. The example

just presented, taken from Section 4.7, has shown a great improvement since the Sylvester

index reduced from N = 1014 to N = 43. Now, two more examples are presented, so

that the reader can have a more realistic understanding about how the process of collecting

behaves on matrix inequalities that appear frequently in control problems.

Example 4.6.1 For the following standard Riccati inequality:

AX +XAT −XRX +Q > 0

the Hessian map H(δX) for the not collected case has a Sylvester index of N = 20, while

the collected expression has a Sylvester index of N = 6.

Example 4.6.2 Now, a more realistic example is used: the mixed H2/H∞ control problem

presented in Chapter 2:

minTr {Q}
Q− (C2X +D2uF )X−1(C2X +D2uF )T > 0

(4.80)

AX +XAT +BuF + F TBT
u +BwB

T
w+

[
XCT

1 + F TDT
1u +BwD

T
1w

]
R−1

[
XCT

1 + F TDT
1u +BwD

T
1w

]T
< 0

with R = η2I −D1wD
T
1w > 0.

For the above control problem, there are three unknowns denoted by Q = QT , X =

XT , and F (not symmetric). Thus, the linear subproblem to be solved will have dimension
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3 × 3, and consequently each entry on this system will contain a Sylvester operator. For

instance, the (1,1) entry will have an expression of the form

N11∑

i

A11
i δQB11

i +

N̂11∑

i

Â11
i δ

T
QB̂11

i

The (1,2) entry will have the form

N12∑

i

A12
i δFB12

i +

N̂12∑

i

Â12
i δ

T
F B̂12

i

The (1,3) entry will have the form

N13∑

i

A13
i δXB13

i +

N̂13∑

i

Â13
i δ

T
X B̂13

i

The (2,1) entry is the transpose of the (1,2) entry. The (2,2) entry will have the form

N22∑

i

A22
i δFB22

i +

N̂22∑

i

(Â22
i )T δT

F (B̂22
i )T

and so forth. It should be noticed that the Sylvester index N̂11, N̂12, and N̂22 are zero, since

the corresponding variables Q and X are symmetric. For the MIs given above in (4.80),

the set of Sylvester indexes N and N̂ for the case where the Hessian map H(δQ, δX , δF ) was

collected and was not collected is provided in Table 4.7.

In this Table 4.7, the variables X and F are associated with the entries

[
22, 23, 32, 33

]

for each one of the subtables. If we only pay attention to the Sylvester index N , we see

that the submatrix associated with X and F for the

not collected case
73 33

33 35
reduces to only

9 2

2 2
in the collected case.

Similarly, a large reduction is also obtained for the Sylvester index N̂ . Thus, for the variables

X and F we found that a large reduction on the Sylvester index N and N̂ is obtained after

applying our NCCollectSylvester command. Naturally, this will represent a considerable

saving on the evaluation time for the numerical linear solver.

Remark 4.6.1 Another step is taken in order to improve the overall timing, and it is not

related to the idea of simplifying expressions by collecting terms, but it is valuable. We look
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Hessian H(δQ, δX , δF ) Not Collected

Sylv. index Nij Sylv. index N̂ij

i,j 1 2 3 1 2 3

1 8 8 4 0 0 4

2 8 73 33 0 0 33

3 4 33 35 4 33 32

Hessian H(δQ, δX , δF ) Collected

Sylv. index Nij Sylv. index N̂ij

i,j 1 2 3 1 2 3

1 6 2 1 0 0 1

2 2 9 2 0 0 2

3 1 2 2 1 2 4

Table 4.7: Sylvester index N and N̂ for the Collected and Not Collected cases

for inverses of matrices which appear inside the expressions for the Hessian map and we

replace each occurrence by a new variable. In this way, all the inverses are evaluated only

once at the beginning of the code. This can considerably improve the overall performance,

since numerically evaluating an inverse of a matrix may consume a large amount of time,

mainly for matrices of large dimensions.

It is also true that at the symbolic level of Mathematica, the process of collecting

terms on an expression and the process of simplifying rational functions, can consume a

considerable amount of time. However, this computation is done only once at the beginning

of the run. This is in contrast with the numerical part, where solving the linear system

to provide the update direction takes place at each inner iteration (which occurs several

times). Therefore, the ability to collect factors in an expression (decreasing the Sylvester

index) plays a very important role.

4.7 Numerical Experiments: Timing of the NCSDP Solver

The previous section has shown how the theory could be implemented for a simple

example: the problem of finding feasible solutions to a Riccati inequality. For this purpose,

we have shown the details of the derivations of the formulas for the update direction (which

can also be done automatically using the NCAlg toolbox for Mathematica), we have made
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available a Matlab code which implements those equations, and finally we have presented a

few numerical results using this code. In this section, however, our main focus is to compare

the timing of our NCSDP solver against available professional SDP solvers.

In this thesis, we have focused solely on convex problems, as we have made no effort

in providing a reliable implementation of a nonconvex code based on the proposed method-

ology. However, with a simple modification of our convex code, basically by implementing

a rudimentary line search and a “strategy” for dealing with indefinite Hessian, we were

able to successfully run a few nonconvex examples. See the Appendix D for a collection of

problems that our code was successful for.

4.7.1 The problem used in our tests

The optimization problem to be used in this section is the following eigenvalue mini-

mization problem

α∗ = min {α : (X,α) ∈ closure(G)} (4.81)

where the feasibility set G is the convex domain given by

G =
{
(X,α) ∈ Sn × R : αI − CXCT > 0, F3(X) > 0, F (X) > 0

}

with F (X) = F1(X) − F2(X)F3(X)−1F2(X) and the function Fi(X) given by

Fi(X) = AiX +XAT
i −XR−1

i X +Qi

In our experiment we have set F2 := AT
2X +XA2, thus F (X) is given by

F (X) = A1X +XAT
1 −XR−1

1 X +Q1

− (AT
2 X +XA2)

(
A3X +XAT

3 −XR−1
3 X +Q3

)−1
(AT

2 X +XA2) (4.82)

The matrices C, A1, A2, and A3 belong to Rn×n, the invertible matrices R1, R3, belong to

Sn
++ and the matrices Q1, Q3, and X belong to Sn. In this example all matrices are square

matrices of dimension n×n. Note that by Schur complement techniques the above problem

(4.81) can be equivalently restated as the following LMI problem

α∗ = minα subject to

αI − CXCT > 0

0 < F̂ (X) :=




A1X +XAT
1 +Q1 AT

2 X +XA2 X 0

AT
2X +XA2 A3X +XAT

3 +Q3 0 X

X 0 R1 0

0 X 0 R3




(4.83)
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It is clear that the feasibility set for both problems (4.81) and (4.83) are equivalent.

However the dimensions of the equations for each one of the above problems are quite

different. Since our NCSDP method is solely a primal method, the only dimension that

counts is the dimension of the unknown matrix X, which is N = dim(Sn) = n(n + 1)/2,

on the other hand, for the primal-dual method, the dimension of the dual system has to be

taken into account, which for this problem is four times bigger, being 4N . This happens

because the dimension of the dual variable is related to the dimension of the LMI in (4.83),

more precisely, it is related to the dimension of the range of F̂ (X). Therefore, for matrices

of large size, the computation time will increase considerably.

4.7.2 An implementation of the method of centers for linear matrix in-

equalities

We will provide a simple implementation of the method of centers for LMIs, which is

denoted by MCLMI. This implementation is based on the algorithm proposed in Colaneri

et al. (1997). Then, we apply MCLMI to the LMI formulation (4.83), and compare its

performance to our NCSDP code applied directly to the matrix inequality problem stated

in (4.81). Since we are using the same method of centers for both codes, NCSDP and

MCLMI, one point to be illustrated is how much improvement can be obtained by dealing

with the constraint in its natural form (4.82) instead of in the LMI form (4.83).

For the particular case of LMIs, the implementation is easier, given that there is no

need of symbolic computation to obtain the gradient vector and the Hessian matrix. These

formulas are obtained by noting that any LMI can be represented in the following affine

form in x:

F̂ (x) = A0 +A1x1 +A2x2 + · · ·+ANxN

with Ai a symmetric matrix, N the dimension of X and x ∈ RN . Thus, for a suitable choice

of matrices Ai the LMIs in (4.83) have this affine representation. For this implementation,

one needs the assumption that the feasibility set G = {X : F̂ (X) > 0} is nonempty and

bounded, which implies that the matrices A1, . . . , AN are linearly independent. This is a

common assumption, and is verified in most of the control problems of interest. All those

facts are quite standard and can be found in Boyd et al. (1994); Colaneri et al. (1997).

From the above affine representation for F (x), it can be shown that the gradient vector is

given by

gi = −Tr
{
F−1Ai

}
, i = 1, . . . , N (4.84)
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and that the Hessian matrix is given by

Hij = Tr
{
F−1AiF

−1Aj

}
, i = 1, . . . , N, j = 1, . . . , N (4.85)

In this case, the update direction v is the solution of the linear system

Hv = g (4.86)

4.7.3 Timing of NCSDP against MCLMI

Before comparing our NCSDP solver with other SDP solvers, we show how the time

is spent among the main parts of the code. There are two distinct parts: The symbolic

computation, which is done in Mathematica, and the numeric part, which is done in Matlab.

Inside the numeric part of our NCSDP code, we will be timing: 1) The time spent

on evaluating the Sylvester terms. That means, the time Matlab spent on calculating the

terms Ai, Bi, and Q. 2) The time spent on building the Hessian matrix H. This is the

time spent on the Kronecker products. 3) And finally, the time spent on solving the linear

system Hv = g for v.

The results for this first numerical experiment are presented in Table 4.8 for the

MCLMI code (the LMI implementation), and in Table 4.9 for the NCSDP code. In those

tables, the first column n shows the dimension of the unknown matrix X (all matrices in

the formula for F (X) have the same dimension n×n). The second column IT/NeNe shows

the total number of outer iterations required to achieve the objective within an accuracy

of 10−5, and the total number of Newton steps required to compute the analytic center

within an accuracy of 10−3. For the computation of the analytic center, the line search

plays an important role. For the LMI case, the MCLMI code, the suboptimal line search

given in (4.46) has been used. The NCSDP code implements the Nesterov-Nemirosvky step

length given in (4.45). The last three columns in Table 4.8 present the CPU time spent

on computing: the gradient g, the Hessian H, and solving the linear system for v (given

respectively by (4.84)-(4.86)). In Table 4.9, the column FE, formula evaluations, shows the

time spent on computing the Sylvester terms, since this time may be large in some cases19,

the column KP presents the time spent on the Kronecker product, and column v presents

the time spent on the linear solver. The starting feasible point was the same for all the

experiments.

19The time spent on computing the Sylvester terms are usually large when the corresponding symbolic
expressions are also large. So, it might be convenient to simplify the formulas symbolically.
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n IT/NeNe g H v

1 12 / 63 3.7E-02 4.7E-02 5.2E-03

2 9 / 42 4.6E-02 1.0E-01 4.9E-03

4 8 / 45 2.4E-01 2.0E+00 1.1E-02

8 8 / 45 4.4E+00 1.7E+02 4.0E-02

16 7 / 41 1.1E+02 1.6E+04 6.0E-01

32 – – – –

64 – – – –

Table 4.8: MCLMI

n IT/NeNe FE KP v

1 48 / 144 8.4E-01 3.1E-01 3.0E-02

2 33 / 99 1.4E+00 1.1E-01 7.0E-02

4 43 / 129 1.9E+00 3.0E-01 8.0E-02

8 38 / 114 2.3E+00 5.7E-01 3.0E-01

16 30 / 90 3.3E+00 1.8E+01 3.7E+00

32 27 / 81 1.1E+01 2.4E+02 1.0E+02

64 18 / 90 7.1E+01 3.0E+03 2.9E+03

Table 4.9: NCSDP

For the LMI case, we did not run the code for matrices of dimension 32 × 32 and

greater, since it would take more than 100 days, as one can conclude by extrapolating

the data on Table 4.8. In this table, one finds that the most expensive part, for the

LMI implementation, is the evaluation of the Hessian matrix. This can be seen from the

formulas for the gradient and for the Hessian, given in (4.84)–(4.85). Thus, in order to

obtain the gradient one needs to evaluate approximately N trace operations and N matrix

multiplications. Recall that N = n(n+ 1)/2 is the dimension of the space Sn. To compute

the Hessian matrix, one needs to evaluate approximately N 2/2 trace operations and 3/2N 2

matrix multiplications. Thus, the time spent on the Hessian is over N 2/2 the time spent

on calculating the gradient, which agrees with the results presented in Table 4.8. For the

NCSDP code, as seen from column FE on Table 4.9, the most expensive part for matrices

of small size is the time spent on evaluating the Sylvester terms Ai, Bi, and Q. However,

when the size of the matrices increases above 8, the time spent on Kronecker products,

column KP, and the time spent on solving the linear system, column v, begin to dominate.
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4.7.4 Timing of NCSDP against others SDP solvers

For a second set of experiments, the NCSDP code is compared to many available

semidefinite programing solvers, most of them are Primal-Dual methods. The results are

presented in Figure 4.3. The LMILab toolbox, which is the only implementation based on

the projective method of Gahinet et al. (1995), is one of the most widely used solvers for

linear matrix inequalities. It has a GUI editor for interactive problem specification. From

Table 4.10 and Figure 4.3, one sees that for the eigenvalues minimization problem stated in

(4.81), the LMILab was the fastest code. As the size of the matrices increases, our NCSDP

code approximates LMILab. And probably, for matrices of dimensions larger than 64× 64,

NCSDP may be faster than the LMILab solver. We did not run this experiment since the

time would be significantly long.
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Figure 4.3: Performance of the LMI Solvers

At this stage, it is important to emphasize that while our NCSDP code is “com-

pletely”20 implemented using Matlab functions, most of the other solvers have their core

subroutines written in Fortran or C. The fact that either piece of the code or the whole

code is compiled, significantly improves the overall performance. The performance can in-

crease by a factor of 10, or even more. The implementation of an efficient line search is also

important and it significantly improves the overall performance.

20The part that manipulates the Kronecker product was implemented in C, since the Matlab command
kron.m was very inefficient.
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n cpu time

1 4.00000E-02

2 3.00000E-02

4 1.00000E-01

8 6.70000E-01

16 6.29000E+00

32 1.27250E+02

64 4.40163E+03

Table 4.10: LMILab

n cpu time

1 3.00000E-02

2 1.00000E-02

4 3.00000E-02

8 5.20000E-01

16 2.62000E+01

32 8.14900E+02

64 –

Table 4.11: SP

The performance of the SP code is shown on Table 4.11. This code implements

the Nesterov and Todd’s primal-dual potential reduction method (Vandenberghe and Boyd

(1995)). The code is written in C/C++ with calls to BLAS and LAPACK. It was one

of the first software tools that was developed for semidefinite programing. Table 4.12

presents the SDPpack code (Alizadeh et al. (1998)), which was implemented using Matlab

MEX files. It is a primal-dual path following method, which implements XZ + ZX search

direction, Mehrotra predictor-corrector, and other specialized routines. Table 4.13 presents

the SDPHA code (Fujisawa et al. (1997)), which is another primal-dual path following

method that uses Mehrotra predictor-corrector. And finally Table 4.14 presents the SeDuMi

code from Sturm (1999). This is a recent code which implements the self-dual embedding

technique for optimization over self-dual homogeneous cones.

n cpu time

1 8.000E-01

2 7.000E-02

4 2.500E-01

8 2.480E+00

16 1.269E+02

32 1.907E+03

64 –

Table 4.12: SDPpack

n cpu time

1 1.500E-01

2 6.000E-02

4 2.200E-01

8 1.580E+00

16 1.270E+02

32 1.314E+04

64 –

Table 4.13: SDPHA

n cpu time

1 4.700E-01

2 1.300E-01

4 2.000E-01

8 4.600E-01

16 1.295E+01

32 4.951E+02

64 –

Table 4.14: SeDuMi

Since the above codes are for general SDP problems, where the data should be ex-

pressed in a “standard” SDP form, which is not particularly the standard LMI form or even

an LMI matrix representation (which appears frequently in engineering), we make use of
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the Matlab package LMITOOL, and its graphic GUI editor TKLMITOOL, to act as an

interface for the above SDP codes. In this way, these interfaces provided all the necessary

conversions from LMI to the SDP form. We should make it clear that the timing presented

does not incorporate the time consumed by these interfaces. However, for matrices of size

64 or larger, we were not able to run LMITOOL, since Matlab runs out of memory. We

believe this is not a lack of RAM/Swap memory but rather a Matlab inefficiency on man-

aging a large amount of memory. The computer used was a dual processor Pentium III

(Coppermine), with 1004.530 MHz cpu clock, 4GB of RAM, 4GB of SWAP, running Linux

(kernel 2.4.18-27.7.xsmp) and Matlab version 6.1.0.450 (R12.1).



Chapter 5

Convexifying Method for

Integrating Structure and Control

Design

5.1 Introduction

The history of structure design can be characterized by four eras: In the first era, the

design sought simply to oppose gravity – a statics problem. In the second era, the dynamic

response was important. The third era sought to add control features to an existing structure

design. In the fourth era, the design of the structure and the design of the controller are

integrated so that the dynamics of the control system and the dynamics of the structure are

cooperating, rather than competing, to reduce a selected performance objective. During

the last two decades, the mathematical tools of control theory have produced algorithms

which allow one to bound the dynamic response given a class of uncertain time varying

disturbances. Such tools can now be used for structure design, even if no control is involved.

In this context our approach for structure design allows performance bounds on the dynamic

response of the output, whereas the more standard structural design code focus on the static

response and eigenvalues.

It is a well known fact that the design of the structure and the design of a controller

for a given system are not independent. Consequently, it might happen that both the

control design and the structural design are competing with each other in order to achieve

some prescribed dynamic behavior. That is, more control energy than necessary might be

173
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required to achieve the objectives. This is an important consideration, for instance, in the

control of civil structures since the apparent necessity of large control forces have impeded

the acceptability of control as a viable method to impose structure design. Simultaneous

design (Grigoriadis and Skelton (1998); Housner et al. (1997); Skelton et al. (1992)) can

significantly improve the overall performance of the system, in the sense that either the new

system (designed by this “hybrid” approach) would need a smaller amount of control energy

to attain the same performance, or the new system would provide superior performance than

the systems designed by standard techniques. Unfortunately, the simultaneous design of

structure and controller is not in practice tractable, and results in a nonconvex optimization

problem. The available algorithms are computationally expensive (see Grandhi (1989); Jin

and Sepulveda (1995); Onoda and Haftka (1987); Yang and Chen (1996) and references

therein), without guaranteeing a local minimum. It can be shown that the integrated

structure and control design problem is equivalent to a decentralized output feedback control

problem, which is well known to be hard to solve.

Following a two-step redesign approach, one idea extensively used by Grigoriadis

et al. (1996) and Skelton and Kim (1992) was as follows. In the first step, a controller for

a given nominal structure was designed to meet some prescribed closed loop performance

bound Ω. In a second step, the structure and the controller were simultaneously redesigned

in order to minimize the active control energy subject to the constraint that the closed

loop system matrix is kept constant. This preserves the same level of performance γ from

one iteration to the next. The feature that makes the joint structure/control problem

convex is the constraint that holds the closed loop system matrix constant. Based on

this idea, the algorithm for solving the integrated control and structure problem can be

stated as: i) for a given nominal structure, design the controller; ii) redesign structure and

controller (keeping the closed loop plant matrix constant); iii) with this new plant return

to step i). This constraint on the closed loop system reduces the redesign (iteration ii) to

a constrained convex quadratic programming problem. This was a significant improvement

over the existing methodologies. A further improvement was given in Lu and Skelton

(2000), where the authors considered more general structures and used the mixed H2/H∞

performance criteria via a Linear Matrix Inequality (LMI) framework, but in the redesign

step they still needed the convexifying constraint of matching the system matrix.

A more direct approach via LMI to deal with the integrated structure and control

design that does not impose constraints in the closed loop system matrices was used in

Grigoriadis and Skelton (1998) and Grigoriadis and Wu (1997). The techniques proposed

solve the two-step redesign procedure by iterating between two convex subproblems posed
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as LMIs. The algorithm can be summarized as follows: while keeping the parameters of

the structure fixed, solve a convex control problem; and in a second step, fix the Lyapunov

matrix (which provides the controller) and optimize for the parameters of the structure.

This approach has the drawback that it does not allow the mass matrix to be optimized

and it may have a slow convergence, since the Lyapunov matrix in the structure redesign

step is fixed.

There are few techniques available in the literature that allow one to treat the mass

as an uncertain parameter (Grigoriadis et al. (1996); Housner et al. (1997); Jin and Sepul-

veda (1995); Skelton et al. (1992), among others), though these techniques are not in the

LMI framework. Our algorithm has also the advantage of optimizing directly the physical

parameters of the structure instead of optimizing an uncertain matrix ∆A (Grigoriadis and

Skelton (1998); Hsieh (1992)), and at the end of the redesign, trying to find suitable physical

parameters that match this uncertain matrix ∆A, which might not exist.

This chapter presents a new theory for the simultaneous design of structure and

controller that improves the existing methodologies in two different ways. Our approach

is completely posed in the LMI framework, so many different type of convex performances

and convex constraints can be incorporated. The proposed methodology is an improvement

over the result given in Grigoriadis and Skelton (1998) and Grigoriadis and Wu (1997) since

we do not constrain the Lyapunov matrix to be fixed in any step of the algorithm. The

method also allows one to optimize the mass parameter of the system. More precisely, it

allows one to optimize any parameter that appears affinely in any of the system matrices.

Here we define some notation that will be used in this chapter. The superscript (·)T

and (·)−1 means respectively the transpose and the inverse of a matrix. The operator Tr {}
is the usual trace of a matrix. The operator diag(α1, . . . , αn) stand for a diagonal matrix

whose entries are the elements α1, . . . , αn. The function E [·] is the expectation operator.

5.2 Problem Statement

A large class of dynamic systems in the field of mechanics and structures can be

represented by a second-order differential equation of the form

Mq̈ +Dq̇ + Sq = f(t), (5.1)

where q ∈ Rn is the vector of generalized coordinates, M ∈ Rn×n is the mass matrix,

S ∈ Rn×n is the stiffness matrix, and D ∈ Rn×n is the damping matrix (with only viscous
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damping force D = DT , but if gyroscopic terms are presented, then D is not symmetric).

The mass matrix is assumed to be symmetric and positive define, M = M T > 0. The vector

f(t) is an external force applied to the system. For our purpose, this force will represent the

control input and the disturbance input actuating on the system. So f(t) takes the form

f(t) = B̂uu(t) + B̂ww(t),

where u(t) is the control signal to be determined, and w(t) is the exogenous disturbance.

We cast our problem in the stochastic framework so that w(t) is a white noise process.

However, equivalent results apply when w(t) ∈ L2 (meaning that w(t) is bounded in the

sense of two norm. In other words w(t) has a finite power spectrum).

Using a convenient change of variables given by x =
[
qT q̇T

]T
, the second-order

differential equation (5.1) is promptly written in the state space form

[
I 0

0 M

]
ẋ =

[
0 I

−S −D

]
x+

[
0

B̂u

]
u+

[
0

B̂w

]
w

or equivalently

Eẋ = Ax+Buu+Bww. (5.2)

This is a descriptor representation for this system. This form is frequently adopted when

the matrix E is not invertible.

In our approach for the integrated control and structure design problem, the parame-

ters of the structure which are available for optimization appear in the mass, the damping,

and the stiffness matrices. A very important property assumed here is that the system

equation (5.1) is affine in these parameters. By this affine representation we mean that

M(η) = M0 +
∑

s

ηsMs, D(β) = D0 +
∑

j

βjDj , and S(γ) = S0 +
∑

k

γkSk.

where matrices Ms, Dj , and Sk are given. Since matrix A in (5.2) is affine in D and in S,

and matrix E is affine in M , the system (5.2) can also be written as

E(α) ẋ = A(α)x+Buu+Bw(α)w,

for A(α) and E(α) affine matrices given by

A(α) = A0 +
∑

i

αiAi, E(α) = E0 +
∑

i

αiEi, Bw(α) = Bw0 +
∑

i

αiBwi,
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where the variable α contains, in a convenient way, the variables η, β, and γ, i.e., α =

(η, β, γ). Notice that it is paramount to adopt the descriptor representation (5.2) in order

to preserve the affine property of the mass matrix M , consequently, allowing the mass of

the system to be incorporated into the optimization problem.

Remark 5.2.1 To apply our methodology we do not need explicitly to assume the second-

order representation. Any descriptor system which is affine in the parameters can be used.

We use the second-order representation since we are mainly concerned with mechanical

systems and structures.

5.2.1 The integrated structure and control problem

For simplicity of presentation, we first present the result for the full state feedback

case, with the control gain given by u(t) = Kx(t). Later, in Section 5.5 and Section 5.6,

we present the derivation for the static output and dynamic feedback case, which does not

require much more sophistication. The output vector for performance evaluation is

z(t) = Czx(t). (5.3)

We first present Theorem 5.2.2 which characterizes the control problem for the struc-

ture and control design, with a stochastic interpretation; later, we show its equivalence

to the standard H2 problem. The exogenous disturbance w(t) applied to the system

is assumed to be a stochastic white noise process with intensity W = W T > 0, i.e.,

E [w(t)w(τ)T ] = Wδ(t − τ). Our performance criteria is to minimize the variance of the

control u(t) applied to the system, while the output z(t) is bounded in the sense

lim
t→∞

E [z(t)z(t)T ] < Ω, (5.4)

for some given positive definite matrix Ω.

Theorem 5.2.2 Assume that the disturbance w(t) is a stochastic white noise process with

intensity W = W T > 0. Define F = KP . Let Ω be a given positive definite matrix, and

consider the descriptor system given in (5.2). Then the following statements are equivalent:

(i) There exists structure parameter α, and a stabilizing state feedback gain u(t) = Kx(t)

such that

lim
t→∞
E [z(t)z(t)T ] < Ω



178

and

lim
t→∞

E [u(t)Tu(t)] < γ.

(ii) There exists matrices of compatible dimensions P = P T > 0, U = UT > 0, and F ,

and parameter α, such that the following inequalities are satisfied

[
A(α)PE(α) +E(α)PA(α)T +BuFE(α) +E(α)F TBT

u Bw(α)

Bw(α)T −W−1

]
< 0, (5.5)

Tr {U} < γ,

[
U F

F T P

]
> 0, CzPC

T
z < Ω. (5.6)

(iii) For some constant matrix Z, there exists matrices of compatible dimensions Q = QT >

0, U = UT > 0, and K, and parameter α, such that the following LMI are satisfied




(∗) Bw(α) A(α) +BuK E(α)

Bw(α)T −W−1 0 0

A(α)T +KTBT
u 0 −Q 0

E(α)T 0 0 −Q



< 0, (5.7)

Tr {U} < γ,

[
U K

KT Q

]
> 0,

[
Ω Cz

CT
z Q

]
> 0. (5.8)

where (∗) refers to the term

(−A(α) +BuK −E(α))ZT − Z(A(α) +BuK −E(α))T + ZQZ
T

We present the proof of this theorem in Section 5.4.1, after the necessary tools pro-

vided by the convexifying algorithm have been introduced.

If the matrices A and E do not depend on the structure parameter α, then the

constraint (5.5) in item (ii) is an LMI, hence a convex set, in U , P , and F . In other words,

if the structure is known, the problem reduces to a standard convex state feedback control

problem. If the matrices A and E depend on α, then the product A(α)PE(α) +BuFE(α)

is nonlinear in the decision variables α, F , and P . In this case, it is hard to find a solution.

Even for the pure structural passive design case, where the control gain K is given, the

problem is still nonconvex.

Note that independently of the control parameterK, the product of the system matrix

A(α) and the “Lyapunov” matrix P is always present in (5.5). When the mass matrix

M is fixed (matrix E does not depend on the parameter α), the procedure adopted in
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Grigoriadis and Skelton (1998) and Grigoriadis and Wu (1997) is to iterate between two

convex subproblems: first, for fixed structure parameter α solve for the Lyapunov matrix

P in (5.5); second, for fixed matrix P solve for the parameter of the structure α in (5.5).

This strategy in practice converges slowly to a solution, although there are no guarantee

for a local minimum.

The algorithm we propose in this chapter also iterates between two subproblems, but

in a more elaborate way. Before iterating, we apply some convexifying potential functions

(see Definition 5.3.7) to the nonconvex constraint in order to generate the conditions in

item (iii). Notice that, for a constant matrix Z, these conditions are simultaneously affine

in the variables Q, U , K and α. In this sense the joint structure/control problem has

been “convexified.” Therefore, there will be no need to fix the Lyapunov matrix P in

the redesign step (instead, the fixed matrix will be the added potential matrix Z). The

convexifying potential method and the algorithm will be detailed in the next Section.

Remark 5.2.3 The relation between the control problem presented in Theorem 5.2.2 and

the H2 control control problem is stated in the next lemma. See Boyd et al. (1994); Skelton

et al. (1998) for a proof.

Lemma 5.2.4 (H2 Control Problem) Assume that the disturbance w belongs to space

L2. Then the H2 norm of the closed loop transfer function

Hwz(s) := Cz[sI −E(α)−1Acl(α)]E(α)−1Bw(α)

where Acl(α) := A(α)+BuK, is bounded by
√

Tr {Ω}, i.e, ||Hwz(s)||22 < Tr {Ω} if and only

if the constraints (5.5–5.6) and (5.7–5.8) in Theorem 5.2.2 are feasible for γ →∞.

5.3 The Theory Behind the Convexifying Algorithm

This section describes the convexifying algorithm, which is a practical tool for solving

control problems with structure imposed on the controller. It was shown in de Oliveira

et al. (2000) that many standard control problems such as H2 and H∞ problems with

some imposed structure in the controller can be formulated as an LMI problem having

an extra nonconvex constraint. While most algorithms in the literature are aimed at the

feasibility problem, this new algorithm enable us to pursue the improvement of solutions

for suboptimal control optimization problems that are available.
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We shall now introduce some notation and definitions which will be used throughout

this section. The main reference for the optimality condition presented in this section is

Luenberger (1969) and Maurer and Zowe (1979). In their setup, they have consider quite

general topological spaces (Banach spaces). However, since our setup has an Euclidean

structure, we present the theorems in their original setting, and later, we specialize them

to our finite dimensional case. For vector valued functions, see Canon et al. (1966) and

Mangasarian (1994). The topology and the definitions of derivatives we shall need are

precisely described in Section 4.2.3 from Chapter 4. Thus, we do not repeat them here. In

this topology, the inner product of two matrices A and B is

〈A,B〉 = Tr
{
ABT

}
,

and the norm induced by this inner product is ‖X‖ =
√

Tr {XXT }. The notationW? stand

for the dual space of W (the space of all bounded linear operators onW). The composition

of two functions f1(f2)(x) is also denoted by f1(y) ◦ f2(x).

Definition 5.3.1 (Positive cone) Let K be a closed convex cone in a real Banach1 space

W with vertex at the origin, which is also pointed and proper (K⋂{−K} = {0}). For

x, y ∈ W, we write x ≥ y (with respect to K) if x − y ∈ K. The cone K defining this

ordering is called the positive cone in W. The dual (or polar) cone of K, which we

denoted by K◦, is defined as

K◦ := {` ∈ W? : `(k) ≥ 0 for all k ∈ K}.

Evidently, if W is taken to be Sn, the cone K induces the natural ordering on the

set of positive semidefinite matrices, i.e, for matrices X and Y in Sn, we write X ≤ Y if

Y −X ∈ Sn
+, and we write X < Y if Y −X lies in Sn

++, the set of positive definite matrices

(with analogous definition for ≥ and >).

Definition 5.3.2 (Regular point) Let V and W be real Banach spaces. Let K be a pos-

itive cone satisfying Definition 5.3.1. Let G(x) be a mapping from V to W. Assume the

Fréchet derivative of G(x), denoted by G′(x), exists at x̄ ∈ V. Then x̄ is said to be a reg-

ular point with respect to the constraint G(x) ≤ 0 if G(x̄) ≤ 0 and there is a δx ∈ V such

that

G(x̄) +G′(x̄)δx < 0.

1A Banach space is a complete normed space (Reed and Simon (2000)).
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This condition implies the assumption used in Maurer and Zowe (1979):

0 ∈ int
{
G(x̄) +G′(x̄)δx + k : δX ∈ V, k ∈ K

}
,

where int denotes the topological interior.

This regularity condition essentially eliminates the possibility of the constraint bound-

ary forming a cusp at a point. It also exclude the possibility of incorporating equality

constraints by reducing the cone to a point or by including a constraint and its negative.

The next Theorem 5.3.3 provides the first-order necessary optimality conditions for

the minimization problem stated in (P). This theorem is presented in Luenberger (1969)

[9.4, Theorem 1] and Maurer and Zowe (1979) [3, Theorem 3.2].

Theorem 5.3.3 (Kuhn-Tucker theorem) Let V and W be real Banach spaces. Let K be

a positive cone in W which has a nonempty interior. Let f(x) : V → R and G(x) : V → W
be Fréchet differentiable. Suppose x∗ is a solution of

min f(x) subject to G(x) ≤ 0 (P)

and that x∗ is a regular point with respect to the constraint G(x) ≤ 0. Then, there is a

linear functional ` ∈ K◦ such that

f ′(x∗) + ` ◦G′(x∗) = 0

` ◦G(x∗) = 0.
(5.9)

Remark 5.3.4 In this section we take V ⊂ Rp×q and W to be the space of all symmetric

matrices Sn with K the usual cone of positive semidefinite matrices Sn
+. For this particular

case, using the Riesz representation Theorem2, the above condition (5.9) reduces to

f ′(x∗) + 〈G′(x∗), ψ〉 = 0

〈G(x∗), ψ〉 = 0,
(5.10)

with ψ a self-adjoint positive semidefinite matrix, i.e., ψ ∈ Sn
+.

The next Theorem 5.3.5, from Maurer and Zowe (1979) [5, Theorem 5.2], gives a

second-order sufficient condition for a local minimum of the minimization problem stated

above in (P), when the spaces V and W are assumed to be of finite dimension.

2See footnote on page 100.
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Theorem 5.3.5 (Second-order sufficient condition) Let P denote the set of feasible

points for the minimization problem (P). Let x∗ ∈ P. Let the following set3

KG = {k − λG(x∗) : λ ∈ R, k ∈ K}

be closed and suppose L(x) = f(x) + ` ◦ G(x) is a Lagrangian for (P) at x∗. Assume the

second Fréchet derivative of f ′′(x) and G′′(x) exist at x∗. If

L′′(x)(δx, δx) > 0 for all δx ∈ B, δx 6= 0

with B given by

B =
{
δx ∈ V : −G′(x∗)δx ∈ KG

} ⋂ {
δx : f ′(x∗)δx = 0

}
,

then there are α > 0 and ρ > 0 such that f(x) ≥ f(x∗) + α‖x− x∗‖2 for all {x : G(x) ≤ 0}
with ‖x− x∗‖ ≤ ρ.

The interpretation for the above finite dimensional case, when f(x) : Rn → R and

G(x) : Rn → Rm, is that the Hessian L′′(x) of the Lagrangian L(x) = f(x) +
∑m

i=1 λiGi(x)

must be positive definite on the set of those nonzero directions

δx ∈ {δx : G′
i(x

∗)δx ≤ 0 for i ∈ I1 and G′
i(x

∗)δx = 0 for i ∈ I2}

with

I1 = {i : Gi(x
∗) = 0, λi = 0}, and I2 = {i : Gi(x

∗) = 0, λi 6= 0}.

Definition 5.3.6 (Potential matrix function) Let V ⊂ Rp×q. Let the matrix function

H(x, ξ) : V × V → Sn has a Fréchet derivative H ′(x, ξ) in x defined for all x, ξ ∈ V. Then

H(x, ξ) is called a potential matrix function if the following conditions are satisfied:

i) the matrix H(x, ξ) is positive semidefinite for all x, ξ ∈ V;

ii) for all x, ξ ∈ V satisfying ‖x− ξ‖ < δ, there exists ε > 0 such that H(x, ξ) ≤ ε‖x− ξ‖;

iii) for all x, ξ ∈ V satisfying ‖x−ξ‖ < δ, there exists ε > 0 such that H ′(x, ξ) ≤ ε‖x−ξ‖.

We are especially interested in potential functions with the following property.

3The set T = {δx ∈ V : −G′(x∗)δx ∈ KG} is called the linearizing cone of P at x∗.
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Definition 5.3.7 (Convexifying function) Let V ⊂ Rp×q. A potential matrix function

H(x, ξ) : V ×V → Sn defined for all x, ξ ∈ V is said to be a convexifying function if, for

a given ξ ∈ V, the function H(x, ξ) added to the nonconvex matrix function G(x) : V → Sn

makes the expression

G(x) +H(x, ξ)

a convex4 matrix function in x for all x ∈ V.

We will be looking for potentials that are able to “convexify” a given nonconvex matrix

function G(x) : V ⊂ Rp×q → Sn. However, there might exist many candidates for such

convexifying functions. Independently of a particular choice of the convexifying function,

we state a simple algorithm to find suboptimal solutions to the nonconvex optimization

problem

min
x∈Ω

f(x), Ω := {x ∈ V : G(x) ≤ 0} . (5.11)

Without loss of generality, we can assume f(x) to be linear. We also assume that G(x) is

a nonconvex matrix function and that the set Ω is compact and has a nonempty interior.

Algorithm 5.3.8 Let ε > 0, x0 ∈ Ω and a convexifying potential matrix function H(x, ξ) :

V → Sn be given:

1. For k = 0, 1, 2, . . . , solve the convex optimization problem

xk+1 = arg min
x∈Ωk

f(x), Ωk :=
{
x ∈ V : G(x) +H(x, xk) ≤ 0

}
. (5.12)

The above convex problem is significantly simpler than (5.11), and we assume that its

solution can be obtained by some available convex programming technique.

We now present some properties of the above Algorithm 5.3.8. Assume that for each k

the set Ωk has a nonempty interior. At every iteration k, we have Ωk ⊂ Ω, sinceH(x, xk) ≥ 0

for all x ∈ Ωk implies

G(x) ≤ G(x) +H(x, xk) ≤ 0.

Thus x ∈ Ωk implies x ∈ Ω. In particular, this holds for the solution xk+1 of the convex

subproblem. Moreover, the solution xk+1 is a feasible starting point for the next iteration,

since G(xk+1) ≤ 0 and consequently

xk+1 ∈ Ωk+1 :=
{
x ∈ V : G(x) +H(x, xk+1) ≤ 0

}
.

4A precise definition of convex matrix function is found in Section 3.2.4 from Chapter 3, where theoretical
and numerical tools for checking convexity of matrix function are also provided.
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This proves that when x0 ∈ Ω, Algorithm 5.3.8 generates a sequence of feasible solutions.

Furthermore, as xk and xk+1 belong to Ωk, we have from (5.12) that f(xk+1) ≤ f(xk). Thus,

the sequence {f(xk)} is monotonically decreasing. Since the set Ω is bounded, the linear

function f(x) is bounded from below, and consequently the sequence {f(xk)} converges (to

a point which we denote by f ∗).

Assuming at each iteration k, that the suboptimal value xk+1 from the convex sub-

problem (5.12) is a regular point, then from the Kuhn-Tucker condition (5.10), there exists

a positive semidefinite symmetric matrix ψk+1 ≥ 0 such that

f ′(xk+1) + 〈G′(xk+1) +H ′(xk+1, xk), ψk+1〉 = 0

〈G(xk+1) +H(xk+1, xk), ψk+1〉 = 0
(5.13)

Since the range of {xk} lies in the compact set Ω, then some subsequence {xkj} converges

to a point in Ω, analogously, ‖xkj+1 − xkj‖ → 0 as k → ∞. Assume this subsequence is

such that f(xkj )→ f∗. Then, from the definition of the potential matrix function given in

(5.3.6), we have

‖H(xkj+1, xkj )‖ → 0 and ‖H ′(xkj+1, xkj )‖ → 0.

Consequently, at the limit, (5.13) equals (5.10), which is the generalized Kuhn-Tucker con-

dition for the original nonconvex problem. If a solution x∗ satisfies the conditions in Theo-

rem 5.3.5, then x∗ is a minimum of the original nonconvex problem.

Remark 5.3.9 In practice, the algorithm needs to stop in a finite number of iterations.

This can be ensured by enforcing the stopping criteria

‖f(xk+1)− f(xk)‖ < ε. (5.14)

Using this criteria, one can no longer guarantee the existence of a convergent subsequence.

However, this does not exclude the possibility of a solution be attained in a finite number of

iterations, i.e., at some iteration k, the solution xk+1 of the convex subproblem may satisfies

‖f ′(xk+1) + 〈G′(xk+1), ψ〉‖ < δ

‖〈G(xk+1), ψ〉‖ < δ
(5.15)

for some ψ ≥ 0. Since, there exists a xk+1 for k large enough such that (5.15) holds, a

possible stopping criteria is to impose (5.14) and (5.15) with ε << δ.

Remark 5.3.10 The presentation in this section has considered uniquely functions of a

single variable x. However, the extension to the multivariate case where the functions are

defined on a tuple x = {x1, . . . , xr} is immediate.



185

5.4 Applying the Convexifying Theory

In the integrated design problem stated herein, we do not impose constraints on the

control gain matrix, although the control law could be subject to arbitrary affine structural

constraints, enabling one to solve complex joint structure/control design problems. How-

ever, it is possible to show that the free structural parameters create the equivalence of

a decentralized control problem where the “control” gain matrix is diagonal. In order to

elaborate more on this point define

∆ =




α1I
. . .

αiI
. . .



, I =

[
I · · · I · · ·

]
,

A =




A1

...

Ai

...



, Bw =




Bw1

...

Bwi

...



, E =




E1

...

Ei

...



.

Then the matrices A(α), Bw(α), and E(α) can be written as

A(α) = A0 + I∆A

Bw(α) = Bw0 + I∆Bw

E(α) = E0 + I∆E

and the system equation (5.2) as

(E0 + I∆E)ẋ = (A0 + I∆A)x+BuKx+ (Bw0 + I∆Bw)w

which after some manipulation gives:

E0ẋ = (A0 +BuK)x+ Iũ+Bw0w

with

u1 = ∆y1 y1 = Eẋ

u2 = ∆y2 y2 = Ax

u3 = ∆y3 y3 = Bww
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and ũ given by ũ = u2 + u3 − u1

If yi were a set of available measurements, and ∆ were a diagonal control gain multi-

plying the measurements yi, then the structure design problem has the same mathematical

structure as a problem where the “control” signal ui depends only on the ith “measurement”

signal yi. In control jargon, this is called “decentralized” control. In general the imposition

of structure in the control gain matrix is called a “decentralized control problem,” and the

mathematics needed to solve this problem are the same (find diagonal ∆) as the structural

design problem posed herein.

In order to apply the convexifying idea to the integrated structure and control design,

we shall define the nonconvex function G(x) we are interested in. From the set of conditions

(ii) given in Theorem 5.2.2 we have that the constraint with nonlinear terms is (5.5).

Completing the squares, this inequality can be manipulated into
[
Acl(α,K)PE(α) +E(α)PAcl(α,K)T Bw(α)

Bw(α)T −W−1

]
=

[
(∗) Bw(α)

Bw(α)T −W−1

]
< 0.

with the term (∗) given by

(∗) = Acl(α,K)PAcl(α,K)T +E(α)PE(α)T − (Acl(α,K)−E(α))P (Acl(α,K) −E(α))T

and Acl(α,K) = A(α) + BuK. Using Schur complements5, the above inequality can be

equivalently written as

G(x) :=




− (Acl(α,K)−E(α))P (Acl(α,K) −E(α))T Bw(α) Acl(α,K) E(α)

Bw(α)T −W−1 0 0

Acl(α,K)T 0 −Q 0

E(α)T 0 0 −Q



< 0.

(5.16)

where Q = P−1 and x := (P, α,K).

We can now define a convexifying function H(x, η) that makes G(x)+H(x, η) matrix

convex in x. For this purpose, let η := (P̄ , ᾱ, K̄), the matrix Z(η) be

Z(η) :=
(
Acl(ᾱ, K̄)−E(α)

)
P̄ ,

and the function H(x, η) be given by

H(x, η) = (Z(x)− Z(η))(Z(x) − Z(η))T

= (Acl(α,K) −E(α) − Z(η)P−1)P (Acl(α,K)−E(α) − Z(η)P−1)T .
(5.17)

5The matrix Π =

[
Φ Γ
ΓT ∆

]
is negative definite (Π < 0) if and only if ∆ < 0 and Φ − Γ∆−1ΓT < 0. The

matrix Φ − Γ∆−1ΓT is called a Schur complement of matrix Π.
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The above convexifying function H(x, η) satisfies all the assumptions given in Defini-

tion 5.3.6. It satisfies the first assumption i), since H(x, η) is positive semidefinite for all

x, η. It is also immediate to see that H(x, η)→ 0 whenever x→ η, satisfying in this way as-

sumption ii). Noting that H(x, η) is affine in x, its first directional derivative DH(x, η)[δx]

in the direction δx has the form (Z(x)− Z(η))Z(δx)T + Z(δx)(Z(x)− Z(η))T . Consequently,

whenever x → η, one obtain that DH(x, η)[δx] → 0 for all δx (similarly, H ′(x, η) → 0).

Thus H(x, η) also satisfies condition iii).

Adding the convexifying function H(x, η) just defined in (5.17) to the first block of the

nonconvex matrix function G(x) given in (5.16), we obtain the following matrix inequality




(∗) Bw(α) A(α) +BuK E(α)

Bw(α)T −W−1 0 0

A(α)T +KTBT
u 0 −Q 0

E(α)T 0 0 −Q



< 0.

with the term (∗) given by

−(A(α) +BuK −E(α))Z(η)T − Z(η)(A(α) +BuK −E(α))T + Z(η)QZ(η)T

Which is the inequality (5.7) given in Theorem 5.2.2. In this form, the Lyapunov matrix

P = Q−1 and the system matrices A(α) and E(α) no longer appear as products. Instead,

these products have been replaced by products with Z(η), which has been introduced with

the convexifying function. Notice that η is kept constant and equal to η = xk in the convex

subproblems to be solved of the form (5.12).

Considering as the objective function to be minimized an upper bound on the covari-

ance of the control energy, that is, f = γ > E [u(t)Tu(t)], the ideas explained so far are

summarized in the algorithm below. The feasible set G for this problem is given by

G := {(γ, α,K,Q,U) : satisfying the set of inequalities (5.7)-(5.8)} .

Convexifying Algorithm for Structural Control – CASC

Let f = min γ.

Set the nominal values for α0, A0, and E0.

Compute K0 and P0 by finding a feasible solution to

the convex conditions given in item (ii) of Theorem 5.2.2.

Set ε to some prescribed tolerance and k = 0.
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Repeat

Set Z
k ← (Ak

cl(α
k)−E(αk))P k.

For fixed Z = Z
k, solve fk = min γ

subject to (γ, α,K,Q,U) ∈ closure(G).
Denote the solution (α∗,K∗, Q∗, U∗).

Set
(
αk+1,Kk+1, P k+1

)
←
(
α∗,K∗, Q∗−1

)
.

k ← k + 1.

Until ||fk − fk−1|| < ε

It is possible to add an extra step to the above algorithm: before setting Z
k ←

(Ak
cl(α

k) − E(αk))P k, we update P k by solving the LMI (5.7-5.8) with α = αk. In our

experiments, this extra step sometimes provides a faster convergence of the CASC algorithm.

5.4.1 Proof of Theorem 5.2.2

This section provides the technical details needed for the proof of Theorem 5.2.2.

Proof. The discussion in the previous section can be used to show the equivalence

between conditions (ii) and (iii) given in Theorem 5.2.2. If the constraints in (ii) have

a feasible solution x := (P , α, F P
−1

), then G(x) < 0. Hence the constraints in (iii)

also have a feasible solution for some Z(x̄), since H(x, x) = 0 from the definition of the

convexifying function. Conversely, if the constraints (iii) have a feasible solution x, η, then

G(x)+H(x, η) < 0. SinceH(x, η) ≥ 0 by assumption, we have thatG(x) ≤ G(x)+H(x, η) <

0, and consequently the constraints in (ii) are also feasible.

The equivalence between (i) and (ii) in Theorem 5.2.2 is provided by the following

argument. Since, by assumption, the mass matrix M(α) is positive definite for all α of

interest, the matrix E(α) is invertible. Hence, for the state feedback law given by u(t) = Kx,

the closed loop descriptor system

E(α) ẋ = (A(α) +BuK)x+Bw(α)w,

E(α) ẋ = Acl(α)x +Bw(α)w.

can be equivalently written in standard state space form as

ẋ = E(α)−1(Acl(α)x+Bw(α)w),

ẋ = Acl(α)x+Bw(α)w.
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For the above stable state space system it is a standard result (Skelton et al. (1998))

that the conditions in item (i) of Theorem 5.2.2 hold if, and only if

E [u(t)Tu(t)] = Tr
{
KPKT

}
< γ and E [z(t)z(t)T ] = CzPC

T
z < Ω,

where the symmetric positive definite matrix P is a feasible solution to the Lyapunov

inequality

Acl(α)P + PAcl(α)T +Bw(α)WBw(α)T < 0.

This matrix P is an upper bound to the closed loop controllability Grammian. Applying

a congruence transformation (which preserves the inertia of the inequality) by multiplying

on the left and on the right side by the symmetric matrix E(α), we obtain the equivalent

inequality

Acl(α)PE(α) +E(α)PAcl(α)T +Bw(α)WBw(α)T < 0.

Using a Schur complement, it is possible to show that the above inequality is equivalent to

[
Acl(α)PE(α) +E(α)PAcl(α)T Bw(α)

Bw(α)T −W−1

]
< 0. (5.18)

Noting that Acl(α) = A(α)+BuK and F = KP , inequality (5.18) becomes inequality (5.5)

given in (ii). To show (5.6) we introduce the auxiliary symmetric variable U such that

U > KPKT = FP−1F T

then γ > Tr {U} > Tr
{
KPKT

}
. Hence, using a Schur complement, this inequality is

equivalent to

Tr {U} < γ,

[
U F

F T P

]
> 0.

This completes the proof.

5.5 Static Output Feedback

This section extends the result provided by Theorem 5.2.2 to the static output feed-

back case without noise measurements. Let us define the available noise free measurements

y(t) for feedback by y(t) = Cyx(t). Thus, the control law is now given by u = KCyx.
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Theorem 5.5.1 Assume that the disturbance w(t) is a stochastic white noise process with

intensity W = W T > 0. Let Ω be a given positive definite matrix, and consider the descrip-

tor system given in (5.2). Then the following statements are equivalent:

(i) There exists structure parameter α, and a stabilizing static output feedback gain u(t) =

KCyx(t) such that

lim
t→∞
E [z(t)z(t)T ] < Ω

and

lim
t→∞

E [u(t)Tu(t)] < γ.

(ii) For some constant matrix Z, there exists matrices of compatible dimensions Q = QT >

0, U = UT > 0, and K, and parameter α, such that the following LMI are satisfied



(∗) Bw(α) (A(α) +BuKCy) E(α)

Bw(α)T −W−1 0 0

(A(α) +BuKCy)
T 0 −Q 0

E(α)T 0 0 −Q



< 0,

[
Ω Cz

CT
z Q

]
> 0, Tr {U} < γ,

[
U KCy

CT
y K

T Q

]
> 0.

where (∗) refers to the term

(∗) = −(A(α) +BuKCy −E(α))ZT − Z(A(α) +BuKCy −E(α))T + ZQZ
T

Proof. The proof is quite straight, and follow from the proof of Theorem 5.2.2 by replacing

the state feedback gain K by the static output feedback gain KCy.

5.6 Full-order Dynamic Output Feedback

This section now extends the result to the full-order dynamic feedback case. Assume

that the disturbances w(t) and v(t) are uncorrelated stochastic white noise process with

intensity W = W T > 0 and V = V T > 0 respectively. Let the controlled output for

performance evaluation be z(t) = Czx, and the measurements available for feedback be

given by y(t) = Cyx+ v. Then, the system takes the form:

E(α) ẋ = A(α)x +Buu+Bw(α)w

z = Czx

y = Cyx+
(
0 I

)(w
v

)
.

(5.19)



191

Where the controller, instead of a constant gain, is now a strictly proper (Dc = 0) dynamic

feedback law given by

u = Ccxc

ẋc = Acxc +Bcy.
(5.20)

Theorem 5.6.1 below characterize the integrate structure and control design problem

for the dynamic output feedback case.

Theorem 5.6.1 Assume that the disturbances w(t) and v(t) are uncorrelated stochastic

white noise process with intensity W = W T > 0 and V = V T > 0 respectively. Define

V = CT
y V

−1Cy. Let the controller be given by (5.20). Let Ω be a given positive definite

matrix, and consider the descriptor system given in (5.19). Then the following statements

are equivalent:

(i) There exists structure parameter α, and a dynamic output feedback controller such

that

lim
t→∞
E [z(t)z(t)T ] < Ω

and

lim
t→∞

E [u(t)Tu(t)] < γ.

(ii) There exists matrices of compatible dimensions P = P T > 0, X = XT > 0, and F ,

and parameter α, such that the following inequalities are satisfied

[
A(α)PE(α) +E(α)PA(α)T +BuFE(α) +E(α)F TBT

u Bw(α)

Bw(α)T −W−1

]
< 0 (5.21)

[
XE(α)−1A(α) +A(α)TE(α)−1X − V XE(α)−1Bw(α)

Bw(α)TE(α)−1X −W−1

]
< 0 (5.22)

Ω > CzPC
T
z ,




U F 0

F T P I

0 I X


 > 0, Tr {U} < γ. (5.23)

(iii) For some constant matrices Z, Z1, Z2, Z3, and Z4, there exists matrices of compatible

dimensions Q = QT > 0, X = XT > 0, and K, and parameter α, such that the
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following LMI are satisfied:



(∗1) Bw(α) A(α) +BuK E(α)

Bw(α)T −W−1 0 0

A(α)T +KTBT
u 0 −Q 0

E(α)T 0 0 −Q



< 0 (5.24)




(∗2) Bw(α) A(α) E(α) Z2V

Bw(α)T −W−1 0 0 0

A(α)T 0 −X 0 0

E(α)T 0 0 −0.5X 0

VZ
T
2 0 0 0 −X




< 0 (5.25)

[
Ω Cz

CT
z Q

]
> 0,

[
U K

KT Q+ Z4XZ
T
4 −QZ

T
4 − Z4Q

]
> 0, Tr {U} < γ, (5.26)

where (∗1) refers to the term

(∗1) = −(A(α) +BuK −E(α))ZT − Z(A(α) +BuK −E(α))T + ZQZ
T

and (∗2) refers to the term

(∗2) = Z1XZ
T
1 − Z1(A(α) −E(α))T − (A(α) −E(α))ZT

1 + Z2VZ
T
2

+ Z3XZ
T
3 − Z3(Z2V−E(α))T − (Z2V−E(α))ZT

3 .

In this case, one such dynamic controller is given by

Ac = E(α)−1BuCc +
[
X−1E(α)−1A(α) + (E(α)−1A(α) −BcCy)P

+E(α)−1Bw(α)WBw(α)TE(α)−1
]
(P −X−1)−1

Bc = X−1CT
y V

−1

Cc = F (P −X−1)−1

Dc = 0

(5.27)

with P = Q−1 and F = KP .

5.6.1 Proof of Theorem 5.6.1

The equivalence between condition (i) and (ii) in Theorem 5.6.1, along the formula

for the controller given by (5.27), is a standard result which is provided in (Skelton et al.

(1998)). So, we should only demonstrate the equivalence between condition (ii) and (iii).
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Let us start by showing the equivalence between (5.21) and (5.24). By defining K = FP −1,

the matrix inequality (5.21) becomes

[
(A(α) +BuK)PE(α) +E(α)P (A(α)T +KTBT

u ) Bw(α)

Bw(α)T −W−1

]
< 0.

This expression is exactly the same as the MI given in (5.5) for the full state feedback case.

Thus, by applying the same convexifying function H(x, η) given in (5.17), we obtain LMI

(5.24).

Let us proceed by showing that MI (5.22) is equivalent to LMI (5.25). Applying Schur

complements, the MI (5.22) can be equivalently written as:

XE(α)−1A(α) +A(α)TE(α)−1X − V +XE(α)−1Bw(α)WBw(α)TE(α)−1X < 0.

Multiplying both sides of the above equation by Y = X−1, we obtain

E(α)−1A(α)Y + Y A(α)TE(α)−1 − Y VY +E(α)−1Bw(α)WBw(α)TE(α)−1 < 0.

Multiplying by E(α) gives

A(α)Y E(α) +E(α)Y A(α)T −E(α)Y VY E(α) +Bw(α)WBw(α)T < 0.

And finally, by Schur complement, we have

[
A(α)Y E(α) +E(α)Y A(α)T −E(α)Y VY E(α) Bw(α)

Bw(α)T −W−1

]
< 0. (5.28)

However, the first entry in this matrix inequality, the expression

A(α)Y E(α) +E(α)Y A(α)T −E(α)Y VY E(α)

is not convex and thus need to be convexified. To simplify the derivations, we split this

expression in two terms

Θ := A(α)Y E(α) +E(α)Y A(α)T and Γ := −E(α)Y VY E(α),

so that we can convexify each one of these terms independently.

In order to determine a suitable potential function, we need to express the term Θ in

a more convenient way by completing its square. After completing its square, the term Θ

becomes

Θ = −(A(α)−E(α))Y (A(α) −E(α))T +A(α)Y A(α)T +E(α)Y E(α).
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Substituting this formula back into the matrix inequality (5.28), and applying Schur com-

plements, we obtain 


(∗) Bw(α) A(α) E(α)

Bw(α) −W−1 0 0

A(α)T 0 −X 0

E(α)T 0 0 −X



< 0 (5.29)

where the term (∗) is given by

(∗) = −(A(α) −E(α))Y (A(α) −E(α))T −E(α)Y VY E(α),

and X = Y −1. This MI is evidently equivalent to the MI given in (5.28), and thus the

problem now resumes to convexify the following expression

−(A(α)−E(α))Y (A(α) −E(α))T −E(α)Y VY E(α).

To simplify subsequents derivations, we split again this expression as

Θ := −(A(α) −E(α))Y (A(α) −E(α))T and Γ := −E(α)Y VY E(α).

5.6.2 Convexifying the term Θ

We need to provide a potential function for the nonconvex term

Θ = −(A(α) −E(α))Y (A(α) −E(α))T .

In the derivations to be presented, we have suppressed the dependence of Z(η) and H(x, η)

on x and η. Let us define Z1 = (A(α)−E(α))Y , and take the potential function H1 to be

H1 = (A(α) −E(α) − Z1Y
−1)Y (A(α) −E(α) − Z1Y

−1)T .

Or equivalently

H1 = (A(α) −E(α))Y (A(α) −E(α))T + Z1Y
−1

Z
T
1

− Z1(A(α)−E(α))T − (A(α) −E(α))ZT
1 .

Adding the term H1 to the MI given in (5.29), we obtain




(∗) Bw(α) A(α) E(α)

Bw(α)T −W−1 0 0

A(α)T 0 −X 0

E(α)T 0 0 −X



< 0, (5.30)
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where the term (∗) is given by

(∗) = −E(α)Y VY E(α) + Z1XZ
T
1 − Z1(A(α) −E(α))T − (A(α) −E(α))ZT

1

with Y = X−1. The term Θ has now been convexified, however, the above MI (5.30) is still

not convex, since it contains the term Γ = −E(α)Y VY E(α), which was not accounted in

the above manipulations.

5.6.3 Convexifying the term Γ

Now, we show how to convexify the term Γ. For this specific term, we will have to

apply two consecutive potential functions. Let us define the first potential function H2 for

the term Γ as

H2 = (E(α) + Z2Y
−1)Y VY (E(α) + Z2Y

−1)T

Defining Z2 = −E(α)Y , this expression can be equivalently written as

H2 = E(α)Y VY E(α) + Z2VZ
T
2 + Z2VY E(α) +E(α)Y VZ

T
2

Adding this potential function H2 to the MI (5.30), we obtain




(∗) Bw(α) A(α) E(α)

Bw(α)T −W−1 0 0

A(α)T 0 −X 0

E(α)T 0 0 −X



< 0 (5.31)

where the term (∗) is given by

(∗) = Z1XZ
T
1 − Z1(A(α)−E(α))T − (A(α) −E(α))ZT

1 + Z2VZ
T
2

+ Z2VY E(α) +E(α)Y VZ
T
2

Due to the term Z2VY E(α) + E(α)Y VZ
T
2 , this MI (5.31) is still not convex. Thus,

we should define a suitable potential function for this term. However, we first manipulate

this expression by completing its square:

Z2VY E(α) +E(α)Y VZ
T
2 =

− (Z2V−E(α))Y (Z2V−E(α))T + Z2VY VZ
T
2 +E(α)Y E(α)T .
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Substituting this expression into the MI (5.31), we obtain




(∗) Bw(α) A(α) E(α)

Bw(α)T −W−1 0 0

A(α)T 0 −X 0

E(α)T 0 0 −X



< 0

with the term (∗) given by

(∗) = Z1XZ
T
1 − Z1(A(α) −E(α))T − (A(α) −E(α))ZT

1 + Z2VZ
T
2

− (Z2V−E(α))Y (Z2V−E(α))T + Z2VY VZ
T
2 +E(α)Y E(α)T .

Finally, by applying Schur complements, this inequality can be further simplified to




(∗) Bw(α) A(α) E(α) Z2V

Bw(α)T −W−1 0 0 0

A(α)T 0 −X 0 0

E(α)T 0 0 −0.5X 0

VZ
T
2 0 0 0 −X




< 0 (5.32)

with the term (∗) given by

(∗) = Z1XZ
T
1 − Z1(A(α) −E(α))T − (A(α) −E(α))ZT

1

+ Z2VZ
T
2 − (Z2V−E(α))Y (Z2V−E(α))T .

This MI (5.32) is naturally identical to the MI (5.31), since we have only manipulated

the nonconvex term by completing its square. In this way, the nonconvex term to be

convexified is now given by

−(Z2V−E(α))Y (Z2V−E(α))T .

A possible potential function H3 for this expression is given by

H3 = (Z2V−E(α) − Z3Y
−1)Y (Z2V−E(α) − Z3Y

−1)T .

Or equivalently

H3 = (Z2V−E(α))Y (Z2V−E(α))T + Z3Y
−1

Z
T
3 − Z3(Z2V−E(α))T

− (Z2V−E(α))ZT
3

with Z3 = (Z2V−E(α))Y .
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To obtain the final expression, we must add this potential H3 to the MI (5.32). By

doing so, we obtain the following LMI:



(∗) Bw(α) A(α) E(α) Z2V

Bw(α)T −W−1 0 0 0

A(α)T 0 −X 0 0

E(α)T 0 0 −0.5X 0

VZ
T
2 0 0 0 −X




< 0

with the term (∗) given by

(∗) = Z1XZ
T
1 − Z1(A(α)−E(α))T − (A(α) −E(α))ZT

1 + Z2VZ
T
2 + Z3XZ

T
3

− Z3(Z2V−E(α))T − (Z2V−E(α))ZT
3 .

Which is exactly the LMI given in (5.25). The final convexifying function is thus given by

H2 +H3.

The only part missing now, is to show the equivalence between (5.23) and (5.26).

Since Q = P−1 and K = FP−1 = FQ, the inequality (5.23) can be manipulate as



U KP 0

PKT P 0

0 0 X


 > 0 ⇔

[
U KP

PKT P −X−1

]
> 0.

Which, by applying the following congruence transformation
[
I 0

0 P−1

][
U KP

PKT P −X−1

] [
I 0

0 P−1

]
> 0

gives [
U K

KT Q−QX−1Q

]
> 0. (5.33)

The above expression QX−1Q is not convex, but can be convexified with the following

convexifying function:

H4 = (QX−1 − Z4)X(QX−1 − Z4)
T = QX−1Q+ Z4XZ

T
4 −QZ

T
4 − Z4Q.

Where Z4 = QX−1. Now, by adding the potential H4 to the above MI (5.33), we obtain

the LMI given in (5.26):
[
U K

KT Q+ Z4XZ
T
4 −QZ

T
4 − Z4Q

]
> 0.

This complete the proof of Theorem 5.6.1.
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5.7 Numerical Results

5.7.1 The CASC algorithm versus the two-step redesign approach

We present an experiment which compares the behavior of the CASC algorithm with

the TSRED algorithm (the two-step redesign approach).

Algorithm 5.7.1 (The TSRED algorithm) Let α, Ω, E, W , and Bu be given.

1. For fixed α, evaluate A(α) and Bw(α). Then, design a controller K = FP−1 by

solving the LMI problem (5.5)-(5.6) in Theorem 5.2.2 for F , P , and U .

2. For fixed Lyapunov matrix P , redesign the structure parameter α by solving the LMI

problem (5.5)-(5.6) for α, F , and U .

3. Until convergence, go back to 1.

Note that the mass matrix E in this approach is not allowed to be redesigned. This is not

the case for the CASC algorithm, where matrix E can also be affine in α.

The dynamical system for this example is a three-degree-of-freedom mass-spring sys-

tem described in Figure 5.1. This class of model can represent many engineering systems.

In the experiment to be presented, we did not use realistic data, since the main point is a

comparative exposition of our method. However, in the next section, we provide a fairly

realistic application of the CASC algorithm to the design of a civil engineering structure.

PSfrag replacements

u

m1 m2 m3

k1 k2

d1 d2

Figure 5.1: A 3-DOF mass-spring system

In this model, m1, m2, and m3 are the mass of each one of the car. Their nominal

values are taken to be m1 = 4, m2 = 2, and m3 = 10, The nominal value of the stiffness

of the spring elements connecting those cars are k1 = 1 and k2 = 1. The nominal value for

the damping coefficient are d1 = 0.01 and d2 = 0.01. The controller, which we denote by u,

is applied to the mass m2. The states are the displacement and velocity of each mass mi,
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Table 5.1: Bound on the performance

mass E x2
i E ẋ2

i

m1 50 250

m2 150 250

m3 150 500

relative to a fix referential. Thus xi represents the displacement of mi and ẋi its velocity.

The disturbance is a unitary white noise applied to each one of the states.

The problem we are interested is the simultaneous design of the controller u and

the parameters k1 and d1. We minimize the variance of the controller u imposing that

the variance of the displacement and of the velocity of each mass are bounded by some

prescribed value. These performance bounds are presented in Table 5.1.

Since we minimize only two parameters k1 and d1, the levelcurve for this example can

be easily described by a plot. By a brute force procedure, we found the optimal values for

the parameters to be k∗1 = 0.475 and d∗1 = 1.010. For these values, the required control

energy is given by ||u||22 = 0.118. We solve the simultaneous structure and control problem

using the TSRED algorithm and the CASC algorithm for four different initial conditions,

given by (d1, k1) = {(1, 1), (6, 0.5), (10, 1.5), (1, 2)}.

Figure 5.2 presents the results corresponding to TSRED algorithm. After 1000 itera-

tions this approach did not converge to the optimal solution k∗1 and d∗1, for any of the initial

guess.
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Figure 5.2: Solution path for the TSRED algorithm
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On the other hand, the CASC algorithm converged in less than 150 iterations for all

the above initial guess. The levelcurve and the solution path are presented in Figure 5.3.
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Figure 5.3: Solution path for the CASC algorithm

5.7.2 Isolating a civil engineering structure against earthquakes

To illustrate the proposed methodology for solving the integrated control and struc-

ture optimization problem in the LMI framework, we choose the problem of isolating a civil

engineering structure against earthquakes. This will not be a comprehensive presentation

on how to solve this specific structure problem, but rather on providing efficient tools for

this purpose.

The field of controlling vibrations of structures against earthquakes has attracted the

interest of many researchers. The references Kose et al. (1998); Ramalho et al. (2000);

Spencer Jr. et al. (1998) provide a concise explanation of the structural problem, and a

benchmark comparison of various structural control algorithms applied in an evaluation

model obtained from experimental data.

The model of the system in consideration is shown in Figure 5.4. This is a three-

degree-of-freedom version of the same structure used in Ramalho et al. (2000). The nominal

values for this system are given in Table 5.2. The control inputs ui are independent forces

applied to each floor. Hence, for the model (5.2), B̂u = I, the matrix B̂w is given by

B̂w = (m1,m2,m3)
T , and the disturbance vector w is assumed to be a white noise process

with intensity W = 16 [m2/s4], which represents the earthquake acceleration of the ground

motion ẍg in Figure 5.4.
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ẍg

PSfrag replacements

u1

u2

u3

m1

m2

m3

k1

k2

k3

d1

d2

d3

ẍg

Figure 5.4: 3-DOF model

Table 5.2: Nominal Structural Parameters

Floor

Masses

Stiffness

Coefficients

Damping

Coefficients

[Kg] [kN/m] [kN·s/m]

m1 = 5897 k1 = 33732 d1 = 67

m2 = 5897 k2 = 29093 d2 = 58

m3 = 5897 k3 = 28621 d3 = 57

The dynamics of the above system is described by Eq. (5.2) with the mass matrix

M given by M = diag(m1,m2,m3), and the stiffness matrix S and the damping matrix D

given by:

S =




k1 + k2 −k2 0

−k2 k2 + k3 −k3

0 −k3 k3


 , D =




d1 + d2 −d2 0

−d2 d2 + d3 −d3

0 −d3 d3


 .

The states are the displacement and the velocity of each floor relative to the ground, i.e.:

qi represents the displacement of the mass mi, and q̇i its velocity.

We are interested in the simultaneous design of the parameters of the structure and

the controller, using the control implementation stated in Theorem 5.2.2. We seek designs

which limit the variance of the inter-story drift z1 = q1, zi+1 = qi+1 − qi, i = 1, 2, and their
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velocities zi+3 = żi. Thus the output Cz is given by

Cz =




1 0 0 0 0 0

−1 1 0 0 0 0

0 −1 1 0 0 0

0 0 0 1 0 0

0 0 0 −1 1 0

0 0 0 0 −1 1




.

We seek to bound the output variances such that E z2
i ≤ 0.0002 [m] and E ż2

i ≤ 0.3 [m/s],

for i = 1, 2, 3. Thus the diagonal of the output covariance matrix CzPC
T
z of the closed loop

system should be bounded by Ω, that is C i
zPC

i
z
T
< Ωi, with the bound Ω given by

Ω =
(
2× 10−4, 2× 10−4, 2× 10−4, 0.3, 0.3, 0.3

)
.

In our notation, C i
z means the ith row of the matrix Cz. Note that C i

zPC
i
z
T
< Ωi is a

convex constraint.

For all runs the stopping criteria was the relative error on the control energy between

two successive iterations (E [(uk+1)Tuk+1]−E[(uk)Tuk])/ E [(uk)Tuk] is less than 5×10−4 for

ten consecutive times.

We assume that the lower and the upper bounds on all the parameters are 0.5 and

2.0 of the nominal values in Table 5.2. For brevity, we will call the standard deviation of

the control
√
E [uTu] the “control effort.”

Example 5.7.1 [k2, d2] In this first example, the parameters to be redesigned are the spring

stiffness k2 and the damping coefficient d2. We found by an exhaustive search the global

optimum for the integrated structure and control design problem. These optimal values are

k2 = 26699 [kN/m] and d2 = 116 [kN·s/m], which gives the global minimal control effort
√
E [uTu] =

√
3276393 [kN] required to achieve the design output performance Ω.

Now, we simulate our CASC algorithm. First, an initial controller K0 using the nom-

inal parameters in Table 5.2 is determined, by solving the LMIs (5.5-5.6) in Theorem 5.2.2

(which for fixed α it is a convex problem). The initial controller evaluated in this way is

K0 =




−176699 −319360 −8245 −11994 −9657 −5625

203413 −134380 −189180 −9614 −16822 −16588

33250 47538 −186040 −5598 −16624 −27045


 . (5.34)
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For this initial controller, the control effort is
√
E [uTu] =

√
4408517 [kN]. Note that if the

designer is not allowed to change the parameters of the structure, then the initial controller

K0 provides the best required performance using the least control effort, which is much

higher than the globally optimal effort given by
√
E [uTu] =

√
3276393 [kN].

We proceed with the algorithm CASC (integrated design) generating the results in

Figure 5.5. After 26 iterations the algorithm converged to the solution k∗2 = 26751 [kN/m],

d∗2 = 116 [kN·s/m], and the control gain

K∗ =




−160292.2 −148749.9 −702.4 −9389.4 −7226.0 −5614.1

187423.4 −175483.0 −149112.4 −7176.1 −14506.8 −15039.6

93662.9 −77905.2 −134451.6 −5640.8 −15032.6 −22546.2


 ,

which provides a control effort of
√
E [uTu] =

√
3276453 [kN].
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Figure 5.5: Example 1 (k2, d2): Integrated design using CASC

For this controller K∗, the achieved output performance, the diagonal of the matrix
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CzPC
T
z , is 



0.00019999806470

0.00019999608202

0.00006581424510

0.29217688567246

0.23757322272961

0.14359776862926




.

This shows that the constraints E z2
1 , E z2

2 , and E ż2
1 are active (Table 5.4).

Example 5.7.2 (k2, d2, m2) We start this example with the same initial controller K0, but
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Figure 5.6: Example 2 (k2, d2, m2): Integrated design using CASC

we add the additional parameter m2 to be optimized. The results from the integrated design

is presented in Figure 5.6. After 201 iterations, the algorithm converged to the solution:

m∗
2 = 2948 [Kg], k∗2 = 23897 [kN/m], and d∗2 = 116 [kN·s/m], with the control law given by

K∗ =




190499.5 −187499.3 −1254.6 −25891.8 −5650.8 4386.9

574319.0 −135201.6 −179646.8 −11181.2 −6101.4 −8618.9

447891.3 −21021.9 −163367.5 4487.7 −4548.0 −20177.4


 .
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This gain provides a control effort of
√
E [uTu] =

√
1323584 [kN].

For this control gain K∗ and parameters α∗, the achieved output performance, the

diagonal of the matrix CzPC
T
z , is




0.00017774233782

0.00019999687426

0.00008083386592

0.29999795054617

0.26623945460839

0.14227944011144




.

For this case the binding constraints are E z2
2 , and E ż2

1 .

Example 5.7.3 (k1, k2, k3, d1, d2, d3, m1, m2, m3) In this example, we follow the same

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

9

PSfrag replacements

Iteration number

K0 fixed

A
ct

iv
e

co
n
tr

o
l
en

er
g
y
E
[u

T
u
]
[k

N
]2

10 20 30 40 50 60 70

3500

4000

4500

5000

5500

PSfrag replacements

Iteration number

M
a
ss

m
2

[K
g
]

K0 fixed

10 20 30 40 50 60 70
2.5

3

3.5

4

x 10
7

PSfrag replacements

Iteration number

S
ti
ff
n
es

s
k
2

[k
N

/
m

]

K0 fixed

10 20 30 40 50 60 70

6

7

8

9

10

11

12

13

x 10
4

PSfrag replacements

Iteration number

D
a
m

p
in

g
d
2

[k
N
·s
/
m

]

K0 fixed

Figure 5.7: Example 3 (k1, k2, k3, d1, d2, d3, m1, m2, m3): Integrated design using

CASC

steps as in the previous Example 2, but now all the parameters of the structure are op-

timized: m1, m2, m3, k1, k2, k3, d1, d2, and d3. The same initial controller K0 given in
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(5.34) is also used. After 75 iterations, the CASC algorithm gives the solution E [uTu] = 0

(see figure 5.7). Thus no active control is needed to achieve the prescribed performance,

and the design is completely passive. The parameters are m∗
1 = 3264 [Kg], m∗

2 = 3899 [Kg],

m∗
3 = 4498 [Kg], k∗1 = 34120 [kN/m], k∗2 = 27923 [kN/m], k∗3 = 24473 [kN/m], d∗1 = 133

[kN·s/m], d∗2 = 116 [kN·s/m], and d∗3 = 114 [kN·s/m].

In this case, the achieved output performance, the diagonal of the matrix CzPC
T
z , is




0.00018566840635

0.00019924123968

0.00009712073257

0.29980689683670

0.29985557567524

0.16787420951997




.

Table 5.3 summarizes our findings. Using an integrated approach, no control effort is

required to achieve E z2
i ≤ 0.0002 [m2] and E ż2

i ≤ 0.3 [m2/s2], i = 1, 2, 3. With feedback

control fixed at the nominal parameters (K0) the control effort needed is
√

4408517 [kN].

Table 5.3: Control energy [kN]2 for performance guarantee Ω: E z2
i ≤ 0.0002 [m2]

and E żi ≤ 0.3 [m2/s2], i = 1, 2, 3

Control Energy [kN]2

Parameters Integrated Active only

Example 1: k2, d2

√
3276453

√
4408517

Example 2: k2, d2, m2

√
1323584

√
4408517

Example 3: all parameters 0
√

4408517

For each of the previous three designs, the elements of the diagonal of the output

covariance matrix are shown in Table 5.4.

Example 5.7.4 (k1, k2, k3, d1, d2, d3, m1, m2, m3). This example employs all the free

parameters, but we change Ω by scaling by a factor µ, that is Ωµ, in order to find the

performance bound Ω that represents the best performance that is achievable with only

passive design. The active control energy E [uTu] as a function of the scaling factor µ is

shown in Figure 5.8. Thus µ = 0.64, i.e., Ω = 0.64Ω represents the lowest bound on the

output covariance for which the design is still completely passive.
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Table 5.4: Achieved output performance (diagonal entries of CzPC
T
z )

E z2
1 [m] E z2

2 [m] E z2
3 [m] E z2

4 [m/s] E z2
5 [m/s] E z2

6 [m/s]

Ex. 1 0.00020 0.00020 0.00007 0.29218 0.23757 0.14360

Ex. 2 0.00018 0.00020 0.00008 0.30000 0.26624 0.14228

Ex. 3 0.00019 0.00020 0.00010 0.29981 0.29986 0.16787

Bound 0.00020 0.00020 0.00020 0.30000 0.30000 0.30000
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Figure 5.8: Changing the performance bound µΩ

For this bound Ω, the CASC algorithm converged after 264 iterations to the passive

(K0 = 0 and E [uTu] = 0) solution : m∗
1 = 2948 [Kg], m∗

2 = 2948 [Kg], m∗
3 = 2948 [Kg],

k∗1 = 37044 [kN/m], k∗2 = 28155 [kN/m], k∗3 = 16814 [kN/m], d∗1 = 134 [kN·s/m], d∗2 = 116

[kN·s/m], and d∗3 = 114 [kN·s/m]. For this system, the achieved output performance is

given in Table 5.5 below.

Table 5.5: Achieved output performance (diagonal entries of CzPC
T
z )

E z2
1 [m] E z2

2 [m] E z2
3 [m] E z2

4 [m/s] E z2
5 [m/s] E z2

6 [m/s]

Ex. 4 0.00008 0.00009 0.00008 0.19200 0.19200 0.19200

Bound 0.00013 0.00013 0.00013 0.19200 0.19200 0.19200

Example 5.7.5 (k1, k2, k3, d1, d2, d3, m1, m2, m3). Now, we imposed a tighter upper

bound, and obtain an active control law. We choose µ to be 0.4, thus Ω = 0.4Ω, yield-

ing performance 2.5 times better than the examples which used the performance criterion

CzPC
T
z < Ω, for earthquakes intensity W = 16. Note that the performance CzPC

T
z sim-
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ply scales with W . So the design we now discuss can also be interpreted as delivering the

same performance bound as Ω in the presence earthquakes intensity W = 2.5(16) = 40.

For this bound, the CASC algorithm converged after 142 iterations to the active solution :

m∗
1 = 2948 [Kg], m∗

2 = 2948 [Kg], m∗
3 = 2948 [Kg], k∗1 = 67343 [kN/m], k∗2 = 46289 [kN/m],

k∗3 = 28354 [kN/m], d∗1 = 134 [kN·s/m], d∗2 = 116 [kN·s/m], d∗3 = 114 [kN·s/m], with the

control law given by

K∗ =




307824.1 −390158.3 80694.4 −64017.3 3997.3 3588.3

827567.6 −216198.7 −125413.8 3072.2 −47713.6 3965.2

190682.3 165905.7 −122324.2 4226.7 3628.9 −42525.5


 .

This gain provides a control effort of
√
E [uTu] =

√
1536541 [kN]. The achieved output

performance is given in Table 5.6 below.

Table 5.6: Achieved output performance (diagonal entries of CzPC
T
z )

E z2
1 [m] E z2

2 [m] E z2
3 [m] E z2

4 [m/s] E z2
5 [m/s] E z2

6 [m/s]

Ex. 5 0.00002 0.00002 0.00002 0.08999 0.08997 0.08997

Bound 0.00006 0.00006 0.00006 0.09000 0.09000 0.09000

Example 5.7.6 Now we simulate the passive system from Example 4 (denoted by CASC-

Passive) and the active system from Example 5 (denoted by CASC-Active) obtained by

the CASC design, and the nominal system, when subjected to El Centro earthquake taken

from Spencer Jr. et al. (1998) (not white noise). The results for the displacements of each

floor are presented in Figure 5.9 on page 209, and the respective velocities in Figure 5.10

on page 210. In these figures, solid line (-) stand for the CASC-Passive system, dashed line

(- -) stand for the nominal system, and dotted line (·) stand for the CASC-Active system.

These results show the superior performance of the passive system designed via the CASC

algorithm over the nominal system (comparing only the passive systems). The active system

shows a superior performance over the passive one. This was expected since we imposed a

tighter output covariance upper bound.
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Figure 5.9: Response of the nominal system (- -), the CASC-Passive (-), and the

CASC-Active (·), due to El Centro earthquake: displacements
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Figure 5.10: Response of the nominal system (- -), the CASC-Passive (-), and the

CASC-Active (·), due to El Centro earthquake: velocities



Chapter 6

Conclusion

This thesis provides tools which can solve a large class of optimization problems over

matrix inequalities. This includes, for instance, systems and control problems, or any other

type of engineering problem that can be posed as matrix inequalities. These tools possess

similar advantages as the LMI framework, but without its disadvantages. Moreover, in

order to use the method, no knowledge of LMIs or no knowledge of how to manipulate MIs

to be expressed as LMIs is required. The method has two components: 1) a numerical

algorithm that solves a large class of matrix optimization problems; 2) a symbolic convexity

checker.

The symbolic convexity checker guarantees that the solution obtained from the nu-

merical solver is indeed a global minimum inside a specific region. The implementation of

the NCSDP solver is based on a barrier method. Other methods such primal-dual methods,

could have been used. This solver has been shown to possess comparable performance to

professional LMI solvers when the dimensions of the matrices involved are large (above

30× 30).

In this thesis, a theory of noncommutative functions which results in an algorithm for

determining where matrix inequalities are convex is developed. Of independent interest, is a

theory of noncommutative quadratic functions and the resulting algorithm which calculates

the region where these functions are matrix positive. Furthermore, an LDU algorithm for

matrices with noncommutative entries and conditions guaranteeing that the decomposition

is successful is also provided.

This thesis has also demonstrated the benefits of simultaneously designing the struc-

ture and the controller with an application to civil structures. This opens the doors to the
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use of control methods to design structures, even when no control is intended. Since the

control methods allow bounds to be placed on the dynamic response, this should be a wel-

comed improvement in structure design. The algorithm is proposed in the LMI framework,

for which very efficient interior point methods are available. The design allows for changes

in any parameters that appear affinely in the mass, the damping, and the stiffness matrices.

The nonconvex simultaneous structure and control design problem is solved by a sequence

of convex subproblems with the help of potential convexifying functions. The performance

criteria used in the design is a bound on the output covariance of the closed loop system,

but the methodology can incorporate many other convex criteria. This thesis improved the

techniques available in the literature in the sense that: the methodology is completely in

the LMI framework, having no need to solve a constrained quadratic optimization problem;

the technique allows parameters in the mass matrix to be optimized; and the proposed

algorithm does not require the Lyapunov matrix to be fixed in the structure design step.



Appendix A

Computer Algorithm for

Representing the Quadratic

Q(
→
Z )[
→
H] with MQ(

→
Z ) and V (

→
Z )[
→
H]

In our approach, we are given a noncommutative functionQ(
→

Z)[
→

H], which is quadratic

and hereditary in
→

H but usually not quadratic in
→

Z , and we need to express this function as

V (
→

Z)[
→

H ]T MQ(
→

Z) V (
→

Z)[
→

H ]. That means we have to construct the border vector V (
→

Z)[
→

H ]

and the coefficient matrix MQ. This representation of Q(
→

Z)[
→

H ] may not be unique.

This section describes a simplified version of the algorithm used. The algorithm is

based on a simple pattern match, that is illustrated here for the case were
→

H := {H1,H2}.
It can be easily expanded for the more general case where

→

H has k entries. The algorithm

explained here does not assume
→

H necessarily symmetric. For the symmetric case, just let
→

H =
→

H
T

and the steps are the same.

1. Expand the quadratic function in H1 and H2.

2. In that case, there are four types of quadratic terms involving the Hi :

∗HT
1 ∗H1 ∗ , ∗HT

1 ∗H2 ∗ , ∗HT
2 ∗H1 ∗ , and ∗HT

2 ∗H2 ∗ .

The pattern matching symbol ∗ means any expression that does not contain Hi.

3. We work on each one of these quadratic terms ∗HT
i ∗Hj∗ individually. Let i = j = 1.

Then find all pattern of the form ∗HT
1 ∗H1∗. Before the pattern matching is processed,
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it is important that all the terms of the expression to be found are collected. That

means, if there is an expression like

L1
1
T
HT

1 B1H1L
1
1 + · · ·+ L1

1
T
HT

1 BmH1L
1
1

then collect all of the Bi in A1,1 =
m∑

i=1

Bi. Follows this procedure, then at the end we

may have a sum of terms like:

L1
1
T
HT

1 A1,1H1L
1
1 + L1

1
T
HT

1 A1,2H1L2 + · · · + L1
`1

T
HT

1 A`1,`1H1L
1
`1

Where the Ai,j for i, j = 1, . . . , `1 collect all the terms that match the expression

L1
i
T
HT

1 ∗H1L
1
j . This step was illustrated in the example above, where all the terms

that match the expression L1
1
T
HT

1 ∗H1L
1
1 are collected in the coefficient A1,1.

4. The same procedure applies for the terms ∗HT
1 ∗H2∗, ∗HT

2 ∗H1∗, and ∗HT
2 ∗H2∗.

5. Once the finding of all the patterns is finished, the At,s are the entries of the coefficient

matrix MQ, and the HiL
i
j are the entries of the border vector V (

→

Z)[
→

H].



Appendix B

A Formula for the Hessian for the

Uni and Multivariate Cases

B.1 A Formula for the Hessian Term H(δX) for the Univariate

Case

This section computes the formulas for the Hessian term H(δX), which is obtained

from the second-order approximation of the auxiliary potential function

φ(X) = − log detF (X).

We abbreviate F (X)−1 by just F−1. The second directional derivative of the potential

function φ(X), (see (4.35)), is given by

D2φ(X)[δX , δX ] = Tr





(
F−1 sym

{
k∑

i=1

AiδXBi

})2




− Tr



F

−1 sym





w1∑

j=1

MjδXNjδXTj









− Tr



F

−1 sym





w2∑

j=1+w1

MjδX
TNjδXTj









− Tr



F

−1 sym





w3∑

j=1+w2

MjδXNjδX
TTj









To proceed with the derivation, let us partition D2φ(X)[δX , δX ] in four terms, H1(δX),

H2(δX), H3(δX ), and H4(δX), so that we can apply the directional derivative in each one of
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the terms separately:

H1(δX) = Tr





(
F−1 sym

{
k∑

i=1

AiδXBi

})2




H2(δX) = −Tr



F

−1 sym





w1∑

j=1

MjδXNjδXTj









H3(δX) = −Tr



F

−1 sym





w2∑

j=1+w1

MjδX
TNjδXTj









H4(δX) = −Tr



F

−1 sym





w3∑

j=1+w2

MjδXNjδX
TTj









For this derivation, we have omitted the fraction 1/2 that multiplies the Hessian. At the

end, we just need to multiply the final result by 1/2.

B.1.1 The Term H1

Expanding the first term H1(δX ) we obtain

H1(δX) =

Tr

{
F−1

k∑

i=1

AiδXBiF
−1

k∑

j=1

AjδXBj + F−1
k∑

i=1

AiδXBiF
−1

k∑

j=1

BT
j δ

T
XA

T
j

+ F−1
k∑

i=1

BT
i δ

T
XA

T
i F

−1
k∑

j=1

AjδXBj + F−1
k∑

i=1

BT
i δ

T
XA

T
i F

−1
k∑

j=1

BT
j δ

T
XA

T
j

}

We should now apply the directional derivative of the above term as a function of δX along

the direction δV . Doing so, we have

DH1(δX)[δV ] =

Tr



F

−1
k∑

i=1

AiδV BiF
−1

k∑

j=1

AjδXBj + F−1
k∑

j=1

AjδXBjF
−1

k∑

i=1

AiδV Bi





+ Tr



F

−1
k∑

i=1

AiδV BiF
−1

k∑

j=1

BT
j δ

T
XA

T
j + F−1

k∑

j=1

AjδXBjF
−1

k∑

i=1

BT
i δ

T
VA

T
i





+ Tr



F

−1
k∑

i=1

BT
i δ

T
VA

T
i F

−1
k∑

j=1

AjδXBj + F−1
k∑

j=1

BT
j δ

T
XA

T
j F

−1
k∑

i=1

AiδV Bi





+ Tr



F

−1
k∑

i=1

BT
i δ

T
VA

T
i F

−1
k∑

j=1

BT
j δ

T
XA

T
j + F−1

k∑

j=1

BT
j δ

T
XA

T
j F

−1
k∑

i=1

BT
i δ

T
VA

T
i




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Finally, using the cyclic property of the trace operator we can collect on δV and δT
V , obtaining

DH1(δX)[δV ] = 2Tr



δV




k∑

i=1

BiF
−1




k∑

j=1

AjδXBj


F−1Ai

+

k∑

i=1

BiF
−1




k∑

j=1

BT
j δ

T
XA

T
j


F−1Ai








+ 2Tr








k∑

i=1

AT
i F

−1




k∑

j=1

AjδXBj


F−1BT

i

+

k∑

i=1

AT
i F

−1




k∑

j=1

BT
j δ

T
XA

T
j


F−1BT

i


 δT

V





This expression is equivalently written as

DH1(δX)[δV ] = Tr
{
δV H1(δX )T + H1(δX)δT

V

}
(B.1)

with

H1(δX) = 2

k∑

i=1

AT
i F

−1




k∑

j=1

AjδXBj


F−1BT

i

+ 2
k∑

i=1

AT
i F

−1




k∑

j=1

BT
j δ

T
XA

T
j


F−1BT

i

B.1.2 The Term H2

Expanding the second term H2(δX ) we obtain

H2(δX) = −Tr



F

−1




w1∑

j=1

MjδXNjδXTj +

w1∑

j=1

T T
j δ

T
XN

T
j δ

T
XM

T
j








Applying the directional derivative of the above term as a function of δX along the direction

δV gives

DH2(δX)[δV ] = −Tr



F

−1
w1∑

j=1

MjδV NjδXTj + F−1
w1∑

j=1

MjδXNjδV Tj





− Tr



F

−1
w1∑

j=1

T T
j δV

TNT
j δX

TMT
j + F−1

w1∑

j=1

T T
j δX

TNT
j δV

TMT
j




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Collecting the above expression on δV and δT
V , we obtain

DH2(δX )[δV ] = −Tr



δV




w1∑

j=1

NjδXTjF
−1Mj +

w1∑

j=1

TjF
−1MjδXNj








− Tr








w1∑

j=1

NT
j δ

T
XM

T
j F

−1T T
j +

w1∑

j=1

MT
j F

−1T T
j δ

T
XN

T
j


 δT

V





This expression is equivalently written as

DH2(δX )[δV ] = Tr
{
δV H2(δX)T + H2(δX)δT

V

}
(B.2)

with

H2(δX) = −
w1∑

j=1

NT
j δ

T
XM

T
j F

−1T T
j +

w1∑

j=1

MT
j F

−1T T
j δ

T
XN

T
j

B.1.3 The Term H3

Expanding the second term H3(δX) we obtain

H3(δX) = −Tr



F

−1




w2∑

j=1+w1

MjδX
TNjδXTj +

w2∑

j=1+w1

T T
j δX

TNT
j δXM

T
j








Applying the directional derivative of the above term as a function of δX along the direction

δV gives

DH3(δX )[δV ] = −Tr



F

−1
w2∑

j=1+w1

MjδV
TNjδXTj + F−1

w2∑

j=1+w1

MjδX
TNjδV Tj





− Tr



F

−1
w2∑

j=1+w1

T T
j δV

TNT
j δXM

T
j + F−1

w2∑

j=1+w1

T T
j δX

TNT
j δVM

T
j





Collecting the above expression on δV and δT
V , we obtain

DH3(δX )[δV ] = −Tr



δV




w2∑

j=1+w1

TjF
−1Mjδ

T
XNj +

w2∑

j=1+w1

MT
j F

−1T T
j δ

T
XN

T
j








− Tr








w2∑

j=1+w1

NjδXTjF
−1Mj +

w2∑

j=1+w1

NT
j δXM

T
j F

−1T T
j


 δT

V





This expression is equivalently written as

DH3(δX )[δV ] = Tr
{
δV H3(δX)T + H3(δX)δT

V

}
(B.3)
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with

H3(δX) = −
w2∑

j=1+w1

NjδXTjF
−1Mj +

w2∑

j=1+w1

NT
j δXM

T
j F

−1T T
j

B.1.4 The Term H4

Expanding the second term H4(δX ) we obtain

H4(δX) = −Tr



F

−1




w3∑

j=1+w2

MjδXNjδX
TTj +

w3∑

j=1+w2

T T
j δXN

T
j δX

TMT
j








Applying the directional derivative of the above term as a function of δX along the direction

δV gives

DH4(δX)[δV ] = −Tr



F

−1
w3∑

j=1+w2

MjδVNjδX
TTj + F−1

w3∑

j=1+w2

MjδXNjδV
TTj





− Tr



F

−1
w3∑

j=1+w2

T T
j δV N

T
j δX

TMT
j + F−1

w3∑

j=1+w2

T T
j δXN

T
j δV

TMT
j





Collecting the above expression on δV and δT
V , we obtain

DH4(δX)[δV ] = −Tr



δV




w3∑

j=1+w2

Njδ
T
XTjF

−1Mj +

w3∑

j=1+w2

NT
j δ

T
XM

T
j F

−1T T
j








− Tr








w3∑

j=1+w2

TjF
−1MjδXNj +

w2∑

j=1+w2

MT
j F

−1T T
j δXN

T
j


 δT

V





This expression is equivalently written as

DH4(δX)[δV ] = Tr
{
δV H4(δX )T + H4(δX)δT

V

}
(B.4)

with

H4(δX) =

w3∑

j=1+w2

TjF
−1MjδXNj +

w2∑

j=1+w2

MT
j F

−1T T
j δXN

T
j

B.1.5 The Final Term H(δX)

The final term for the Hessian map H(δX), which is obtained from the second direc-

tional derivative of the potential function, D2φ(X)[δX , δX ], is now readily available from

the expressions given in (B.1)–(B.4). Thus, we have

D

(
1

2
D2φ(X)[δX , δX ]

)
[δV ] =

1

2

4∑

i=1

DHi(δX)[δV ] = Tr
{
δV H(δX)T + H(δX)δT

V

}
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with

H(δX) =
1

2

4∑

i=1

Hi(δX)

Thus, the term H(δX) is naturally given by

H(δX) =
k∑

i=1

AT
i F

−1




k∑

j=1

AjδXBj


F−1BT

i +
k∑

i=1

AT
i F

−1




k∑

j=1

BT
j δ

T
XA

T
j


F−1BT

i

− 1

2

w1∑

j=1

NT
j δ

T
XM

T
j F

−1T T
j +MT

j F
−1T T

j δ
T
XN

T
j

− 1

2

w2∑

j=1+w1

NjδXTjF
−1Mj +NT

j δXM
T
j F

−1T T
j

− 1

2

w3∑

j=1+w2

TjF
−1MjδXNj +MT

j F
−1T T

j δXN
T
j

as stated in Lemma 4.3.3.

B.2 A Formula for the Hessian Term Hts(δXs
) for the Multi-

variate Case

This section presents the derivation of the formulas for the Hessian map Hts(δXs)

for the multivariate case. It is important to emphasize that the formulas in this section

assumes that δXt 6= δXs , since the particular case where δXt = δXs = δX was considered in

the previous section for the univariate case.

The second directional derivative of the potential function, as presented in (4.74), is

given by

D2 Θ(
→

X)[δXt , δXs ] =

Tr





m∑

i=1

F−1
i sym





k(i,s)∑

`=1

Ai,s
` δXsB

i,s
`



F−1

i sym





k(i,t)∑

η=1

Ai,t
η δXtB

i,t
η









− Tr

{
m∑

i=1

F−1
i sym

{ w1(i,ts)∑

`=1

M i,ts
` δXtN

i,ts
` δXsT

i,ts
` +

w2(i,ts)∑

`=1+w1(i,ts)

M i,ts
` δT

Xt
N i,ts

` δXsT
i,ts
`

+

w3(i,ts)∑

`=1+w2(i,ts)

M i,ts
` δXtN

i,ts
` δT

Xs
T i,ts

` +

w4(i,ts)∑

`=1+w3(i,ts)

M i,ts
` δT

Xt
N i,ts

` δT
Xs
T i,ts

`

}}
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To proceed with the derivation, let us partition D2 Θ(
→

X)[δXt , δXs ] in five terms, H1, H2,

H3, H4, and H5, so that we can apply the directional derivative in each one of the terms

separately:

H1 = Tr





m∑

i=1

F−1
i sym





k(i,s)∑

`=1

Ai,s
` δXsB

i,s
`



F−1

i sym





k(i,t)∑

η=1

Ai,t
η δXtB

i,t
η









H2 = −Tr

{
m∑

i=1

F−1
i sym

{w1(i,ts)∑

`=1

M i,ts
` δXtN

i,ts
` δXsT

i,ts
`

}}

H3 = −Tr

{
m∑

i=1

F−1
i sym

{ w2(i,ts)∑

`=1+w1(i,ts)

M i,ts
` δT

Xt
N i,ts

` δXsT
i,ts
`

}}

H4 = −Tr

{
m∑

i=1

F−1
i sym

{ w3(i,ts)∑

`=1+w2(i,ts)

M i,ts
` δXtN

i,ts
` δT

Xs
T i,ts

`

}}

H5 = −Tr

{
m∑

i=1

F−1
i sym

{ w4(i,ts)∑

`=1+w3(i,ts)

M i,ts
` δT

Xt
N i,ts

` δT
Xs
T i,ts

`

}}

For this derivation, we have omitted the fraction 1/2 that multiplies the Hessian. At the

end, we just need to multiply the final result by 1/2.

B.2.1 The Term H1

Expanding the first term H1 we obtain

H1 = Tr

{ m∑

i=1

F−1
i

k(i,s)∑

`=1

Ai,s
` δXsB

i,s
` F−1

i

k(i,t)∑

η=1

Ai,t
η δXtB

i,t
η

+

m∑

i=1

F−1
i

k(i,s)∑

`=1

Ai,s
` δXsB

i,s
` F−1

i

k(i,t)∑

η=1

(Bi,t
η )T δT

Xt
(Ai,t

η )T

+

m∑

i=1

F−1
i

k(i,s)∑

`=1

(Bi,s
` )T δT

Xs
(Ai,s

` )TF−1
i

k(i,t)∑

η=1

Ai,t
η δXtB

i,t
η

+
m∑

i=1

F−1
i

k(i,s)∑

`=1

(Bi,s
` )T δT

Xs
(Ai,s

` )TF−1
i

k(i,t)∑

η=1

(Bi,t
η )T δT

Xt
(Ai,t

η )T
}
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We should now apply the directional derivative of the above term as a function of δXt along

the direction δVt . Doing so, we have

DH1(δXt)[δVt ] = Tr

{ m∑

i=1

F−1
i

k(i,s)∑

`=1

Ai,s
` δXsB

i,s
` F−1

i

k(i,t)∑

η=1

Ai,t
η δVtB

i,t
η

+

m∑

i=1

F−1
i

k(i,s)∑

`=1

Ai,s
` δXsB

i,s
` F−1

i

k(i,t)∑

η=1

(Bi,t
η )T δT

Vt
(Ai,t

η )T

+

m∑

i=1

F−1
i

k(i,s)∑

`=1

(Bi,s
` )T δT

Xs
(Ai,s

` )TF−1
i

k(i,t)∑

η=1

Ai,t
η δVtB

i,t
η

+
m∑

i=1

F−1
i

k(i,s)∑

`=1

(Bi,s
` )T δT

Xs
(Ai,s

` )TF−1
i

k(i,t)∑

η=1

(Bi,t
η )T δT

Vt
(Ai,t

η )T
}

Finally, using the cyclic property of the trace operator we can collect on δVt and δT
Vt

, ob-

taining

DH1(δXt)[δVt ] = Tr

{
δVt

[ m∑

i=1

k(i,s)∑

`=1

k(i,t)∑

η=1

(
Bi,t

η F
−1
i Ai,s

` δXsB
i,s
` F−1

i Ai,t
η

+Bi,t
η F

−1
i (Bi,s

` )T δT
Xs

(Ai,s
` )TF−1

i Ai,t
η

)]

+

[ m∑

i=1

k(i,s)∑

`=1

k(i,t)∑

η=1

(Ai,t
η )TF−1

i Ai,s
` δXsB

i,s
` F−1

i (Bi,t
η )T

+ (Ai,t
η )TF−1

i (Bi,s
` )T δT

Xs
(Ai,s

` )TF−1
i (Bi,t

η )T
)]
δT
Vt

}

This expression is equivalently written as

DH1(δXt)[δVt ] = Tr
{
δVtH1(δXs)

T + H1(δXs)δ
T
Vt

}
(B.5)

with

H1(δXs) =

m∑

i=1

k(i,s)∑

`=1

k(i,t)∑

η=1

(
(Ai,t

η )TF−1
i Ai,s

` δXsB
i,s
` F−1

i (Bi,t
η )T

)

+
m∑

i=1

k(i,s)∑

`=1

k(i,t)∑

η=1

(
(Ai,t

η )TF−1
i (Bi,s

` )T δT
Xs

(Ai,s
` )TF−1

i (Bi,t
η )T

)
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B.2.2 The Term H2

Expanding the second term H2 we obtain

H2 = −Tr





m∑

i=1

F−1
i




w1(i,ts)∑

`=1

M i,ts
` δXtN

i,ts
` δXsT

i,ts
`

+

w1(i,ts)∑

`=1

(T i,ts
` )T δXs

T (N i,ts
` )T δXt

T (M i,ts
` )T








Applying the directional derivative of the above term as a function of δXt along the direction

δVt gives

DH2(δXt)[δVt ] = −Tr





m∑

i=1

F−1
i




w1(i,ts)∑

`=1

M i,ts
` δVtN

i,ts
` δXsT

i,ts
`

+

w1(i,ts)∑

`=1

(T i,ts
` )T δXs

T (N i,ts
` )T δVt

T (M i,ts
` )T








Collecting the above expression on δVt and δT
Vt

, we obtain

DH2(δXt)[δVt ] = −Tr



δVt




m∑

i=1

w1(i,ts)∑

`=1

N i,ts
` δXsT

i,ts
` F−1

i M i,ts
`




+




m∑

i=1

w1(i,ts)∑

`=1

(M i,ts
` )TF−1

i (T i,ts
` )T δT

Xs
(N i,ts

` )T


 δT

Vt





This expression is equivalently written as

DH2(δXt)[δVt ] = Tr
{
δVtH2(δXs)

T + H2(δXs)δ
T
Vt

}
(B.6)

with

H2(δXs) = −
m∑

i=1

w1(i,ts)∑

`=1

(M i,ts
` )TF−1

i (T i,ts
` )T δT

Xs
(N i,ts

` )T

B.2.3 The Term H3

Expanding the second term H3 we obtain

H3 = −Tr

[ m∑

i=1

F−1
i

( w2(i,ts)∑

`=1+w1(i,ts)

M i,ts
` δXt

TN i,ts
` δXsT

i,ts
`

+

w2(i,ts)∑

`=1+w1(i,ts)

(T i,ts
` )T δXs

T (N i,ts
` )T δXt(M

i,ts
` )T

)]
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Applying the directional derivative of the above term as a function of δXt along the direction

δVt gives

DH3(δXt)[δVt ] = −Tr

[ m∑

i=1

F−1
i

( w2(i,ts)∑

`=1+w1(i,ts)

M i,ts
` δVt

TN i,ts
` δXsT

i,ts
`

+

w2(i,ts)∑

`=1+w1(i,ts)

(T i,ts
` )T δXs

T (N i,ts
` )T δVt(M

i,ts
` )T

)]

Collecting the above expression on δVt and δT
Vt

, we obtain

DH3(δXt)[δVt ] = −Tr

{
δVt




m∑

i=1

w2(i,ts)∑

`=1+w1(i,ts)

(M i,ts
` )TF−1

i (T i,ts
` )T δT

Xs
(N i,ts

` )T




+




m∑

i=1

w2(i,ts)∑

`=1+w1(i,ts)

N i,ts
` δXsT

i,ts
` F−1

i M i,ts
`


 δT

Vt

}

This expression is equivalently written as

DH3(δXt)[δVt ] = Tr
{
δVtH3(δXs)

T + H3(δXs)δ
T
Vt

}
(B.7)

with

H3(δXs) =

m∑

i=1

w2(i,ts)∑

`=1+w1(i,ts)

N i,ts
` δXsT

i,ts
` F−1

i M i,ts
`

B.2.4 The Term H4

Expanding the second term H4 we obtain

H4 = −Tr

{ m∑

i=1

F−1
i

( w3(i,ts)∑

`=1+w2(i,ts)

M i,ts
` δXtN

i,ts
` δXs

TT i,ts
`

+

w3(i,ts)∑

`=1+w2(i,ts)

(T i,ts
` )T δXs(N

i,ts
` )T δXt

T (M i,ts
` )T

)}

Applying the directional derivative of the above term as a function of δXt along the direction

δVt gives

DH4(δXt)[δVt ] = −Tr

{ m∑

i=1

F−1
i

( w3(i,ts)∑

`=1+w2(i,ts)

M i,ts
` δVtN

i,ts
` δXs

TT i,ts
`

+

w3(i,ts)∑

`=1+w2(i,ts)

(T i,ts
` )T δXs(N

i,ts
` )T δVt

T (M i,ts
` )T

)}
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Collecting the above expression on δVt and δT
Vt

, we obtain

DH4(δXt)[δVt ] = −Tr



δVt




m∑

i=1

w3(i,ts)∑

`=1+w2(i,ts)

N i,ts
` δT

Xs
T i,ts

` F−1
i M i,ts

`








− Tr








m∑

i=1

w3(i,ts)∑

`=1+w2(i,ts)

(M i,ts
` )TF−1

i (T i,ts
` )T δXs(N

i,ts
` )T


 δT

Vt





This expression is equivalently written as

DH4(δXt)[δVt ] = Tr
{
δVtH4(δXs)

T + H4(δXs)δ
T
Vt

}
(B.8)

with

H4(δXs) =

m∑

i=1

w3(i,ts)∑

`=1+w2(i,ts)

(M i,ts
` )TF−1

i (T i,ts
` )T δXs(N

i,ts
` )T

B.2.5 The Term H5

Expanding the second term H5 we obtain

H5 = −Tr

{ m∑

i=1

F−1
i

( wr(i,ts)∑

`=1+w3(i,ts)

M i,ts
` δXt

TN i,ts
` δXs

TT i,ts
`

+

w4(i,ts)∑

`=1+w3(i,ts)

(T i,ts
` )T δXs(N

i,ts
` )T δXt(M

i,ts
` )T

)}

Applying the directional derivative of the above term as a function of δXt along the direction

δVt gives

DH5(δXt)[δVt ] = −Tr

{ m∑

i=1

F−1
i

( wr(i,ts)∑

`=1+w3(i,ts)

M i,ts
` δVt

TN i,ts
` δXs

TT i,ts
`

+

w4(i,ts)∑

`=1+w3(i,ts)

(T i,ts
` )T δXs(N

i,ts
` )T δVt(M

i,ts
` )T

)}

Collecting the above expression on δVt and δT
Vt

, we obtain

DH5(δXt)[δVt ] = −Tr



δVt




m∑

i=1

w4(i,ts)∑

`=1+w3(i,ts)

(M i,ts
` )TF−1

i (T i,ts
` )T δXs(N

i,ts
` )T








−Tr








m∑

i=1

w4(i,ts)∑

`=1+w3(i,ts)

N i,ts
` δT

Xs
T i,ts

` F−1
i M i,ts

`


 δT

Vt




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This expression is equivalently written as

DH5(δXt)[δVt ] = Tr
{
δVtH5(δXs)

T + H5(δXs)δ
T
Vt

}
(B.9)

with

H5(δXs) =

m∑

i=1

w4(i,ts)∑

`=1+w3(i,ts)

N i,ts
` δT

Xs
T i,ts

` F−1
i M i,ts

`

B.2.6 The Final Term Hts(δXs)

The final term for the Hessian map Hts(δXs), which is obtained from the second

directional derivative of the potential function, D2 Θ(
→

X)[δXt , δXs ], is now readily available

from the expressions given in (B.5)–(B.9). Thus, we have

D

(
1

2
D2 Θ(

→

X)[δXt , δXs ]

)
[δVt ] =

1

2

5∑

i=1

DHi(δXt)[δVt ]

= Tr
{
δVtHts(δXs)

T + Hts(δXs)δ
T
Vt

}

with

Hts(δXs) =
1

2

5∑

i=1

Hi(δXs)

Thus, the term Hts(δXs) is naturally given by

Hts(δXs) =
1

2

m∑

i=1

k(i,s)∑

`=1

k(i,t)∑

η=1

(
(Ai,t

η )TF−1
i Ai,s

` δXsB
i,s
` F−1

i (Bi,t
η )T

)

+
1

2

m∑

i=1

k(i,s)∑

`=1

k(i,t)∑

η=1

(
(Ai,t

η )TF−1
i (Bi,s

` )T δT
Xs

(Ai,s
` )TF−1

i (Bi,t
η )T

)

− 1

2

m∑

i=1

w1(i,ts)∑

`=1

(M i,ts
` )TF−1

i (T i,ts
` )T δT

Xs
(N i,ts

` )T

− 1

2

m∑

i=1

w2(i,ts)∑

`=1+w1(i,ts)

N i,ts
` δXsT

i,ts
` F−1

i M i,ts
`

− 1

2

m∑

i=1

w3(i,ts)∑

`=1+w2(i,ts)

(M i,ts
` )TF−1

i (T i,ts
` )T δXs(N

i,ts
` )T

− 1

2

m∑

i=1

w4(i,ts)∑

`=1+w3(i,ts)

N i,ts
` δT

Xs
T i,ts

` F−1
i M i,ts

`

as stated in Proposition 4.5.1.



Appendix C

Matlab Codes for the Riccati

inequality

This appendix provides a copy of the Matlab codes used to solve the Riccati feasibility

problem and the Riccati trace minimization problem presented in Section 4.4.4 of Chap-

ter 4. These two codes are very simple and are mainly intended to illustrate the proposed

methodology. The major code NCSDP implemented by the author to solve constrained

optimization problems over matrix functions is not provided, since it would take excessively

many pages.

C.1 Code: Riccati Feasibility Problem

This section provides a copy of the code used to solve the following Riccati feasibility

problem:

find α∗ = minα subject to

AX +XAT −XRX +Q+ αI > 0

The constraint X > 0 is added by setting the Option(2).

function [X,Alpha,GammaSet] = RicFeaspCode(A,R,Q,Options)

% function [X,Alpha,GammaSet] = RicFeaspCode(A,R,Q,Options)

%

% Based on the method of centers
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%

% Find Alpha and X such that

%

% AX+XA’-X*R*X+Q + Alpha*I > 0

%

% Input:

% A, R, Q system matrices.

% OPTIONS optional: five-entry vector of control parameters.

% OPTIONS(1): value of centralization parameter

% THETA in (0,1). (Default=0.3)

% OPTIONS(2): when nonzero, enforce the constraint X > 0

% (Default=0)

% OPTIONS(3): when zero, code stops as soon as

% Alpha < 0. (Default=0)

% OPTIONS(4): Termination tolerance on objective.

% (Default=1e-3)

% OPTIONS(5): Termination tolerance on the inner loop.

% (Default=1e-6)

%

% Output:

% X corresponding minimizer.

% Alpha value of Alpha upon termination.

%

% Author: Juan Camino

% Date : 05/10/2003

if nargin<3 | nargin>4 ,

error(’usage:[X,Alpha]=RicFeaspCode(A,R,Q,[options])’);

elseif nargin==3,

Options=zeros(1,5);

else

if ~isnumeric(Options) | length(Options)~=5,

error(’OPTIONS must be a five-entry vector’);

end

end

% DEFAULTS parameters

Ipin(1) = 0.3; % Value of THETA

Ipin(2) = 0; % No Constraint on X

Ipin(3) = 0; % TARGET
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Ipin(4) = 1E-3; % stopping criteria for the objective.

Ipin(5) = 1E-6; % stopping criteria for the inner loop.

if Options(1)~=0, Ipin(1)=Options(1); end

if Options(2)~=0, Ipin(2)=Options(2); end

if Options(3)~=0, Ipin(3)=Options(3); end

if Options(4)~=0, Ipin(4)=Options(4); end

if Options(5)~=0, Ipin(5)=Options(5); end

n=size(Q,1);

X = eye(n);

Alpha = norm(A*X+X*A’-X*R*X+Q)+1;

Gamma= Alpha+1;

k=1;

GammaOld=0; GammaSet=[Gamma];

neg = 1;

while neg & norm(Gamma-GammaOld)>Ipin(4) & k < 200

GammaOld=Gamma;

Gamma=(1-Ipin(1))*Alpha+Ipin(1)*Gamma;

fprintf(’FeaspCode: Iteration = %2i, Gamma = %7.7f\n’,k,Gamma);

[X,Alpha,H,g] = Newton(A,R,Q,X,Alpha,Gamma,Ipin(2),Ipin(5));

if ~Ipin(3), neg = (Gamma > 0); end

GammaSet=[GammaSet;Gamma];

k=k+1;

end

fclose(’all’);

return

function [X,Alpha,H,g] = Newton(A,R,Q,X,Alpha,Gamma,flag,tol)

% Apply Modified Newton Methods to compute the analytic center

n=size(X);

Xset=[];Alphaset=[];

fprintf(’-------------------------------------------------------\n’);

str1=strcat(’ k, |g|, T, S, Alpha,’,...

’ |X|, lH, uH\n’);

str2=strcat(’ %2i, %3.1E, %2.1E, %2.1f, % 7.7E,’,...

’ % 7.7E, %2.1E, %2.1E\n’);

g = 1; Tau=1;

k = 0;

fprintf(str1);
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while Tau>tol & k < 50

[dX,dAlpha,H,g] = NCdirection(A,R,Q,X,Alpha,Gamma,flag);

Tau = sqrt(g’/H*g);

Sigma = ( Tau > 1/4 ) * 1/(1+Tau) + ( Tau <= 1/4 ) * 1.0;

X=X+Sigma*dX;

Alpha=Alpha+Sigma*dAlpha;

Xset{k+1}=X;

Alphaset=[Alphaset; Alpha];

k=k+1;

mi=min(eig(H)); ma=max(eig(H));

fprintf(str2,k,norm(g),Tau,Sigma,Alpha,norm(X),mi,ma);

end

fprintf(’--------------------------------------------------------\n’);

return

function [dX,dAlpha,H,g]=NCdirection(A,R,Q,X,Alpha,Gamma,flag)

% Return: Hessian H; Gradient g; update directions dX and dAlpha

% A’s, B’s, and QQ’s from NCAlg/Mathematica

n = size(X,1);

I = eye(n);

invF1=inv(A*X+X*A’-X*R*X+Q+Alpha*I); invF1=(invF1+invF1’)/2;

invF2=1/(Gamma-Alpha)*I;

A11{1}=invF1*(A-X*R);

B11{1}=invF1*(A-X*R);

A11{2}=invF1;

B11{2}=(A-X*R)’*invF1*(A-X*R); B11{2}=(B11{2}+B11{2}’)/2;

A11{3}=invF1;

B11{3}=R;

A11{4}=inv(X); % the constraint X > 0

B11{4}=inv(X);

A12{1}=invF1;

B12{1}=invF1*(A-X*R);

A21{1}=invF1*(A-X*R);

B21{1}=invF1;

A22{1}=invF1;

B22{1}=invF1;

A22{2}=invF2;

B22{2}=invF2;

% Hessian Matrix

H11 = 0;
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N=3;

if flag, N=4; end

for i = 1:N;

H11 = H11 + kron(B11{i}’,A11{i})+kron(A11{i},B11{i}’);

end

H21 = vec(B21{1}*A21{1}+A21{1}’*B21{1}’)’;

H22 = trace(A22{1}*B22{1}+A22{2}*B22{2});

H = [H11, H21’; H21, H22];

% Gradient

QQ{1}=invF1*(A-X*R) + (invF1*(A-X*R))’;

if flag,

QQ{1}=QQ{1}+inv(X); % the constraint X > 0

end

QQ{2}=invF1-invF2;

% Gradient vector

g = [vec(QQ{1}) ; trace(QQ{2})];

% Solves the linear system H.v = g

v = H\g;

dX = reshape(v(1:n^2),n,n);

dX = (dX+dX’)/2;

dAlpha = v(n^2+1);

return

function [x] = vec(X)

x = X(:);

return
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C.2 Code: Riccati Trace Minimization Problem

This section provides a copy of the code used to solve the following Riccati trace

minimization Problem:

find X∗ = argminTr {X}, such that

AX +XAT −XRX +Q > 0

The constraint X > 0 is added by setting Options(2).

function [X,GammaSet] = RicTraceCode(A,R,Q,Options)

% function [X,GammaSet] = RicTraceCode(A,R,Q,Options)

%

% Based on the method of centers

%

% Minimize Trace(X) subject to

%

% AX+XA’-X*R*X+Q > 0

%

% Input:

% A, R, Q system matrices.

% OPTIONS optional: five-entry vector of control parameters.

% OPTIONS(1): value of centralization parameter

% THETA in (0,1). (Default=0.3)

% OPTIONS(2): when nonzero, enforce the constraint X > 0

% (Default=0)

% OPTIONS(3): not used.

% OPTIONS(4): Termination tolerance on objective.

% (Default=1e-3)

% OPTIONS(5): Termination tolerance on the inner loop.

% (Default=1e-6)

%

% Output:

% X corresponding minimizer.

%

% Author: Juan Camino

% Date : 05/10/2003

if nargin<3 | nargin>4 ,
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error(’usage:[X]=RicTraceCode(A,R,Q,[options])’);

elseif nargin==3,

Options=zeros(1,5);

else

if ~isnumeric(Options) | length(Options)~=5,

error(’OPTIONS must be a five-entry vector’);

end

end

% DEFAULTS parameters

Ipin(1) = 0.3; % Value of THETA

Ipin(2) = 0; % No Constraint on X

Ipin(3) = 0; % Not used

Ipin(4) = 1E-3; % Stopping criteria for the objective.

Ipin(5) = 1E-6; % Stopping criteria for the inner loop.

if Options(1)~=0, Ipin(1)=Options(1); end

if Options(2)~=0, Ipin(2)=Options(2); end

if Options(3)~=0, Options(3)=0; end

if Options(4)~=0, Ipin(4)=Options(4); end

if Options(5)~=0, Ipin(5)=Options(5); end

n=size(Q,1);

% Call to the feasibility solver

disp(’Feasibility Phase’);

[X,Alpha] = RicFeaspCode(A,R,Q,Options);

if Alpha > 0,

error(’Problem seems to be infeasible’);

end

disp(’Minimization Phase’);

Gamma = trace(X)+.1;

k=1;

GammaOld=0; GammaSet=[Gamma];

while norm(Gamma-GammaOld)>Ipin(4) & k < 400

GammaOld=Gamma;

Gamma=(1-Ipin(1))*trace(X)+Ipin(1)*Gamma;

fprintf(’Iteration = %2i, Gamma = %7.7f\n’,k,Gamma);

[X,H,g] = Newton(A,R,Q,X,Gamma,Ipin(2),Ipin(5));

k=k+1;
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GammaSet=[GammaSet;Gamma];

end

fclose(’all’);

return

function [X,H,g] = Newton(A,R,Q,X,Gamma,flag,tol)

% Apply modified Newton’s method to compute the analytic center

n=size(X);

Xset=[];

fprintf(’-------------------------------------------------------\n’);

str1=strcat(’ k, |g|, T, S, Trace(X),’,...

’ lH, uH\n’);

str2=strcat(’ %2i, %3.2E, %2.1E, %2.2f, % 7.7f,’,...

’ %2.2E, %2.2E\n’);

g = 1; Tau=1;

k = 0;

fprintf(str1);

while Tau>tol & k < 50

[dX,H,g] = NCdirection(A,R,Q,X,Gamma,flag);

Tau = sqrt(g’/H*g);

Sigma = ( Tau > 1/4 ) * 1/(1+Tau) + ( Tau <= 1/4 ) * 1.0;

X=X+Sigma*dX;

Xset{k+1}=X;

k=k+1;

mi=min(eig(H)); ma=max(eig(H));

fprintf(str2,k,norm(g),Tau,Sigma,trace(X),mi,ma);

end

fprintf(’--------------------------------------------------------\n’);

return

function [dX,H,g]=NCdirection(A,R,Q,X,Gamma,flag)

% Return: Hessian H; Gradient g; update directions dX

n = size(X,1);

I = eye(n);

invF1=inv(A*X+X*A’-X*R*X+Q); invF1=(invF1+invF1’)/2;

invF2=1/(Gamma-trace(X))*I;

A11{1}=invF1*(A-X*R);

B11{1}=invF1*(A-X*R);

A11{2}=invF1;

B11{2}=(A-X*R)’*invF1*(A-X*R); B11{2}=(B11{2}+B11{2}’)/2;
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A11{3}=invF1;

B11{3}=R;

A11{4}=inv(X); % the constraint X > 0

B11{4}=inv(X);

% Hessian Matrix

H11 = 0;

N=3; if flag, N=4; end

for i = 1:N;

H11 = H11 + kron(B11{i}’,A11{i})+kron(A11{i},B11{i}’);

end

% Add the Cost Function

H = H11 + 1/(Gamma-trace(X))^2*vec(I)*vec(I)’;

% Gradient

QQ{1}=invF1*(A-X*R) + (invF1*(A-X*R))’ - invF2;

if flag,

QQ{1}=QQ{1}+inv(X); % the constraint X > 0

end

% Gradient vector

g = vec(QQ{1});

% Solves the linear system H.v = g

v = H\g;

dX = reshape(v(1:n^2),n,n);

dX = (dX+dX’)/2;

return

function [x] = vec(X)

x = X(:);

return



Appendix D

Collection of Experiments Used to

Check the Code

This chapter presents a collection of minimization problems used to check the imple-

mentation of the proposed methodology. Most of the problems here presented are convex

and convertible to LMI. So that, their solutions were easily verified by others SDP codes.

D.1 List of Successful Convex Experiments

The NCSDP solver run successfully all the convex experiments we have tried, for

a variety of different dimensions. The set of feasibility problems used to check the code

basically has the form:

minα subject to

F (X1, . . . , Xr) + αI > 0, Gi(X1, . . . , Xr) > 0

We have also run an inner product version of all the feasibilities problems presented. In

this test, the constraints remained the same, but the cost function was the trace of one of

the unknowns. Thus, we do not repeat them here.
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D.1.1 Symmetric variables

Example D.1.1

min
X

α subject to

αI −BTXB > 0

AX +XAT −R+XQ1X < 0

X > Q2

Example D.1.2

min
X,T

α subject to

αI − T > 0

AX +XAT +Q1 −XRX + T > 0

Example D.1.3

min
X,Y

α subject to

αI − (BT
1 XB1 +BT

2 Y B2) > 0

AX +XTAT −R+XQX +AY + Y AT + Y QY < 0

Example D.1.4

min
X,Y,Z,K

α subject to

αI − (X + Y + Z +K) > 0

X − Y −1 > 0

Y − ZX−1Z > 0

X + Z − Y −K > 0

X > 0, Y > 0, Z > 0, K > 0

X < Q, Z < Q, Y < Q
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Example D.1.5

min
X1,X2,X3,X4

α subject to

αI − (X1 +X2 +X3 +X4) > 0

−X2
1 +Q > 0

−X2
2 +Q > 0

−X2
3 +Q > 0

−X2
4 +Q > 0

Example D.1.6

min
X,T

α subject to

αI − T > 0

Q−X2 −X−1 + T > 0

X > 0, Q−X > 0

D.1.2 Not symmetric variables

Example D.1.7

min
X,F,U

α subject to

αI − U > 0

AX +XAT +BF + F TB + F TRF +Q < 0

U − FX−1F > 0

X > 0, CXCT < Ω

Example D.1.8

min
X,Y,Z

α subject to

αI − (X + Y +BTZT + ZB) > 0

X − Y −1 > 0

Y −BTZTX−1ZB > 0

ZB +BTZT −X > 0

I − ZZT > 0
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D.2 Nonconvex Experiments

In this thesis, we have focused on convex problems solely, since we have made no

effort in providing a reliable implementation of a nonconvex code based on the proposed

methodology. However, with a simple modification of our convex code, basically by imple-

menting a rudimentary line search and a “strategy” for dealing with indefinite Hessian, we

were able to successfully run a few nonconvex examples.

D.3 List of “Successful” Nonconvex Experiments

We have tested the solver for a variety of matrix sizes. The solver was able to reached

an optimal solution within an accuracy of at least 10−4 on the objective value, for most

of the dimensions and initial conditions. In this sense we say the solver runs successfully.

However, for some initial conditions, the solver fails to attain a solution. Basically, in the

ongoing implementation, the nonconvex code stops whenever the algorithm is not able to

compute a feasible direction.

D.3.1 Symmetric variables

Example D.3.1 Let A ∈ Rn×n, X,Y,M,N ∈ Sn, R ∈ Sn
++, and Qi ∈ Sn for i = 1, . . . , 4.

Let us define the following Riccati in X

Ric(X) := AX +XAT −XR−1X +M

and the following polynomial in X

Poly(X) := (X −Q1)(X −Q2)(X −Q3)(X −Q4) +N

The optimization problem is

min
X,Y

α subject to

αI > X, Y < Ric(X), and Y > Poly(X)

First experiment

The data are taken to be scalars: Q1 = 1, Q2 = 4, Q3 = 10, Q4 = 15, N = 100, A = 120,

R = 0.0625, M = 100. The initial feasible guess is X = 12.5 and Y = 0. The feasibility
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Figure D.1: Feasibility region and solution path

region together with the solution path (dotted line) is shown in Figure D.1. The optimal

point was found to be X∗ = 0.6609 and Y ∗ = 251.6233.

Second experiment

Now, we change the values for A = 100 and M = −100. All the other values remains the

same. The result is presented in Figure D.2. For this experiment, if we take the initial guess

to be X = 4.5 and Y = 400, the optimal solution is X ∗ = 1.0296 and Y ∗ = 88.9659. On

the other hand, if we take the initial guess to be X = 11 and Y = 0, the optimal solution

is X∗ = 8.2965 and Y ∗ = 457.987.
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Figure D.2: Feasibility region and solution path

Third experiment

We also run the above nonconvex optimization problem for a variety of matrices of different

size with the data generated randomly. Whenever we had a initial feasible guess, the code
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run successfully. For example, let n = 3 and the date be given by

Q1 =




0.1600 0.1000 0.1500

0.1000 0.2200 0.2200

0.1500 0.2200 0.2400


 , M =




2800 5100 7900

5100 16000 19000

7900 19000 27000




with Q2 = Q3 = Q4 = Q1 and N = −M , and

A =




0.3600 0.0900 0.4500

0.3900 0.4900 0.0340

0.7500 0.6900 0.7200


 , R =




0.8300 0.6500 0.0940

0.6500 0.9300 0.0300

0.0940 0.0300 0.0160


 .

The initial guess is Y = 0 and X given by

X =




1.2000 0.2500 0.3700

0.2500 1.5000 0.8300

0.3700 0.8300 1.7000


 .

For these values, the optimal solution, found after 85 iterations, is given by

X∗ =




−4.3306 −1.2405 −2.2693

−1.2405 −4.5240 −1.8789

−2.2693 −1.8789 −5.1755


 and Y ∗ =




−0.0571 −0.1135 −0.3483

−0.1135 −0.1808 −0.5147

−0.3483 −0.5147 −1.3106




The maximum eigenvalue of X∗ is α∗ = −2.3876.

Example D.3.2 All the dimensions we have tried for this problem provided the optimal

solution X∗ = I.

min
X=XT

α subject to

αI −X > 0

X2 − I > 0

X − 0.5I > 0

Example D.3.3 Powell’s Function, Powell (1964). In the scalar case, the typical testing

point is (X1, X2, X3, X4) = (3,−1, 0, 1). The unknowns Xi ∈ Sn for i = 1, . . . , 4. The

optimal solution is X∗
i = 0, for i = 1, . . . , 4.

min
X1,X2,X3,X4

α subject to

αI − ((X1 + 10X2)
2 + 5(X3 −X4)

2 + (X2 − 2X3)
4 + (10X1 −X4)

4) > 0
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We have test the solver for the dimensions n = 1, . . . , 7. For this dimension the solver

reached the optimal solution X∗ = 0 with the initial guesses, which were randomly gener-

ated, as (Matlab notation):

X1 = randn(n);X1 = X1 +X1′;

X2 = randn(n);X2 = X2 +X2′;

X3 = randn(n);X3 = X3 +X3′;

X4 = randn(n);X4 = X4 +X4′;

For a few initial condition, the solver failed.

Example D.3.4 Rosenbrock’s Function - Banana valley, Rosenbrock (1960).

min
X1,X2

α subject to

αI − (100(X2 −X2
1 )2 + (I −X1)

2) > 0

For the scalar case, the typical testing point is (X1, X2) = (−1.2, 1). The solver was

successful for the scalar case, and we also test it for the range of dimensions n = 1, . . . , 9

with the initial guess been randomly generated as (Matlab notation):

X = 2 ∗ randn(n);X = (X ∗X ′)/n;

Y = 2 ∗ randn(n);Y = (Y ∗ Y ′)/n;

All the test provided the optimal solution X∗ = I.

D.3.2 Not symmetric variables

Example D.3.5 We generalize the Rosenbrock’s Function such that Y ∈ Sn, X ∈ Rp×q,

A ∈ Rn×p, and B ∈ Rq×n.

min
X,Y

α subject to

αI − (100(Y −BTXTXB)2 + (I −BTXTAT )(I −AXB)) > 0

The solver converged to a solution for a large variety of dimensions (for matrices of size less

than 10× 10), and initial guesses generated randomly. Although for some initial guess, the

solver failed.

Example D.3.6 For this example X and T are square matrices. The solver reached the

optimal values for many different size and initial guess. It also failed for some initial
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conditions.

min
X,T

α subject to

αI − T > 0

2I −X3 −X−3 + T > 0

X > 0, 2I −X > 0

When successful the optimal solution X∗ = I and T ∗ = 0 is found.
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