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PREFACE

Since the earlier 90’s, Matrix Inequalities (MIs) have become very important in engi-
neering, particularly in control theory. It is unquestionable that the approaches proposed
in the field of optimization and control theory based on matrix inequalities and semidefi-
nite programming have become very important and promising. Indeed, matrix inequalities
provide a nice set up for many engineering and related problems, and if the MIs are convert-
ible to LMIs, the optimization problem is well behaved and interior point methods provide

efficient algorithms.

This thesis provides tools which can solve a large class of optimization problems over
matrix inequalities. This includes, for instance, systems and control problems, or any other
type of engineering problem that can be posed as a matrix inequality. To use these tools,
no knowledge of Linear Matrix Inequalities (LMIs) is required. Furthermore, these tools

preserve the advantages of the LMI framework.

To understand the motivation for this task, one must expose some of the advantages
and disadvantages of the LMI framework. The wide acceptance of LMIs stems from the
following facts: 1) if a control problem is posed as an LMI, then any solution is a global
optimum; 2) efficient LMI solvers are readily available; 3) once a control problem is posed
as an LMI, any other constraints in the form of LMIs can be added to the problem. On the
other hand, the LMI framework has the following disadvantages: 1) there is no systematic
way to produce LMIs for general classes of problems; 2) there is no way to even know if it is
possible to reduce a system problem to an LMI, without actually doing it; 3) the user must
posses the knowledge of manipulating LMIs; 4) transformations via Schur complements can

lead to a large LMI representation.

If one has the ability to check whether or not an MI is convex and convertible to
an LMI, then the optimization problem can be solved by the many available LMI solvers;
however, if one does not have the ability to deal with LMIs, it is not clear what one should
do. An alternative is to restate the entire optimization problem in the form used by some
particular numerical nonlinear optimization solver. In this case, since optimization over
matrix functions are inherently not smooth, there is no guarantee of even a local minimum.
Furthermore, the tedious process of reformulating a matrix optimization problem usually

requires a high level of skill in algebra.

The main objective of this thesis is to provide a numerical solver for optimization

problems over matrix inequalities that possesses similar advantages as the LMI framework,
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but without its disadvantages. Our method has two components: 1) a numerical algorithm
that solves a large class of matrix optimization problems; 2) a symbolic “Convexity Checker”

which automatically provides a region on which the solution from 1) is a global optimum.

The convexity checker presented in Chapter 3 is one of the main contributions of this
thesis. This symbolic convexity checker algorithm takes as input a matrix function F/(X)
and gives as output a family of inequalities which determine a domain G(X) on which F'(X)
is “matrix convex.” In this way, if G(X) is convex, the checker gives a certificate that the

solution obtained from the numerical solver is indeed a global minimum inside the region

G(X).

The numerical optimization solver NCSDP, presented in Chapter 4, is another con-
tribution of this thesis. This tool can be used to solve optimization problems over matrix
inequalities, and does not require any knowledge of LMIs, or how to manipulate MIs to
be expressed as LMIs. Therefore, there is no need to determine Schur complements in or-
der to express the matrix constraints as LMIs. Moreover, since transformations via Schur
complements can lead to a large LMI representation, the NCSDP solver can reduce the

optimization time significantly when the dimensions of the matrices involved are large.

Putting together the convexity checker and the numerical optimization solver for
matrix functions, one has available a very powerful tool to solve many engineering problems
that can be posed using matrix inequalities. This approach also guarantees a region in which
the solution is optimal. Suppose one has multiple matrix inequalities, then by utilizing the
convexity checker it is possible to find a region on which all those inequalities happen to be
convex. Once this region is determined, one can solve an optimization problem that takes

into account this region of convexity. This tool addressed two important questions:

1. How one can determine if an MI is convex or not. (This is the convexity checker.)

2. If an MI is convex, how one can numerically solve an optimization problem without
having to convert the MI into an LMI. (This is the NCSDP solver.)

It should be noticed, however, that many other types of engineering problems are
intrinsically nonconvex, which makes the above tools no longer useful. Nonetheless, for
a specific nonconvex problem frequently encountered in control designs, the simultaneous
design of the plant parameters and the control law, this thesis provides a convexifying theory
which allow us to approximate the solution of this nonconvex integrated structure and

control design by iterating on a sequence of convex subproblems. The convex subproblem
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is obtained by adding a potential function to the nonconvex constraints. In practice, this
added potential function disappears at stationary solutions of the nonconvex problem. The

convexifying theory is another contribution of this thesis, which is presented in Chapter 5.

It is important to understand whether or not the variables in the matrix inequali-
ties should be treated as commutative or noncommutative (treating a matrix as a single

variable). Suppose one has the following noncommutative matrix function:
ATXA+XBTBX +Q (0.1)

This function has the same form regardless of the dimension of the defining matrices A, B,

Q, and X. It is also possible to write a commutative version of the above matrix function,

as a combination of known matrices Lo, L1, ..., Ly, L11, L12, ..., Lpym in unknown real
numbers z1, ..., T, (which are the entries of X):
m m m
Lo+ Z le‘j + Z Z Lij:Ei:Ej. (02)
j=1 i=1 j=1

The formulas for the L’s depend on the dimension of the underlying matrices A, B, @), and
X. As the dimensions of the matrices increases, the more complicated the formulas for the

L’s becomes.

From the above two equivalent representations (0.1) and (0.2), it is unquestionable
that the noncommutative approach for dealing with MIs provides a more elegant mathe-
matical framework. In addition we shall show it is more powerful. First of all it allows
one to compute efficiently directional derivatives. For instance, the second derivative, the
Hessian, of (0.1) is easily computed as being BTB. This is a clean expression that does not
depend on the dimension of the matrices involved. On the other hand, the formula for the
Hessian of (0.2) depends on the L’s and consequently, on the dimensions of the matrices

involved and it is messy.

We now note two interesting feature which arise in the noncommutative approach.

1. Noncommutativity is likely to be the only practical necessary and sufficient approach
available for checking convexity of matrix functions, given that the ability of checking
convexity of a matrix function is associated with the ability of determining positivity
of its Hessian matrix at each point. This is a huge calculation, so it must be done
symbolically. Even for problems with moderate number of (commuting) variables, the

size would be overwhelming without using aggregated noncommutative structure.
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2. The algebraic linear system of equations, that appears in the subproblem of our op-

timization solver, has basically the following special “Sylvester” structure:
N N
> AibxBi+> BloxAl =Q
i i

where the A’s and B’s are obtained by collecting the terms on both the left and on
the right side of the update direction dx that appears inside the “Hessian map.”
This Sylvester form is not unique and our research has shown that making N small
saves considerable computer time; we give algorithms for doing this. This appealing

Sylvester structure bears furthers study.
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Chapter 1

General Introduction

Since the early 90’s, Matrix Inequalities (MIs) have become very important in engi-
neering, particularly, in control theory. It is unquestionable that the approaches that have
been proposed in the field of optimization and control theory based on Linear Matrix In-
equalities (LMIs) and semidefinite programming (SDP) have become very important and
promising, since the same framework can be used for a large set of problems (Boyd et al.
(1994); El-Ghaoui and Niculescu (1999); Rockafellar (1997); Skelton and Iwasaki (1995);
Skelton et al. (1998)). Indeed, matrix inequalities provide a nice set up for many engi-
neering and related problems, and if the Mls are convex, then the optimization problem is
well behaved and the interior point methods provide efficient algorithms which are effec-
tive on moderate sized problems (Alizadeh et al. (1998); Nesterov and Nemirovskii (1994);
Vandenberghe and Boyd (1996)).

In practice, optimization problems in engineering present matrix inequalities that
require a large effort to determine their convexity. Nevertheless, using Schur complements
and change of variables, many standard control problems have been found to possess an
equivalent LMI formulation. A large collection of such control problems that can be posed
as LMI, and the algorithms used to solve them, can be found in Boyd et al. (1994); Colaneri
et al. (1997). In particular, the book by Skelton et al. (1998) shows that many control

problems can be posed in the following linear form in X
AXB+BTXAT +Q <o. (1.1)

The parameterization of all feasible solutions X and the expression for the existence condi-

tions for the above matrix inequality (1.1) are also given.



1.1 Optimization over Matrix Functions

If one has the ability to check whether or not an MI is convex and convertible to
an LMI, then the optimization problem can be solved by the many available LMI solvers;
however, if one does not have the ability to deal with LMIs, then it is not clear what
one should do. An alternative is to restate the entire optimization problem in the form
used by some particular numerical nonlinear optimization package. In this case, given that
optimization over matrix functions are inherently not smooth, there is no guarantee of even
a local minimum. Furthermore, the tedious process of reformulating a matrix optimization
problem usually requires a high level of skill in algebra. Therefore, what has been missing
up to now are the tools that can be used to reliably and certifiably solve optimization

problems over matrix functions.

To convey what is meant by optimization over matrix functions, we give an example.
Suppose one is given matrices of compatible dimensions A and S, and one needs to solve
the following problem for symmetric matrices X and Y > 0 inside the unit ball:

max Tr {X} (P)

XY

subject to

XATY 'AX — AX(XATY1AX —v) 71X AT — (v 1xATy tAxy 1 -y~ 1)t
—AX(T+ Y IXATY T AX) ™ — (T + XATY ' AXY 71X AT - S <.

With the matrices A and S given by

Later in Chapter 2, we give a physical example.

The above type of matrix optimization problem (P) can be solved using the tools
provided in this thesis. These tools can solve a large class of convex optimization problems
over matrix functions. This includes, for instance, many systems and control problems, or
any other type of engineering problem that can be posed as matrix inequalities. To use

these tools, no knowledge of Linear Matrix Inequalities is required.

To understand the motivations for this task, one must expose some of the advantages

and the disadvantages of the LMI framework.



1.2 Advantage and Disadvantage of Linear Matrix Inequali-

ties

The wide acceptance of LMIs stems from the following facts: a) if a control problem is
posed as an LMI, then any solution is a global optimum; b) efficient LMI solvers are readily
available; c¢) once a control problem is posed as an LMI, any other constraints in the form
of LMIs can be added to the problem.

On the other hand, the LMI framework has the following disadvantages: 1) there is
no systematic way to produce LMIs for general classes of problems; 2) there is no way of
knowing whether or not it is possible to reduce a system problem to an LMI without actually
doing it; 3) the user must possess the knowledge of manipulating LMIs; 4) transformations

via Schur complements can lead to a large LMI representation.

Extending more on disadvantage 1), each area has a few special tricks which convert
“lucky problems” into LMIs. Before there is any hope of producing LMIs systematically,
it is important to know which types of constraint sets convert to LMIs and which do not.
This appears to be a fundamental subject which remains to be explored. Although we do
not deal with this question in this thesis, the papers by Helton (2002) do address some of

these issues.

1.3 Our Approach to Solving Matrix Inequalities

Our method has two components: 1) a numerical algorithm, called NCSDP, that
solves a large class of matrix optimization problems; 2) a symbolic “Convexity Checker”

which automatically provides a region on which the solution from 1) is a global optimum.

The convexity checker presented in Chapter 3 is one of the main contributions of this
thesis. The symbolic convexity checker algorithm takes as input a matrix function F(X)
and gives as output a family of inequalities that determine a domain G(X) on which F(X)
is “matrix convex.” In this way, the checker guarantees that the solution obtained from the
numerical solver is indeed a global minimum inside the region G(X), provided that G(X) is

convex.

The numerical NCSDP optimization solver presented in Chapter 4 can be used to
solve optimization problems corresponding to matrix inequalities. This approach does not

require any knowledge of LMIs or any knowledge of how to manipulate MIs to be expressed



as LMIs. Consequently, there is no need to determine Schur complements in order to express
the matrix constraints as LMIs. Moreover, since transformations via Schur complements
can lead to an LMI representation with large matrices, the NCSDP solver has the potential
to reduce the optimization time significantly when the dimensions of the matrices involved

are large (see Section 1.4.3 in this introduction).

Putting together the convexity checker from Chapter 3 and the NCSDP solver from
Chapter 4, we have a set of very powerful tools to solve many engineering problems that
can be posed as matrix inequalities. These tools also provide a region, which if convex,
guarantees that the solution of the NCSDP solver is a global minimum on that region.
Suppose one has multiple matrix inequalities, then by using the convexity checker, it is
possible to find a region on which all those inequalities happen to be convex. Once this
region is determined, one can solve an optimization problem which takes into account this

region of convexity. These tools answered two important questions:

1. How one can determine if an MI is or is not convex. (This is the convexity checker.)

2. If an MI is convex, how one can numerically solve an optimization problem without
having to convert the MI into an LMI. (This is the NCSDP solver.)

In some sense, there is a parallel between the conventional “LMI approach” and our
noncommutative approach. In the former, one needs to be able to convert the optimization
problem over matrix functions into an equivalent LMI problem, so that some available LMI
solver can be used. In the latter, the convexity checker is used to find a region G on which
the MIs happen to be convex, and the NCSDP solver is used to solve the optimization

problem inside this region G. The next Section 1.4 describes this approach.

1.4 Introducing our Approach by an Example

We begin by describing our method in terms of an example which seem to conve-
niently illustrate our approach for dealing with matrix inequalities. For this purpose, we
choose the optimization problem over matrix functions (P) and show that no knowledge of
LMIs is required in order to solve it. (A realistic engineering problem is presented in Chap-
ter 2.) Recall the optimization problem (P): suppose one is given matrices of compatible
dimensions A and S, and one needs to solve the following problem for symmetric matrices
X and Y > 0 inside the unit ball:

max Tr {X} (P)



subject to

XATY 'AX — AX(XATY1AX —v) 1 xAT — (v 1xATytAxy 1 -yt
—AX(IT+Y ' XATY'AX) ™ — (T4 XATY'AXY H)71xAT — S <o.

For this example, the unit ball can be represented by the following convex constraints:

XX <I and YY <.

1 -1 20
] 7 S - [ ] .
0 2 01

Using our methodology, this type of matrix optimization problem can be solved quite

The matrices A and S are given by

A=

easily, while knowing nothing about LMIs. The steps are:

1. to determine the domain G on which the above problem is convex;

2. to solve the optimization problem using the numerical NCSDP solver over G.

These steps enforce that the solution from the code is guaranteed to be a global minimum

inside the region G, provided that G is convex.

1.4.1 Step 1. Checking convexity

The region G is easily determined by invoking the NCConvexityRegion| | intro-
duced in Part I of Chapter 3. We describe this step using standard TEX notation. For this

purpose, let us define the domain:
G={(X,Y,A,S): F(X,Y,A,5) <0, Y>0, XX<I, and YY <I} (1.2)
with
F(X,Y,A,8) = —AX(XATY TAX —Y) 7' XAT — (Y ' XATY 'AXY -y )~ ' =5
—AX(T+Y ' XATY ' AX) ™ — (T + XATY 'AXY H7IX AT + x ATy 1AX
for X = X7 and Y = YT. The region of convexity for G is evidently the region where the
function F(X,Y, A, S) is matrix convex inside the unit ball for all Y > 0.

Since the convexity checker works at the noncommutative symbolic level, we must set
the symbols appearing in the expression for F'(X,Y, A, S) to be noncommutative. Thus, we
treat X, Y, A, and S symbolically as noncommutative indeterminate. To check the region

of convexity for F(X,Y, A, S), we apply the command:



NCConvexityRegion[F, {X, Y}|

which outputs the list
{ov—1, —2(XATY'AX -Y)', 2v—t 0,0, 0, 0,0, 0, 0, 0, 0}.

Based on our theory, we know that F(X,Y, A, S) will be convex in the domain that makes
each entry in the list a positive definite expression, which, in this case, is the domain given
by

2y 1>0 and —2XxATYlAX -v)l>o.

Thus, from this output, we conclude that whenever A, S, X, and Y are matrices of compat-
ible dimension, F'(X,Y, A, S) is simultaneously “matrix convex” in X and Y on the domain
Gr given by

Gr={(X,Y,A4,5):Y >0 and XATY'AX <Y}. (1.3)

To find if the above domain G is itself simultaneously convex in X and Y, we run the
convexity checker once more on the function G(X,Y, A) = XATY1AX — Y,

NCConvexityRegion[ X ATY 1AX - Y, {X, Y}].

This command outputs the list {2Y"~!, 0}. Thus, the region of convexity is ¥ > 0, and
consequently the domain Gp in (1.3) is convex. The optimization problem (P) will ultimately

be convex inside the domain G () Gp.

1.4.2 Step 2. Invoking the NCSDP solver

The optimization problem (P) can now be solved with no great difficulty using the
NCSDP solver provided in Chapter 4. To enforce that this optimization problem is convex,

we need to add the following convex constraint:
xXATy-lax <v. (1.4)

It should be realized that by adding the above constraint (1.4), we are not solving exactly
the original problem, but instead, we are solving problem (P) inside its region of convexity.

To proceed, let us define the objective for this optimization problem as

obj:=—-Tr{X},



and let the G;, representing the constraint GG; < 0, be given by

Gy :=F(X,Y,A,S)

Gy :=-Y
Gy =YY — I
Gy =XX -1

Gs = XATY'AX -V

The numerical data for this problem are

1 -1 2 0
] 7 S - [ ] .
0 2 01

With this data, we solve the minimization problem (P) using the NCSDP solver. In a

A=

figurative syntax!, the call in Matlab is

NCSDP(obj, {G1,G2,G3,G4,G5}, {X,Y})

The solver returns the global optimum values for the unknowns X and Y given by

*

*_

0.0263 0.0788

0.3421 0.0263
’ 0.0016 0.4255

[0.8107 0.0016]

The optimal cost is therefore Tr {—X"*} = —0.4208.

It is important to emphasize that the extra constraint X ATY1AX < Y obtained
from the convexity checker, allows us to solve a convex instance of the original problem, i.e.,
to solve the original problem inside its largest region of convexity, namely, closure(G (Gr).
This ensures that the solution is a global minimum inside this convex domain. Moreover,

for the specific data in our example, the only constraint active at the optimal solution X *
and Y*is FI(X,Y,A,S) <0.

1.4.3 Timing chart

We have just presented ideas on how to use the NCSDP solver and demonstrated

some of its advantages as well. The question we address here is the comparison of speed;

IThis is not the actual call for the solver. In its present implementation, the code receives as input the
expressions for the constraints as Matlab strings. In this way, we could parse the data to Mathematica for
symbolic manipulations.



since it is important to present a comparative analysis of the NCSDP solver with other
SDP solvers. For this purpose, we present some of the results obtained in Section 4.7 from
Chapter 4. The optimization problem used in this comparison, is not problem (P) from
the previous section, but rather, another problem that also has an LMI representation. We
do not restate the problem here, since the point is to show a qualitative comparison (see

Section 4.7 for details).

The results are presented in Figure 1.1. The semidefinite programming solvers used
were: SeDuMi, SP, SDPHA, and LMILab. These professional solvers are well known to be
efficient for matrices of moderate size. The label MCLMI stands for a crude implementation
of the method of centers for LMIs. It is important to emphasize that while the NCSDP
solver is basically implemented using standard Matlab functions, most of the other solvers

have their core subroutines compiled.

From Figure 1.1, one can conclude that, as the size of the matrices increase beyond
16 x 16, the timing of the NCSDP solver approximates the timing of the LMILab solver
(Matlab LMI Toolbox) which was the fastest of the LMI solvers. Probably, for matrices of
dimensions larger than 64 x 64, the NCSDP might be faster than the LMILab solver. We
did not run this experiment for matrices of dimensions larger than 64 x 64 since the time

would be extremely long.

Seconds

1 2 4 8 16 32 64

Matrix size

Figure 1.1: Performance of LMI Solvers



1.5 Convexity of Matrix Inequalities

At this point, one should realize that the main ingredient of our discussion concerning
MIs and LMIs is convexity — specifically, the ability of determining if a matrix function is
or is not convex (similarly, concave). If an MI can be similarly cast as an LMI, then it is
evident that one has a convex problem. To achieve this, one must be able to recognize what
type of transformation has to be applied to the original MI. Usually, this is accomplished
by applying Schur complements. Sometimes, this transformation is clear, but in many
other cases, it may not be immediately obvious. An example, is the matrix inequality

F(X,Y,A,S) <0 used in the previous optimization problem (P). This MI is given by

XATY'AX — AX(XATY1AX —v) 71X AT — (v 1xATy tAxy 1 -yt
—AX(T+ Y IXATY PAX) ™ — (T + XATY tAXY H)7tXxAT - S <0 (1.5)

with X € Sand S,Y € S;,. Even though it may not be obvious at first glance, this MI is

convex in X and Y, and can be transformed via Schur complements to the equivalent LMI

S AX4Y 0 XAT]
XAT+y -y XAT 0
0 AX Y 0
AX 0 0 Y

< 0. (1.6)

As seen from (1.6), this transformation led to an LMI representation four times larger
than the original MI representation (1.5). Once the problem is in the linear form given by
(1.6), there are many available LMI solvers. To cite a few of them: Gahinet et al. (1995);
Sturm (1999); Vandenberghe and Balakrishnan (1997); Vandenberghe and Boyd (1995), and

references therein.

For this example, we succeed in producing the LMI counterpart of the MI, however,
as already emphasized, there is no systematic way to produce LMIs for general classes
of problems. Thus, a natural question, is “how to identify if a matrix inequality is or
is not convex.” This is quite important, since applying Schur complements to determine
convexity? of MIs may take time, cleverness, and large efforts. Yet, if one fails to set the
problem as an LMI, it does not necessarily imply that the MI is nonconvex. The answer to
this type of question is presented in Chapter 3, where a convexity checker for determining

convexity of matrix functions is made available.

2A matrix inequality F(X,Y) < 0 been convex, means that the domain G := {(X,Y) : F(X,Y) < 0} is
convex. This in turns implies that the function F(X,Y) itself is matrix convex in X and Y.
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1.6 Noncommutative Matrix Inequalities

It is important to understand if the variables in the matrix inequalities should be
treated as commutative or noncommutative, and which mathematics one has available to
deal with those formulas. For this purpose, let us discuss the various ways one could write

a matrix inequality. As an example, the following convex MI
ATXA+XBTBX +Q <0 (1.7)

has the same form regardless of the dimension of the defining matrices A, B, @, and X.
In other words, if we take the matrices A, B, ), and X to have compatible dimensions
(regardless of what those dimensions are), then this inequality is meaningful and its form
does not change. On the other hand, for this same example, once the dimensions of the

matrices A, B, @, and X are specified, it is also possible to write the above MI as a

combination of known matrices Lg, L1, ..., Ly, L11, L12, ..., Lpym of dimension p X p in
unknown real numbers x1, ..., ZTm:
m m m
Lo+ Z Ljﬂ?j + Z Z Lijxixj < 0. (18)
j=1 i=1 j=1

For example, if we assume that the dimension of the matrices in the inequality (1.7)
are A € R?*2. B € R™2,Q € R?>*2, then XT = X € R?>*? and consequently m = 3. The

unknowns in the inequality (1.7) are the numbers x; in

X X
X — 1 2
T2 I3

For this set of matrices, the Ls are given by

bl 0 % b11b12
L= " Loy = 12 ) Ly =L,
0 0 bi1bi2 b1y
biibia b3 0 b
Ly = 1 Loz = 12 Ly = Ly
0 0 0 bi11b12
0 b11b12 0 0
Lz = L33 = ) L3y = L
0 0 0 by
0%1 a11a12 a%l 210922
L= Ls = \ Lo=Q
ai1a12 ayq 210922 ayy

I 2a11a21 a12a21 + a11a22
2 pu—
a12a21 + a11a22 2a12a22
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Now, if we consider that the dimensions of the matrices involved are A € R3*3,
B € R¥3, Q € R¥3, and X € R?®*3, then the formulas for the Ls, whose relationship
to (1.8) takes a little while to figure out, are more complicated. This shows that formulas
like (1.8) do not scale simply with the dimension of the matrices, while formula like (1.7)
does. Thus, formulas like (1.7) are easier to manipulate with a pencil and paper (or with
NCAlgebra) than formula (1.8). In this way, it is plausible to say that noncommutative

inequalities behave better than commutative ones.

Commutativity also has its own advantages, given that unscalable formulas like (1.8)
tend to hold more generally than scalable ones and that they do not contain too much
special structure. Moreover, formulas like (1.7) have the disadvantage to be intrinsically
noncommutative, so that a person must have skill with noncommutative calculations. Nev-
ertheless, the properties that originated from the commutative point of view do not appear
to provide any useful advantage regarding our approach for dealing with matrix inequality,
on the other hand, noncommutativity provides a powerful setup to manage matrix inequal-
ity symbolically. Therefore to develop a basis for computer algebra packages which could
assist engineers in manipulating matrix inequalities, one needs to use the theory behind

noncommutative rational functions, which is addressed in great detail in Chapter 3.

1.6.1 Noncommutativity as the Only Option for Checking Convexity

We have just shown that noncommutativity for dealing with MIs provides a more
elegant mathematical framework. In addition, it allows us to efficiently compute directional
derivatives, to collect and to simplify terms in an expression, and thus, to generate the
algebraic linear system of equation which provides the Newton direction. But, perhaps, the
greatest advantage of the noncommutative framework is that noncommutativity is likely the
only practical necessary and sufficient approach available for checking convexity of rational

functions over matrices.

It is hard to imagine a way to implement a convexity checker other than by using
symbolic computation, even on modest size problems. Moreover, with commuting variables,
the Hessian matrix is big and its positivity must be checked at every point. Even if a
sum of squares algorithm is successfully developed to check positivity of the Hessian, it
would be practical with only a dozen or so variables. The advantage of noncommutative
representations is that one letter Z stands for a matrix with n? commuting variables. This
is a tremendous saving, which in most problems means the difference between being able

to or not being able to run a convexity checker.
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1.7 Solving the Linear System

As we will see in Chapter 4, another important advantage of using the theory be-
hind noncommutative rational functions is that the Newton direction (implemented in our
numerical solver) is obtained as the solution of a “matrix” algebraic linear equation. Basi-
cally, the algebraic linear system of equations, H(dx) = Q, to be solved have the following

structure:
N N
> AidxBi+ Y BloxAT =Q (1.9)

where the A’s and B’s are obtained by collecting the terms on the left and on the right side
of the update direction dx that appear inside the “Hessian map,” denoted by H(dx). The
integer 2N has been defined as the Sylvester index by Konstantinov et al. (2000).

The above equation (1.9) provides the necessary conditions that the direction é x must
satisfy in order to be a Newton direction. An important question, which is still open, is
how this linear system can be solved efficiently. We present a rudimentary approach, which
uses the vec operation. Using the properties of the vec operation, the matrix system (1.9)

can be transformed in the equivalent vector form
Hv=g (1.10)

where H is the Hessian matrix given by H = SN BT @ A; + S.F A; ® BT, the vector g is

the gradient given by g = vec(Q), and v is the vector of unknowns given by v = vec(6X).

The final equation (1.10) is now in the conventional vector form, and can be solved by
any conventional linear system solver. However, this “brute force” procedure does not take
advantage of the particular structure of the Hessian map H(dx ), which is readily evident
from (1.9). Naturally, after applying the vec operation, the linear system (1.10) somehow
contains this “nice” structure, but from the knowledge of the author, there are no practical
algorithm that can solve the linear system (1.10) taking into account the structure of H(d x)

for any arbitrary Sylvester index V.

For the simpler case of when N = 1, so that H(6x) = AéxB + BTox AT, we have
a “Lyapunov” type of algebraic equation, for which there are many available numerical
and analytical results (see Chapter 7 of Golub and Loan (1983) and references therein).
However, in the most general form where the Sylvester index can be any number, there is
no satisfactory numerical algorithm, or even theoretical results, that can take advantage
of the structure of the system. Some works in this area are Konstantinov et al. (2000).

Since most of the running time of the optimization code is spent on solving the above linear
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system, a satisfactory theory and algorithm would be valuable. We leave this major open

area of work for others.

1.7.1 TImproving Function Evaluations

Even though we will not present in great details how our optimization code is imple-
mented, we feel that it is important to expose the main idea behind the implementation,
mainly the fact that the algorithm can be split into two parts: a symbolic and a numerical

part.

Roughly speaking, at the symbolic level, Mathematica computes the first and second
directional derivatives of a log-barrier function that incorporate the objective and the con-
straints. From those derivatives one obtains the maps for the Hessian H(dx) and for the
Gradient Q, building in this way an algebraic linear equation like (1.9). At this stage, the
most important question is how one can symbolically simplify the final expressions such
that when we substitute matrices for the symbols, the time spent on function evaluations

can be minimized.

To attain this goal, we should observe that even if two symbolic rational functions
may at first glance look different, they, in fact, can be totally equivalent. This frequently
happens inside noncommutative rational functions containing a large number of terms. It is
also important to collect terms in an expression. We show this with a very simple example,

which appears, in practice, in a more complex fashion. Suppose one has an expression like
A16x + -+ Apdx

To evaluate this expression, once that dx and the A; are replaced by matrices, we need

p matrix additions and also p matrix multiplications. On the other hand, collecting this

(Z Ai) .

In this case, we need p matrix additions and only one matrix multiplication. In this example,

expression in dx we obtain

the Sylvester index has dropped from p to 1. This represents a huge saving on the numerical
cost of evaluating the above expression. Thus, the ability to decrease the Sylvester index
by collecting factors in an expression, plays a very important role. The work by Helton
et al. (1998) provides an efficient theory and algorithm to simplify noncommutative rational

functions.
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It is also true that at the symbolic level of Mathematica, the process of collecting
terms on an expression and the process of simplifying rational functions, can consume a
considerable amount of time. However, this computation is done only once in the begin of
the run. This is in contrast with the numerical part, where the evaluation of the expression
to provide the update direction takes place at each inner iteration (which occurs many

times).

1.7.2 More on Collecting

Since the ability to collect terms on an expression significantly reduces the time spent
on function evaluations, we show one more example, and we leave for Section 4.6 the
numerical results showing how much time can actually be gained. Let us illustrate with the
next example exactly what we mean by collecting terms in an expression. Suppose that the

expression for the Hessian map H(dx) is given by
H(0x) = Adx AT + XTox X + Box BT — Aox X — XTox AT + Box AT + Aox BT,

The Sylvester index in this case is seven. This expression can be collected in at least two

different ways, having the same number of terms. One possibility is
3
H(dx) = (A - XT)6x(A— XT)T + (A+ B)éx(A+ B)" — Adox AT =Y~ AidxB;
i=1

for A; and B; given by
A =(A-XxT), Ay = (A+ B), Az =—A
By =(A-X1T, By = (A+ B)T, By = AT

Another one is
3
H(dx) = (A+B—X")ox(A+ B - X")T + BéxX + XToxBT =) Ai6x B
=1

for A; and B; given by
Alz(A—l—B—XT), As = B, A3:XT
By=(A+B-XNT, By =X, By = BT

In both cases, the Sylvester index is now three, going down by less than half. It is now quite

easy to see that a large reduction in the Sylvester index might happen. It is also evident

from the above example, that this process is not at all unique.
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1.8 Nonconvex Matrix Inequalities

Unfortunately, not all MIs are convex, and a different strategy is therefore required
to deal with nonconvex MIs. An example of an engineering problem that is posed using
nonconvex matrix inequality is presented in Chapter 5. The nonconvex problem of interest
in this thesis is the simultaneous design of the plant parameters and the control law. It
can be shown that the joint integrated structure and control design problem has the same
mathematical structure as a decentralized output feedback control problem with the control

gain matrix being diagonal, which is well known to be hard to solve.

We now give an idea of what makes the integrated structure and control problem
nonconvex. Suppose our dynamic system is described by the following first-order differential
equation

T = Ax + Bu

where u is the control input and A, B are given matrices describing the dynamics of the
system. To find a stabilizing state feedback control law, given by u = K=z, it suffices to

solve the following matrix inequality for X and F
AX + XA+ BF+F'BT <,

where the change of variable F' = K X was performed. Once X and F' are determined, the
control gain is promptly given by K = FX~'. If A and B are fixed matrices, then the
problem is clearly linear in X, however, if either A or B contain unknown terms, then the
problem is nonconvex. This is exactly the type of structure that appears in this simultaneous
design, since matrices A and B are no longer fixed matrices, as they may contain unknown
parameters to be optimized, as an example: the mass, the stiffness and the damping ratio

of the structure.

To overcome the difficulty of nonconvex MIs, a convexifying theory is presented in
Chapter 4, which will allow us to approximate the solution of the nonconvex integrated
structure and control design by iterating on a sequence of convex subproblems. The convex
subproblem is obtained by adding a certain potential function to the nonconvex constraints.
In practice, this added convexifying function disappears at stationary solutions of the orig-

inal nonconvex problem.

Even though the convexifying theory presented in Chapter 4 is applied to the inte-
grated structure and control design problem, the idea is broader and can be used to solve

many other type of nonconvex control problems (de Oliveira et al. (2000)).
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1.9 Summarizing the Main Ideas of Each Chapter

1.9.1 The Convexifying Theory

This section summarizes the main ideas behind the convexifying theory, which are
presented in detail in Chapter 5. Let YV C RP*%. Suppose one wishes to solve the following
nonconvex optimization problem:

migllf(X), Q:={XeV:GX)<0} (1.11)
[AS
where f(X) : V — R is a linear function on the unknown X € V and G(z) : V — S™ is
a nonconvex matrix function. Then, we define a convexifying matrix function H(X,Y) :

VY xV —S"forall X,Y €V such that
G(X)+ H(X,Y)

is now convex in X. This potential matrix function H(X,Y) must posses some extra

properties (Section 5.3):
i) the matrix H(X,Y) is positive semidefinite for all X,Y;
ii) for all X,Y satisfying || X —Y|| < ¢, there exists € > 0 such that H(X,Y) < ¢[|X -Y;

iii) for all X,Y satisfying || X —Y|| < 0, there exists € > 0 such that H'(X,Y) < ¢|| X =Y,
where H'(X,Y) is the derivative of H(X,Y) in X.

Using these ideas, a simple algorithm for finding suboptimal solutions to the above

nonconvex optimization problem is given by

Algorithm 1.9.1 Lete >0, X° € Q and a converifying matriz function H(X,Y) be given:

1. For k=0,1,2,..., solve the convex optimization problem
Xk — arg min f(X), Q= {XeV:GX)+HX,X%) <0}. (1.12)
€8

2. Until converges, go back to 1.

The above convex problem is significantly simpler than (1.11), and we assume that
its solution can be obtained by some available convex programming technique. Under quite
strong assumptions, the XX will converge to a stationary solution of the original nonconvex
problem. Experiments have shown that this algorithm has been successful for the integrated

structure and control problem presented in Chapter 5.
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1.9.2 The Convexity Checker Algorithm

In Chapter 3, we provide a computer algebra algorithm that can be used to find the
domain G of convexity of a noncommutative rational function F. This algorithm produces

sufficient, and with some weak hypotheses, necessary conditions for convexity.

We now very loosely introduce the idea behind the algorithm even though we have
not set down any formal definitions. Let F' be the noncommutative rational function to be
analyzed. Say F' is a function of the noncommutative variables, Aq,..., Am, X1,..., Xk.

The main steps of the algorithm are:

1. The second directional derivative with respect to X1,..., Xy, the Hessian HF' of the

function F', is computed.

2. As the Hessian is always a quadratic function of the update directions, it can be

associated with a symmetric matrix Myp with noncommutative entries.
3. The noncommutative LDLT factorization is applied to the coefficient matrix My p.

4. And finally specifying positivity of the resulting diagonal® matrix D(Ay, ..., A, X1,
., Xj) gives inequalities describing a region G of variables on which F' is matrix

convex.

While determining convexity of conventional commutative functions is extremely
straightforward, noncommutativity imposes rather interesting complications. In particular,
proving that the largest symbolic inequality domain on which F' is matrix convex requires a

substantial proof, mixing both linear algebra and algebraic representation type arguments.

1.9.3 The Optimization Solver for Matrix Functions

In Chapter 4, we propose a methodology where we can numerically solve convex
optimization problems over matrix functions. The constrained optimization problem (COP)

we are interested in can be posed as:

find f*, if one exists, such that

ff=min{f(X): X € closure(G)} (COP)

3If D is not diagonal, it contains 2 x 2 blocks which are never positive definite. See Section 3.4.
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where the feasibility domain G is given by
G— {XGC:E(X) >0, izl,...,m}

and C is a bounded convex domain. The function f(X) : C — R is linear and the map

F; : C — S™ for each i is concave.

The idea behind the method is to replace the above constrained problem by a sequence
of unconstrained convex minimization problems whose solutions eventually tend to the set
of optimal solutions of (COP). In order to accomplish this, we need to define a barrier
function for the feasibility domain G. This barrier function, which we denote by ©(X), has
to be a smooth strongly convex function such that ©(X) — oo for points converging to the

boundary of the set G. A usual barrier is the one given by
O(X) =—> logdet F;(X): G — R.
i=1

With the barrier ©(X) as defined above, the original problem (COP) could be approximated

by a family of unconstrained problems of the form
X*(7) = argmin { log (1/(y — /(X)) + 6(X) : X € G, } (1.13)
where the feasibility set G, is given by
{Xeg:f(X)<n}.

Under some mild conditions, the solution X*(vy) of (1.13) approaches the set of optimal

solutions of (COP) for an appropriate sequence of decreasing centralization parameter -.

1.10 The Layout of the Thesis

For clarity of presentation we have tried to make the chapters as independent from
each other as possible. Thus, the reader will not need to be flipping pages over and over, and
consequently, each chapter can be read in the order that is most suitable for him. For this
purpose, most of the chapters have an introduction section and a notation section, producing
a few overlaps of material. Sometimes, in order to avoid repeating certain definitions, there

will be a reference to an earlier chapter that already provided them.

In this way, we believe the contributions of this thesis are more easily accessed, since

each main contribution will be presented in an individual chapter. These contributions, as
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seen from a bigger picture are: The convexifying theory and its application to the integrated
structure and control design; the convexity checker; and a theory and a computer algorithm
that solves convex optimization problem over matrix functions. Naturally, these are the
main results, but many other new results are also derived in order to support these main
ideas: for instance, the theory and implementation of an LDU algorithm for noncommuta-

tive rational functions.

This thesis is organized as follows. Chapter 2 illustrates the application of our method
for solving matrix inequalities to an engineering design: an Ha/Hoo criteria for the design
of active suspension control. Chapter 3 provides the convexity checker algorithm; its theory
and its symbolic implementation. In Chapter 4, the theory behind the NCSDP solver is
presented, along with many numerical experiments. Chapter 5 presents the convexifying
theory, with an application to the integrated structure and control design. Chapters A-
D are appendices which provide, among other results, Matlab codes and a list of testing
problems for the NCSDP solver.

We reinforce that the notation used in Chapter 3 for the convexity checker is somewhat
inconsistent with the notation used in the other chapters. In most of the chapters, we have
used the same notation to stand either for a symbolic variable or for a variable which is a
matrix, i.e., X could stand either for a noncommutative element or for a matrix of fixed
dimension. On the other hand, given that in Chapter 3 we will be constantly substituting
noncommutative elements by matrices of compatible dimensions, a more refined notation
is needed. Thus, in Chapter 3, Euler-Script letters are frequently used to indicate the
substitution of noncommutative elements by matrices of compatible dimensions. As an
example, F'(X) means a noncommutative rational function whose argument X is a symbolic

element; on the other hand, the Euler-Script X is used in F/(X) when X is a matrix in R"™*"™.



Chapter 2

An Hsy/Hso Criteria for the Design

of Active Suspension Control

To motivate the use of the tools provided in this thesis, the present chapter demon-
strates how to solve an engineering design problem posed as matrix inequalities. No knowl-
edge of LMIs or how to manipulate MIs to be expressed as LMIs is required. The optimiza-
tion problem considered here is the design of an Ha/Ho guaranteed cost controller for a

vehicular suspension.

This will not be a comprehensive presentation on how to design active suspension
systems, but rather on providing efficient tools for solving matrix inequalities. The reader
which are not interested in the engineering setup and wants to see the application of our

tools, might want to start from Section 2.5.

2.1 Introduction

Since the early 80’s, optimal control techniques for improving vehicular suspensions
have been fairly investigated. Those techniques can improve the performance of an automo-
tive suspension significantly as shown in Camino et al. (1999); Hrovat (1991, 1993); Sharp
and Crolla (1987). A vehicular suspension basically supports the vehicle weight, maintains
stability along different types of maneuvers, offer a relative margin of comfort, and mini-
mizes the effect of forces arising from the road disturbances. To describe those dynamics, a
model suitable for control design (see Chalasani (1987); Takahashi et al. (2000); Thompson
(1976)), which is largely used in the literature, is the quarter-car showed in Figure 2.1.

20
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2.2 Dynamics of a Vehicular Suspension

For the two degree of freedom model presented in Figure 2.1, the coordinates x
represents the displacement from equilibrium of the unsprung mass m1q, the state xo is

the displacement from equilibrium of the sprung mass ms. The states x3 and x4 are their

T

k1

A\

Figure 2.1: A 2-DOF suspension car

respective velocities. The road disturbance applied to the tire is w. The stiffness of the
tire is k1. For the suspension system, the damping coefficient is ¢ and the spring stiffness
is ky. The force produced by the actuator is denoted by u. With these specifications, the

equation of motions derived using Newton’s laws is given by

. c . . ko k1 1
.1'1——m—l(l'l—l‘Q)—m—l(l‘l—.fﬂg)—gl(l'l—’lU)—m—lu

.. c . . ko 1
Fo = — (&1 — @2) + — (1 — x2) + —u.
mo meo mo
These equations can be represented in the state-space form:
T = Az + B,u+ Byw

where B, is
BZ;:[O 0 k:l/ml 0]

and the matrices A, B, are given by

[ 0 0 1 0o | 0]
0 0 1 0
A= . B,-=
—(kQ + kl)/ml kg/ml —c/m1 C/m1 —1/m1
kg/mg —kg/mg C/?TLQ —c/m2 i i 1/m2
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2.3 Control Strategy

The control design for a vehicular suspension system always involves a trade-off among
several conflicting objectives, which are usually expressed by: 1) road holding ability as-
sociated with the tire deflection; 2) required rattle space, i.e., the relative space between
the axle and the body of the car; 3) user discomfort associated with the acceleration of
the sprung mass ms. The index used to quantify those objective are respectively given by
r1 — w, r1 — T3, and the control effort u. Based on these criteria, one design methodology

is to find a control law which minimizes the following quadratic cost function

1 o0
J = 5/ {a(z1 — w)? + B(z1 — 22)* + pu’} dt (2.1)
0
with the weights given by «, 3, and p.

Naturally, for the appropriate choice of weighting matrices Q = CJCy and R =
DQTuDgu this cost function gives rise to an LQR design. This was the design proposed in
Thompson (1976), where a suitable change of variable (to include the disturbance w) was
applied to the system so that the designed closed-loop system would be of type I, having
a zero steady-state offset to a step input w (similar to a regular spring-damper automobile
suspension system). After applying the change of variables, the system and the cost function

are given by

1 [ L[
J = 5/ 22 dt = 5/ {27C3 Ca + " D3, Doyu} dt,
0 0

&= A% + Byu, 20 = Caod + Doyu

where
D3, Dy =p,  C3 Dy =0
and _ i,
a+p =4 0 0 Tl —Ww
_ 0 0 _
o= | 7NN
0 00 T3
0 0 0 O T4

A main disadvantage of this LQR design is that the road disturbance must be available
for feedback. To overcome this difficulty, we propose a different methodology based on the
mixed Hs/Hoo control problem. In our approach, instead of a change of variable as done

in the above design, we add an integrator given by &5 = x1 — x3, thereby enforcing that
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the rattle space will have a zero steady-state offset to a step input. In this new approach,
the states can be easily obtained from the suspension stroke and through integration of
the acceleration of both the unsprung and the sprung mass. Allowing in this way a more

realistic implementation.

Let us denote by H,,, the transfer function from the disturbance w to the unsprung
mass displacement x1. Since w is no longer available, and consequently the tire deflection
x1 — w can no longer be included in the cost function for the new design, we bound the
closed-loop gain of H,,., by a factor of 95% of the gain provided from the nominal system.
From Figure 2.2, we found that |[H,., |[|YO™ for the nominal system is 1.2. Note that the

magnitude in this Figure is given in dB, thus we have 20log;,(1.2) = 1.5836 dB.

20
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Figure 2.2: Bode diagram of the nominal system H,,,

To achieve our purposes, we choose the controlled output z; = Cix+ D1y, to represent

the displacement of z1, i.e.,
01=[1 000 0] and Dy, =0
This provides the Ho, performance. For the Hy criteria, the cost function (2.1) becomes
L[ 2, =2
J = 3 {az) + oz + pu’} dt (2.2)
0

where the new state x5 is included. In this way, we have obtained a mixed Ho/Hoo control

problem.
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2.4 Multi-objective Hy/H,, Control Design

Our control problem is depicted in Figure 2.3 below, where w is the disturbance acting
on the system, the available vector y contains measurements, the vector u is the control
law, and the output z9 and z; are the controlled output for the Ho and Hy, performance

criteria.

—— 21

Figure 2.3: Mixed Ho/Hoo control problem

The state-space representation for this system is given by
T = Ax + Byu + Byw
29 = Cox + Doyu
z1 = Cix + Diyu + Digw
We assume that all the states are available for feedback, thus the control law is given by
u= Kz
with K being the constant gain to be determined. The closed-loop system is now given by
&= (A+ B,K)r+ Byw
29 = (C2 + Doy K)x
z1 = (C1 + D1, K)z + Dyyw

For this configuration, we can pose our mixed Hy/Hoo control problem as: find a

control gain K, if one exists, such that
O m}%n | Huwz, |2 subject to
[Huwz lloo <m

where 7 is a given positive number, and H,,,, and H,,,, are the transfer functions from the

disturbance w to z and from w to z1, given respectively by
Hysy i= (Cy + Doy K) [sI — (A + B,K)] "' B,
Hyy i= (C1 + D1, K) [sI — (A + B,K)] ™" By + D1y



25

Thus, the idea behind our control design is to minimize the Hs norm of the transfer
function of the closed-loop system meanwhile its H,, norm is bounded by a constant scalar
n > 0. We pose the mixed Ho/H control problem using the parameterization for the
Ho and Ho performance given in Iwasaki and Skelton (1994); Skelton et al. (1998). To
accomplish this, we show how one can compute the Ho and Ho, performance criteria using

matrix inequalities.

For a given control gain K, the Hy norm of the closed-loop system does not exceed a

positive scalar p, if symmetric matrices @@ and Xo > 0 exist such that:

Tr{Q} < p?
Q = (C2 + D3, K)X3(Co + D2, K)" >0
(A4 B,K)Xy + Xo(A+ B,K)" + B,BL <0
These equations are obtained from the controllability Grammian of the closed-loop system.

In a similar way, for a given control gain K, the Hy, norm of the closed-loop system does

not exceed a positive scalar 7, if a symmetric matrix X, > 0 exists such that:

(A+ ByK)Xoo + Xoo(A+ B,K)" + B, Bl
+ [Xoo(Ch + D1uK)T + ByDL] R [Xoo(Cy + Dy K)” + B,DT]T <0

with R = n*I — Dy,,D%, > 0.

In order to solve this problem, it is a usual compromise to require that the above
Lyapunov matrices Xo and X, be identical. Thus, X = Xy = X, for both performance
objectives. Applying the change of variable Y = KX, we can pose our Hy/H guaranteed

cost control problem as:
min Tr {Q}
X >0

Q — (C2X + Dy, V)X 1o X 4+ Dy, Y)T >0
AX + XAT + B,Y +YT'B!l + B,,BY

+ [xcT +Y"DL + B,DL ) R [xCT + YT DL, + B,DL,]" <0

(2.3)

with R = n*I — Dy, DT, > 0.

2.5 Solving the Design Problem

An important issue now is how one can solve the above MI problem given in (2.3). If

one has the ability to check wheter or not this problem is convertible to an LMI, then the
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optimization problem can be solved by the many available LMI solvers; however, if one does
not have the ability to deal with LMlIs, it is not clear what one should do; since optimization

over matrix functions are inherently not smooth.
Using our methodology, this type of matrix inequality optimization problem can be

solved quite easily, while knowing nothing about LMIs. The steps are just:

1. to determine the domain G on which the above MI problem is convex;

2. to solve the optimization problem using the numerical NCSDP solver over G.

These steps, enforces that the solution from the code is guaranteed to be a global minimum

on the region G, provided that G is convex .

2.5.1 Step 1. Checking convexity

The region G is easily determined by invoking the NCConvexityRegion[] introduced
in Part I of Chapter 3. We describe this step using the standard notation in Mathemat-
ica/NCAlgebra. For this purpose, let us define the domain:

G={X|FR(X,Q,Y)>0 and F(X,Q,Y)> 0}
with
Fi(X,Q,Y) :=Q — (C2X + D9, Y)X (0o X + Do, V)T
B(X,0,Y) = — (AX +XAT + B,Y + Y"BT + B, BT,
+ [xcT +¥"Df, + B,DL) R [XCT + Y DY, + B,D,)")

The region of convexity G is evidently the region where the functions F;(X,Q,Y) and

F5(X,Q,Y) are matrix concave.

Since the NCConvexityRegion command works at the noncommutative symbolic level,
we must set the symbols appearing in the expression for F1(X,Q,Y) and F»(X,Q,Y) as
noncommutative. In Mathematica/NCAlgebra this is done by:

In[1]:= SNC[Q, X,Y,A, C2, D2u, Bu, Bw, C1, R, D1u, D1w];
Now, let us define the function F3(X,Q,Y) and F5(X,Q,Y) in Mathematica:

In[2]:= F1 = Q- (C2 ** X 4 D2u ** Y) ** inv[X] ** (X ** tp[C2] + tp[Y] ** tp[D2u]);
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In[3]:= F2 = -(A ** X + X ** tp[A] + Bu ** Y + tp[Bu ** Y] + Bw ** tp[Bw] + (X ** tp[C1] +
tp[D1u ** Y] + Bw ** tp[D1lw]) ** inv[R] ** (C1 ** X + Dlu ** Y + Dlw ** tp[Bw]));

To check the region of convexity for Fy(X,Q,Y), we apply the command:
In[4]:= NCConvexityRegion[F1, {X,Y,Q}]

which outputs the list:
{—2x~1 0}

From this output, we conclude that the function Fi(X,Q,Y") is matrix concave on the
domain Gy given by
G ={(X,Y,Q) : X>0}.

To check the region of convexity for F»(X,Q,Y), we apply the command:
In[5]:= NCConvexityRegion[F2, {X,Y,Q}]

which outputs the list:
{—2cTR7'Cy, 0}

since C’lT R™1C} > 0 by assumption, we conclude that the function F» is matrix concave.

This result tells us that the optimization problem as stated in (2.3) is convex for all
X > 0. Moreover, whichever solution our NCSDP solver returns, for the above problem

(2.3) with the constraint X > 0, this solution is guaranteed to be a global minimum.

2.5.2 Step 2. Invoking the NCSDP solver

We now provide the numerical data used for simulation purpose. The nominal pa-
rameters of the system are given by m; = 28.58 kg, mo = 288.90 kg, k1 = 155900 N/m,
ko = 19960 N/m, and ¢ = 1861 Ns/m. For the Hy performance, we used @ = 2.5, ¢ = 100,
and p = 8 x 1071°. The imposed bound 1 on the Ho, norm of the transfer function from
w to z1 was n = 0.95 x 1.2 = 1.14. With these data, we solve the control problem posed
in (2.3) using the NCSDP solver. The solver returns the global optimum values for the
unknowns @, Y, and X given by:

0.598437  0.381385 —0.241154
Q=10%x 0.381385  1.563809 —0.063589 |,
—0.241154 —0.063589  0.262757
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Y =107 x [ —0.014988 —0.054751 7.248507 —0.358297 —0.008526
and

0.000695  0.000191 —0.018557  0.005479  0.000025
0.000191  0.000710 —0.015702 —0.001408  0.000050
X =10° x | —0.018557 —0.015702  3.516382 —0.167338 —0.001861
0.005479 —0.001408 —0.167338  0.066279  0.000145
0.000025  0.000050 —0.001861  0.000145  0.000006

Thus, for the imposed bound 1 = 1.14, the guaranteed Ho performance is \/Tr {Q} =
Vv242.5 = 15.57. This is also seen from the iteration log of the code presented in Table 2.1.
The controller Ky, /3y =YX ~1 is given by

Ky po, = 10° x [0.760705 —0.696518 0.000586 —0.089321 3.535528}

Iteration log of the Code

The iteration log for this optimization problem is presented in Table 2.1, where the
first column NeNe shows the number of Newton steps required to compute the analytic
center, within an accuracy of 1073 (i.e. 7 < 1073). The second column shows the norm
of the gradient vector g, the third column presents the step length o, the fourth column
shows the value of Tr {@}, and the last two columns present the minimum and the maximum
eigenvalue of the Hessian matrix H. The code stops when the upper bound v (centralization
parameter) between two successive iterations, v*T! — 4% is less than 107°. Note that the
table does not show every iteration. For a more detailed description of these parameters

see Section 4.4.4.

Table 2.1: An Hy/Hoo control design for a vehicular suspension car

NeNe gl T o Tr{Q} Amin(H) | Amax(H)
Iteration 1 v = 5.8425445E+09

1 9.8E-03 3.9E4-00 0.2 2.7590497E+09 1.0E-19 2.1E-03

2 8.3E-03 3.7E400 0.2 2.5719360E+09 8.1E-20 1.8E-03

3 7.0E-03 3.5E4-00 0.2 2.3625135E+09 6.3E-20 1.5E-03

4 5.9E-03 3.2E4-00 0.2 2.1396897E+09 5.1E-20 1.2E-03

continued on next page
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NeNe gl T o Tr{Q} Amin(H) | Amax(H)
24 2.5E-04 9.6E-01 0.5 | 1.2784479E+09 3.9E-20 6.9E-05
25 1.7E-04 4.3E-01 0.7 | 1.2884245E+09 5.2E-20 6.8E-05
26 7.5E-05 1.0E-01 1.0 | 1.2913954E+09 6.3E-20 6.7E-05
27 6.4E-06 3.4E-03 1.0 | 1.2913429E+09 6.6E-20 6.6E-05

Iteration 2 v = 3.7976539E4-09
1 1.8E-08 1.9E400 | 0.3 | 1.1406628E+09 6.6E-20 6.6E-05
2 1.4E-05 1.5E4+00 | 0.4 | 9.8653968E+08 6.5E-20 6.7E-05
3 2.9E-05 9.8E-01 0.5 | 8.5279649E+08 6.4E-20 6.9E-05
4 3.7E-05 4.8E-01 0.7 | 7.6725520E+08 6.2E-20 7.1E-05
5 2.4E-05 1.4E-01 1.0 | 7.3283248E+08 6.0E-20 7.3E-05
6 2.1E-06 3.3E-03 1.0 | 7.3359799E+08 6.0E-20 7.4E-05

Iteration 66 v = 2.4250082E4-02
1 1.8E4+05 | 2.0E400 | 0.3 | 2.4250061E4-02 34E-10 | 4.3E+413
2 1.3E405 | 1.7TE400 | 0.4 | 2.4250059E4-02 4.5E-10 5.0E+13
3 8.7E+04 | 1.3E+00 | 0.4 | 2.4250058E+02 4.4E-10 6.0E+13
4 5.3E+04 8.4E-01 0.5 | 2.4250057E+02 4.9E-10 7.3E+13
5 2.5E+04 4.2E-01 0.7 | 2.4250056E+02 4.5E-10 8.8E+13
6 7.6E+03 1.3E-01 1.0 | 2.4250055E+02 6.0E-10 1.0E+14
7 1.3E401 2.2E-04 1.0 | 2.4250055E+02 6.4E-10 1.1E+4+14

Iteration 67 v = 2.4250068E+-02
1 29E+05 | 2.0E+00 | 0.3 | 2.4250055E+02 6.1E-10 1.1E+4+14
2 2.1E+05 | 1.7E+00 | 0.4 | 2.4250054E+02 7.3E-10 1.3E+14
3 1.4E405 | 1.3E400 | 0.4 | 2.4250053E4-02 8.0E-10 1.56E+14
4 8.3E+04 8.4E-01 0.5 | 2.4250052E+02 7.5E-10 1.8E+14
5 4.0E4-04 4.2E-01 0.7 | 2.4250052E+02 5.8E-10 2.2E+14
6 1.2E+4-04 1.3E-01 1.0 | 2.4250051E+02 9.9E-10 2.6E+14
7 2.1E+01 2.3E-04 1.0 | 2.4250051E+02 1.2E-09 2.7E+14
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2.6 Comparing the H,/H, Design against the LQR Design

For the purpose of comparison, we also calculate a LQR controller using the cost
function given in (2.1), which we denote by Krgr. The weights used for the LQR were
a=10,5=1,and p =8 x 1071 The LQR controller is given by

Kror = 101 x [5.247840 —2.064051 0.039623 —0.263124]

Figure 2.4 shows the Bode diagram of H,.,, which is related to the road holding

ability for the nominal system and for the new system using the Hs/H controller.

20

Magnitude (dB)

—-100

-120
10

° 10’ 10° 10°

Frequency (rad/s)

Figure 2.4: Bode diagram of Hi\,fz?M and HZL‘,?{H(’O
The mixed Ha/Ho design is presented in solid line (-) and the passive design is shown
by the dotted line (-). As one can see, the new system has a smaller H,, norm, within
the magnitude of 20log;(1.14) = 1.1381, which was the imposed upper bound 7 = 1.14.

Consequently, a better margin of safety for the vehicular suspension system is provided.

We also simulate the step response of the closed-loop system using the Ha/Hoo con-
trollers and the LQR design. These results are presented in Figure 2.5 for the displacement
x1 of the unsprung mass mj and for the suspension stroke x1 — x3. The LQR design is
plotted using a dash-dot line (-—). From this plot, we see that the mixed Hs/Hoo control
design possesses a very similar performance to the LQR design for a step input, giving a

slightly better performance regarding the rattle space.

When compared to the nominal system, with no control, both designs have signifi-

cantly better performance. It is also important to observe the acceleration of the sprung
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Figure 2.5: Step response for z1 and 1 — 9
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Figure 2.6: Sprung mass acceleration #o and control effort u

mass o, which is related to the user ride comfort. This plot is presented in Figure 2.6 along
with the control effort u. The nominal system and the active systems provide similar ride
comfort. However, the mixed Hs/H requires significantly less control effort u than the

counterpart LQR design, by a factor of 8. This is a large saving.

It is not surprising that active suspensions can overcome the performance of the coun-
terpart passive system. One disadvantage of active suspension designs are that they need
actuators able to produce large forces. However, our design requires significantly less con-

trol effort. Another important advantage is that our design does not require measurement

of the road disturbance.



Chapter 3

Convexity Checker

3.1 Introduction

This chapter is split into two parts. Part I of this chapter presents our algorithm,
describes its implementation and illustrates its effect on a few examples. We prove in
Part II that the region G of convexity which our algorithm determines is the largest possible
in a certain sense. The results in Part II give a satisfying theory of “matrix convexity”
and of “matrix positivity” of noncommutative quadratic functions of a certain type. This
part contains a bit of redundancy in order to maximize the reader base. Throughout the
presentation of our algorithm we insert actual calls to symbolic routines in NCAlgebra,

since this makes clear exactly what can be computed automatically.

Part I should be accessible to readers from many areas, from operator or matrix theory,
from symbolic computation, and from engineering who work with matrix inequalities. It
is organized as follows. Section 3.2 gives preliminary definitions about noncommutative
rational functions, convexity, positivity, and derivatives. Section 3.3 concerns quadratic
noncommutative functions Q. It gives a representation for Q in terms of a symmetric
matrix Mg with noncommutative entries and it provides an algorithm to compute the LDU
decomposition of Mg. Section 3.4 gives the convexity algorithm that provides the tools
for checking the positivity and presents some examples. Section 3.5 illustrates how the
algorithm when implemented using the noncommutative algebra package NCAlgebra can

be used to find the region of convexity of a noncommutative rational function.

Now we describe the organization of Part II. Section 3.6 formally states and proves

a theorem to the effect that our Convexity Algorithm produces a domain G in which the

32
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given function is convex. This is easy and informative. Section 3.7 gives formal definitions.
Section 3.8 states theorems to the effect that G is the biggest domain of convexity in a certain
sense. Sections 3.9 and Section 3.10 gives proofs of the theorems stated in Section 3.8 and

Section 3.3.

Section A is an appendix which describes a computer algorithm for representing a
noncommutative quadratic function of k£ variables Hy,..., Hy in terms of a matrix Mg.
This matrix plays an important role in determining the positiveness of a noncommutative

rational function.

3.2 Notational Section for the Convexity Checker

The operator (-)~! and (-)” means the inverse and the transpose respectively. In order
to make an expression symmetric the operator sym, defined as sym[M] = M+ M7 is used.
The arrow over a variable is used to indicate that the variable is a list of elements ;( =
{X1,..., X} If ;( contains only one indeterminate, then the notation is )—i: = X. Roman
upper case letters will commonly represent symbolic elements, and also matrices when it
is clear by context. Euler-Script letters are frequently used to indicate the substitution
of noncommutative elements by matrices of compatible dimensions. As an example, I'(X)
means a noncommutative rational function whose argument X is a symbolic element; on
the other hand, the Euler-Script X is used in I'(X) when X is a matrix in R™*". Another
example appears in the definition of the set RY := {(HLz) : all H € R™ ™} where L is
a noncommutative rational function evaluated on certain matrices, H is a matrix, and x is
a vector. Note that we do not use the Euler-Script font for vectors and functions. Even if
the argument of the function L is a matrix Z rather than an indeterminate Z, we would
have used L(Z) instead of £(Z), and often we abbreviate L(Z) to L. We reinforce that this
notation is somewhat inconsistent with the notation used in the other chapters. It is more
refined in that it carefully distinguishes between symbolic (noncommutative) variables and

variables which are matrices.

3.2.1 Noncommutative symmetric rational functions

In this section we present useful definitions and facts about noncommutative rational
functions. In fact, the development in this section follows Helton and Merino (1997) and
Helton and Merino (1998).
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We begin with definitions of noncommutative rational functions, of derivatives of
noncommutative functions, and of convexity. Next, the procedure to represent a quadratic
function together with the noncommutative LDU decomposition is illustrated. Also the
idea behind necessary and sufficient conditions for positivity of noncommutative quadratic
functions is introduced. Later in Section 3.4, our Convexity Algorithm is described and

then, in Section 3.5, it is illustrated by some examples.

What occurs in practice are functions I' which are polynomial or rational in non-
commutative variables (often referred to as indeterminates) with coefficient which are real
numbers. Noncommutative rational functions of X are polynomials in X and in inverses of

polynomials in X. Examples of noncommutative symmetric functions are
3
I'(A,B,X)=AX + XAT — ZXBBTX, X =xT,

I'(A,D,X,Y)=XTAX + DYD? + XYy X7, Y=Y" and A=AT, (3.1)

and

(A, D,E,X,Y)=A(I+DXD) AT + BYxYT)ET, Xx=XT. (3.2

We also assume there is an involution on these rational functions which we denote
superscript 7', and which will play the role of transpose later when we substitute matrices

for the indeterminates.

Often we shall think of some indeterminates as knowns and other indeterminates
as unknowns and be concerned primarily about a function’s properties with respect to
unknowns. For example, in function (3.2) when we are mainly concerned about behavior
such as convexity of I" in X, Y we write I'(A, D, F, X,Y) simply as I'(X,Y). We also use
} to abbreviate all indeterminates which appear in the function for example, in (3.2) we
have Z= {A,D,E, X,Y}. Often we dlstlngulsh knowns A = {41,...,Ap} from unknowns

= {Xy,..., Xk} by writing 7 = {A X }. Throughout this chapter letters near the
beginning of the alphabet denote knowns, while the letters X, Y stand for unknowns.

We call a noncommutative function I‘(Z,;( ) symmetric provided that F(Z, X )7
= F(Z,;() If all X7, XT,..., X} in F(Z,;() appear to the left of every X1, Xo, ... Xg
variable, then the noncommutative function F(Z, ;( ) is said to be hereditary ! in )_(: Our
algorithm when restricted to hereditary noncommutative functions is easier to describe and

the theory is easier.

!Note that in our definition of hereditary the variables X can not be constrained to be symmetric.
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3.2.2 First derivatives

Conventional convexity of a function can be characterized by the second derivative
being positive. As we shall see in Section 3.2.4, this is also the case with “noncommutative
convex functions” and so we review a notion of second derivative which is suitable for
symbolic computation. We begin with first derivatives rather than second derivatives. Later

we study convexity tests which are based on derivatives of I' and their transposes.

Directional derivatives of noncommutative rational I'( A, X) with respect to X in the

direction FI are defined in the usual way
DT'(X)[H] := lim n NX+tH)-T'(X)) = 7 "X +tH)

t—0

t=0

For example, the derivative of I' in (3.1) with respect to X is
DxT(X,Y)[H] = H'AX + XTAH + HY X" + XY H".
and the derivative of I" in (3.2) with respect to Y is
DyI(X,Y)K] = E(KXYT +YXKT)ET.
It is easy to check that derivatives of symmetric noncommutative rational functions always

have the form i

Z A,HB,
/=1

DT(X)[H] = sym

The noncommutative algebra command to generate the directional derivative of the
function I'(X,Y") with respect to X, which is denoted by DxI'(X,Y)[H], is:

NCAlgebra Command: DirectionalD[Function I', X, H].

3.2.3 Second derivatives

To obtain sufficient conditions for optimization we must use the second order terms

of a Taylor expansion of F(;( + tFI ) about t =0 € R:
(X 4+ tH) =T(X) + DT(X)[H]t + HT(X)[H]t* + ...

Where the Hessian HI" of I is defined by

—  — 2 — —
HD(X)[H] i= 5T + )|
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One can easily show that the second derivative of a hereditary symmetric noncom-

mutative rational function I' with respect to one variable X has the form

k
> AHTBHC,
/=1

HI(X)[H] = sym

And an analogous more general expression holds for more variables. For example, the second

derivative of I" in (3.2) with respect to X is

HxT(X,Y)[H] =
2(A(I + DXDTY'DHDT(I + DXDT)'DHDT(I + DXDT)~1AT).

Once the Hessian HT'(X )[H ]is computed the only variable of interest is H. Thus,
for convenience, the variables X and A are gathered in Z producing a function Q,
Q(2)[H] := HI'(X)[H],
which is quadratic in H. Here of course, a noncommutative polynomial in variables Hy, Ho,
, Hy, is said to be quadratic if each monomial in the polynomial expression is of order

two in the variables Hy, Ho, ..., Hy.

We emphasize that for our convexity considerations once the Hessian is computed the

fact that X played a special role has no influence.

NCAlgebra Command: Hessian[function I', {X1, H1},...,{Xk, Hi}]

3.2.4 Matrix convex functions

There are several (almost equivalent) notions of noncommutative convexity, and hence
we describe two familiar matrix versions. We begin by defining matrix convex functions
as it is the definition used throughout the chapter, and later we define geometrically
matrix convex functions as it is a common definition for convexity although we do not

use it.

We shall be focusing on symmetric noncommutative functions I' of E defined on
a domain G given by “inequalities” on symmetric noncommutative rational functions p;,
j=1,...,r. Thetuple 2 denotes all noncommutative variables A, B, C, X, ... which appear
in I'. (Frequently we just denote pa {Z1,...,2,}). We write the formal expression

Go={Z=1{Z1..... 2} : p(2)20.j =1,....7}
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and call such an expression a Symbolic Inequality Domain — SID. An example is

G:={Z={A,0X}: -ATX - XA—CTC >0,X >0}

Note that the Z are just formal symbols. Since our ultimate interest is matrices we

introduce M(G,) the set of all matrix tuple Z = {Z,...,Z,} which satisfy

—

p;i(Z) is a positive semidefinite matric for all j =1,... 7.

Denote by M all tuple of matrices E of size A. Denote by Ma(G) the set of all matrices
of size A which are in M(G), that is, Ma(G) = Ma [\ M(G). See section 3.7.2 for a more

complete statement.
Our main definitions of positivity are:

- —

1. A noncommutative rational function Q(Z)[H] which is quadratic in H is said to be
matrix positive quadratic (resp. matrix strictly positive quadratic) on a SID
G, provided that Q(Z)[H] is a p051t1ve semidefinite matrlx (resp. p051tlve deﬁnlte
matrix) whenever tuple of matrices Z in M(G,) and ﬂ{ are substituted for Z and H

2. The function I'(A4, X) is said to be matrix convex with respect to variable X on a

SID G, provided its Hessian HI'(X)[H] is a positive semidefinite matrix for all A, X

in M(G,) and all J(; in other words, when its Hessian is matrix quadratic.

One Symbolic Inequality Domain G, contains another G;, means that whenever
tuple of matrices E of compatible dimension satisfy the inequalities ﬁj(z) >0, for j =
1,...,7, then they also satisfy the inequalities pj(z) >0, for j =1,...,r. In this case we
say that

— —

the inequalities p(Z) > 0 are weaker than the inequalities p(Z) > 0.

This condition is the same as M(G;) € M(G,).

While this looks awkward and elaborate, it is in fact the type of “matrix convexity”
which fits reasonably into symbolic processing of the type of matrix inequalities which
engineers use. We present a few examples in Section 3.5 which make this definition clear
and natural. Also matrix convexity is strongly connected with usual notions of geometric

convexity, as we now discuss.
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A noncommutative rational symmetric function I' of X = {X7,..., X} will be called
geometrically matrix convex provided that whenever the noncommutative variables X
are taken to be any matrices of compatible dimension, then for all scalars 0 < a < 1 we
have that

-1 -2 =1 —2
FNaX +(1-a)X ) <al'(X )+ (1 —a)I(X ).
—1 —2
Where X = {X},...,X1} and X = {X%,...,X?} are tuples of matrices of compatible
dimension. The function I' is strictly geometrically matrix convex if the inequality is

strict for 0 < o < 1. The reverse inequality characterizes geometrically matrix concave.

Both the definitions, matrix convex and geometrically matrix convex, are equivalent

provided that the domain of the function I is a convex set; as stated by the following lemma.

Lemma 3.2.1 Suppose ' is a noncommutative rational symmetric function. Then it is
geometrically matriz convez (respectively geometrically matriz concave) on a convex region
Q of matrices of fixed sizes if and only if

HD(X)[H] > 0

(respectively < 0) for all IC and D_C) c 0.

Proof. The proof is given in Helton and Merino (1998) where € is all matrices of a given

size. It extends in a straight forward way to 2 which are convex sets. ]



Part 3.1

The Algorithm: Its Implementation and
Use
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3.3 Noncommutative Quadratic Functions

An example of a simple quadratic function in H = HT and K = KT, where the

arguments appear outside the expression, is
Q[H,K]:= HAH + KBK + HCK + KCTH.

Or yet, a more complicated function, in the sense that the argument H appears inside the
monomial is

Q[H]:= HAH + GTHBH + HBTHG + GTHDHG.

This function can be written in the form

Q[H]:<H GTH><2€)T><;G>. (3.3)

This contrasts with the commutative case where (3.3) takes the form

Q[H) = H(A+G"B+ BTG+ G"DG)H.

3.3.1 Representing a quadratic function as a matrix Mg

As suggested by (3.3), a noncommutative quadratic function Q which is hereditary in
H ={H;,...,Hy} can be always represented as a product of the form

Q = VIH|" MgV [H],

-
where V[H] is a “vector” with noncommutative entries and Mg is a symmetric matrix with
—

noncommutative entries. The “vector” V[H] is called a border vector of the quadratic

function Q and the matrix Mg is the coefficient matrix of the quadratic function

Q.

The representation VI MgV for a general hereditary quadratic polynomial in H =
{H, K} is given by Q[H, K| :=

T

HL} A o A A1 - Ay HL}
1 T 1

HL, Ay o Ane Anenr o Ay HLg
p T T p

KLl A1,£1+1 T Ael,zl+1 A£1+1,€1+1 T A£1+1,r KLl

2 T T T 2
KLZQ Al,r e Agl,r A£1+1,7‘ e AT,T KL£2
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where r = f1 + ¢5. The quantity ¢; is the number of times that a monomial of order two
in H appears, and the quantity ¢ is the number of times that a monomial of order two in
K appears. The L; ,j=1,...,¥; are called the coefficients of the border vector. The
L} corresponding to H are distinct and only one may be the identity matrix (equivalently
for the L? corresponding to K). The border vector V is the vector composed of H, K and
L; The coefficient matrix Mg is the one in the middle with entries Ay, for s,t =1,...,7.
See appendix A for an algorithm which compute this decomposition. This general notation

illustrated by the example in equation (3.3) is:

VIH = (H ¢"H)  and MQ=<2 ]2T>.

Noncommutative quadratics even though not hereditary have a similar representation
(which takes much more space to write) for such a quadratic in H, K. For example, the

border vector for a quadratic in H, H”, K, KT has the form
V[H K" = ((L%)THT, o (L)THT (LT KT, (L) KT (L)TH, .

(L) H (LK, (E2)7E).

As we shall see from the Example 3.5.3 in Section 3.5 the Mg representation for
a quadratic @ may not be unique. However, this non-uniqueness turns out to produce

surprisingly few problems.

We should emphasize that the size of the Mg representation of a noncommutative
quadratic functions Q[Hj, ..., Hy| depends on the particular quadratic and not only on the
number of arguments k of the quadratic. For example, there are noncommutative quadratic

functions in one variable which have a representation with Mg a 102 x 102 matrix.

NCAlgebra Command: NCMatrixOfQuadratic[Q, {H1, ..., Hi}| generates the list {left

border vector, coefficient matrix, right border vector}.

3.3.2 Positivity of noncommutative quadratic functions

Determining positiveness of the Hessian, which is a quadratic function in H, is the
key to determining the convexity of a rational function of matrices. A critical issue is
relating Q[H] being a positive semidefinite matrix for all H to the matrix Mg being positive

semidefinite. In this section we roughly summarize our main result which surprisingly says
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that under weak hypotheses these two properties are very close to being equivalent. Later,

Theorem 3.3.3 gives a definitive test for the positivity of Mg.

Theorem 3 3.1 (Positivity: Q versus Mg ) Suppose that the noncommutative rational

function Q( )[H] is quadratic in H. Represent Q( ) with coefficient matriz MQ(E) and

— —

border vector V[H], that is Q(Z)[H] = V[H]TMQ(E)V[]?I]. Let G denote the Symbolic

Inequality Domain, based on MQ(E)’ given by

= E:M - > .
6= {7101y 20}

Then Q(Z)[H] is a matriz positive quadratic function for each Z € G. Conversely, assume:

i. the MQ representation of Q has a border vector V[H] with coefficients L3 (Z), ...,
Lj ( ) for Hj which for each j are linearly independent functions of Z;

it. the Symbolic Inequality Domain G is not thin in the sense that the set Ma(G) is an
open set in M, provided that the size A is large enough (see the Openness Property
in Section 3.7.2).

—  —

Then the closure of G in a certain topology is the biggest domain on which Q(Z)[H] is a

matriz positive quadratic function.

Proof. The sufficient side, the symmetric matrix Mg being positive semidefinite guaran-
tees that the matrix Q[H] is also positive semidefinite for all tuple of matrices H, is trivially

proved. To see this, write the quadratic function as
QHy, ..., Hy] == VI[Hy, ..., 1 )T MoVI[Hy, ..., 3.
Now, let Mg € R™™" be positive semidefinite. By definition this implies that
#T Mgz >0 for all vectors z € R.
So, for any y € R™, choose z to be x = V[Hj,...,Hg]y. Then

" Moz = yTV[3,... . 3G) MoV[3y, ... . 30y = 7 Q3s, ..., iy > 0.

The necessity side requires involved proof which takes up Part II of this chapter. We

shall illustrate one of its steps in the simple Example 3.3.1 below. [



43

Note that linear dependence of a small set of matrices in a high dimensional space is
a rare event. This intuitively speaking is the type of linear dependence in assumption (i) of
Theorem 3.3.1 required to violate the necessity of Mg being positive. Indeed, this type of
linear dependence has never occurred in any experiments we have done, although one could

probably make up examples where it occurs.

Even though a quadratic Q can have two representations M é and Mé meeting the
hypotheses in Theorem 3.3.1, our result implies that M é will be positive semidefinite if and

only if M, é is also positive semidefinite.

Example 3.3.1 Consider the noncommutative quadratic function Q[H] given by

Q[H):=H'BH + GTHTCH + H'CTHG + GTHT AHG. (3.4)

Here, in distinction to most of Part I, we are not forcing H to be symmetric. This is
much easier to analyze than the case where H is symmetric. The border vector V[H] and

the coeflicient matrix Mo with noncommutative entries are

B CT
VIH" = ( BT GTHT)  and MQ:<C p >

that is, Q[H| has the form

atn = vis eyt = ( arar ) (7 ) ().

Now, if in equation (3.4) the elements A, B, C, G, H are replaced by matrices in
R™ "™ then the noncommutative quadratic function Q[H] becomes a matrix valued function
Q[H]. The matrix valued function Q[H] is positive semidefinite if and only if 27 Q[H]x > 0
for all vectors z € R™ and all H € R™*"™. Or equivalently, the following inequality must
hold

Hx
( THT  2TGTHT >MQ < 16n ) > 0. (3.5)
Let
yT = ( oTHT  GTGTHT > ‘ (3.6)

Then (3.5) is equivalent to y” Mgy > 0. Now it suffices to prove that all vectors of the

form y span R?".
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Suppose for a given x, with n > 2, the vectors x and Gz are linearly independent.

v
Let y = ( 1) be any vector in R?", then we can choose H € R™*" with the property that
V2

v1 = Hx and v9 = HGx. It is clear that vectors of the form

(o) oo
RY = : for all K
HGx

is all R?" as required. Thus we are finished unless for all z the vectors z and Gz are

linearly dependent. That is for all z, Aj(x)z + Az2(x)Gz = 0 for nonzero Ai(x) and Ag(x).

Note Ago(z) # 0, unless z = 0. Set 7(z) := i;g;g, then the linear dependence becomes
7(z)x + Gz = 0. This says that every vector x is an eigenvector of G, which implies that
G = M for some constant \. This fact can be verified from the Jordan form G = M~1JM
via 7(z)Mz 4+ Mz = 0, for all z. Thus the set of all y satisfying (3.6) is all of R?" unless

7l + G = 0 for some 7.

Conversely, if G = I, then the set of y of the form (3.6) is not all of R?" and has an
orthogonal complement R*. The function Q can be positive without 7 Mgr being positive

on vectors r € R+.

Clearly the method used in the proof above to show that R* is all of R?" is very
special. Part II of this chapter uses a very different method (there are several parts to this
more general proof). In a very vague sense, the main idea behind the proof is that if R* is
not all of R?", then the coefficients L; of the border vector form a set of linearly dependent
functions. One consequence of this linear dependence property, which is of independent

interest, is presented in the following corollary of Theorem 3.10.10 from Part II.

— —

Corollary 3.3.2 (Corollary 3.10.11) Let Li(Z),...,Li(Z) be noncommutative rational
functions ofz ={Z, ..., Zy}. For each vector z, suppose that the vectors Ll(Z)x, cl,
Lg(z)x are linearly dependent whenever matrices Z; of compatible dimension are substituted
for Z; for all size A bigger than some Aq. Then there exist real numbers \j for j =1,...,¢

such that ,
S NLi(Z) =0,
j=1

—

that is, the functions L;j(Z) are linearly dependent.

We mention some basic work on positivity of commutative polynomials (not just qua-

dratic polynomials) done in Parrilo (2000); Powers and Wérmann (1998). Our algorithm is
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somewhat like theirs, in that both use the LDLT decomposition. While positivity of com-
mutative quadratic functions is easily checked, noncommutative quadratics cause difficulties

reminiscent of what happens with non-quadratic higher order commutative polynomials.

3.3.3 Noncommutative LDU decomposition

In our approach, the LDU factorization of a matrix with noncommutative entries is
the key tool for determination of the matrix positivity of a quadratic function, and hence

the region of convexity G of noncommutative functions.

The LDU factorization applied to a symmetric matrix M of size r X r with noncom-
mutative entries provides the decomposition M = LDL”, where the r x r matrix D is
diagonal® or contains 2 x 2 blocks with zeros on the diagonal, and the r x r matrix L is
lower triangular and normalized so that each diagonal entry equals the identity. To check
the positivity of the symmetric matrix M it suffices to check that D is purely diagonal
and to check the positivity of the entries of the diagonal matrix D. It is often very useful
(sometimes essential) to perform the LDU decomposition not on a given matrix M but on
a matrix PM (@ obtained from M by permutation matrices P, Q. When M is symmetric,
we shall choose @ = P” so as to obtain PMPT = LDL", or equivalently M = PTLDL” P.

References on LDU decomposition of matrices with commutative entries are Golub
and Loan (1983); Horn and Johnson (1996). The LDU decomposition for noncommutative
2 X 2 matrices is standard and appears in many places. We do not know a reference on the
general r X r case. However, as we shall see its properties are much like the well understood
commuting case. Note that at the k™ {k := 0,...,7 — 2} step of the process above, one
can choose (r — k)-factorial permutations. The noncommutative LDL™ decomposition (as

implemented in NCAlgebra) is briefly presented here.

Let a symmetric 2 x 2 matrix with noncommutative entries be given by
A BT
M —
B C
with A and C symmetric elements. Then M has the following LDLT decomposition

M — LDLT — I 0\ (A 0 I A1BT (3.7)
BA-' 1) \0 Cc—-BA'BT) \o I ’ '

2This assumes that at each step of our LDU algorithm a matrix entry called pivot is invertible. The
case where some pivot may not be invertible will be discussed in details in Theorem 3.3.3.
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provided that the noncommutative element A is invertible. Our computer algorithm auto-

matically assumes invertibility when it is needed. If the permutation

(0 1)

is applied to both sides of M producing

. C B
PMPT = ,
BT A

the decomposition is

T T I 0\ /(C 0 I ¢7'B
PMP" =LDL" = . (3.8)
pT'c-t 1)\0 A-BTc7'BJ\0 I

Note that matrix D in the two decompositions (3.7) and (3.8) above has the classical Schur

complements as its main ingredients.

Now we sketch the computer algebra algorithm for noncommutative symmetric ma-

trices of size r X r. Suppose that matrix M has r x r noncommutative entries. Then M

M = (A“ BT) (3.9)
B C

can be always partitioned as

with C a matrix of size (r—1)x (r—1) and B a matrix of size (r—1) x 1 with noncommutative

entries. Now apply the 2 x 2 LDLT decomposition as in (3.7) to get

I 0\ [An 0 I A'BT
BA' 1)\ 0 Cc-BABT/\0o I )

In our symbolic algorithm we assume that if Aq; is not 0, then it has an inverse denoted
Al_ll. We call Aq; the pivot for this step of the algorithm. At the next step the r—1xr—1
matrix C — BAl_llBT with noncommutative entries, called the residual matrix, can also

be factored as LDLT using a partition form analogous to (3.9). In that case M takes the

vo (T 0 [Au 0 I Ap'BT
S \B4ay! LJ\o D)\o LT )

The procedure continues until the residual matrix has size 1 x 1 (in which case we are

form

finished) or the diagonal entry on which we need to pivot is 0. In the later case we find a

non-zero diagonal entry Axr and apply a permutation P from right and left to move this
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diagonal entry Ay to the pivot? position. Then we proceed as before. This procedure with
permutations stops when the residual matrix R has size 1 x 1 or all diagonal entries of the

residual matrix R of size greater than 1 are identically zero (and no pivot is possible).

The key property of the Noncommutative LDU Algorithm is

Theorem 3.3.3 Suppose M is a symmetric matriz of size r X r with noncommutative
rational function entries. The possibly permuted LDU algorithm outputs a matrix D with

noncommutative rational entries. Either D is diagonal,

1. 1 which case, whenever n xn matrices are substituted for the variables in the function
Dj,j=1,...,7in D and produce matrices D, which for j = 1,...,r—1 are invertible,
then

each Dj for j = 1,...,r is a positive definite (resp. positive semidefinite)

matriz if and only if the rn X rn matriz M resulting from M is positive
definite (resp. positive semidefinite).

or D can be partitioned as D = diag(ﬁ,R),4 where D is a diagonal matriz with noncom-
mutative rational entries l~)j, j=1,...,d withd <r—1, and R is a non-diagonal matriz

of size (r —d) x (r —d). We need to distinguish two situations:

11. All entries of the matrix R are identically zero, in which case D is actually

diagonal, and the conclusion of case (i) applies.

i1s. The off diagonal entries of R are not identically zero, in which case some
matrices substituted for the wvariables in M produce M which is neither a positive

semidefinite matrix nor a negative semidefinite matriz.

Proof. Prove (i,ii): Suppose D is diagonal with entries D;,j = 1,...,d not identically
zero. Our symbolic algorithm used an expression denoting the inverse of each pivot. Note
that the pivots used in the algorithm (and assumed invertible) are exactly the diagonal
elements Dj, for j = 1,...,min(d,r — 1). Thus our symbolic formulas are valid when
matrices are substituted in, provided that the resulting matrix diagonal entries D; for

j=1,...,min(d,r—1), are invertible. Thus D, for j =1,...,d, positive semidefinite (resp.

3 A appealing way to choose Ay, is to observe that each diagonal entry typically will be a rational function
of other entries in the matrix. Thus each A;; is given by a formula of some length, and we select Axx to be
the nonzero diagonal entry of shortest length. This is a symbolic analog of the common numerical analysis
method of picking the pivot of largest size.

4diag(m’l7 ..., xy) means a diagonal matriz with entries T1,...,Tr.
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for j =1,...,r, each D; a positive definite matrix) implies that M is positive semidefinite
(resp. positive definite). Conversely, if M is positive semidefinite (resp. positive definite)
the D;, for j =1,...,d, are positive semidefinite (resp. for j = 1,...,r, each D; is positive

definite) since L is invertible.

Now we prove (iii): If n x n matrices of any size n are substituted for the variables in
M and in R the resulting symmetric residual matrix R has block diagonal entries equal to
the n X n zero matrix, which implies that R has trace 0, which implies R has some positive
and some negative eigenvalues. Thus R and consequently M can not be either a positive

semidefinite matrix or a negative semidefinite matrix. [

While we have presented only enough of the LDLT decomposition for noncommutative
symmetric matrices to determine positivity, in fact the NCAlgebra program can do more.
If the user chooses a certain option, NCAlgebra picks a non zero 2 x 2 block in R and pivots
on it. This procedure combined with permutations when needed, ultimately produces a
center matrix D which is block diagonal with blocks of size 1 x 1 or 2 x 2. This exactly

generalizes the standard behavior of the commutative case.

A further feature of our NCAlgebra implementation is that one can retrieve the se-
quence of permutations which the algorithm selected. Also one can specify exactly which
permutations are to be used and thereby override the algorithm’s automatic selection of

permutations.

A brief summary of a simplified version of the LDL™T algorithm code implemented in

the NCAlgebra package follows.

Algorithm 3.3.4 (Noncommutative LDLT Decomposition)

Set k=0, M, =M

while k < r do
Apply desired permutation on My,
Partition My, as in (3.9)
LDy LT — My; as in (3.7)
Append: L «— Ly; D «— Dy,
Let My, be the residual C), — BkAngg
k—k+1

end
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NCAlgebra Command: NCLDUDecomposition|[M], gives a permuted LDU decomposi-

tion of a symmetric M.

3.4 Convexity Algorithm

This section presents our main algorithm that provides the region G in which a given

— —

noncommutative symmetric function I'(Z) is matrix convex in X.

—  —

1. Compute symbolically Q(E)[I_i] = HI'(X)[H].

- —

2. As Q(Z)[H] is second order in H, it can be expressed as V[H]TMQ

the matrix M oZ) from this quadratic expression.

—

- V[H]. Extract
(2)

3. Apply the noncommutative LDLT decomposition on the matrix M o7 ie, M

(zy Q(2)

= LDLT, to get matrix D with noncommutative entries.
4. Suppose that matrix D can be partitioned as D = diag(f), R), where Disa diagonal
matrix with entries p;(Z2), for j = 1,... ,d and R is a non-diagonal matrix of size

(r — d) x (r — d) containing zeros on the diagonal or 2 x 2 blocks

R 0 pi(Z)
pi(Z)T 0

fori=d+1,...,r. Thus matrix D has the form

Pl(z)

—  —

5. The Hessian Q(Z)[H] is a positive semidefinite matrix for all H whenever the tuple of

matrices Z = {Zy, ..., Z,} makes the block diagonal matrix D positive semidefinite.
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Thus a set G where I'(Z) is matrix convex is given by
g:{Z:pj(Z)>0, jzl,...,d}ﬂ{Z:pi(Z):(), i:d+1,...,r}.

6. Note that, if MQ(E) is a matrix of size r x r, then there are IT = r!(r —1)!- - - 2 possible
LDLT decompositions depending on different permutations of the matrix M 0By This
gives II different diagonal matrices, D', D2, ..., DI, Up to the assumptions that the
NCLDUDecomposition algorithm makes about invertibility, each D? must produce a
set G. However, the inequalities produced by the diagonal D? may be much more
elegant and useful than those produced by the diagonal D7, even though they must

produce equivalent sets G.

The main difficulty is the fact that there are II different permutations for doing the
LDL™ decomposition. Checking them all consumes computer time and leaves the user with
many choices. In our experience many permutations work to give the same answer (as will

be shown in some examples), so finding a satisfactory one appears not to be time consuming.

The set G produced by the Convexity Algorithm is the biggest possible in a certain
sense. This is the content of Theorem 3.3.1 and is described precisely in Theorem 3.8.2 of

Part II.

3.5 Examples

In this section we give several examples of the Convexity Algorithm which vary in

complication and which illustrate different points. We begin with a simple example.

Example 3.5.1 Define the function I'(X) by
INX)=GTXTAXG + XTBX + GTxTcx + XToTxa,
where B = BT and A = AT. The Hessian of I'(X) is given by
HT(X)[H] =2(H'BH + H'CTHG + GTHT AHG + GTHTCH).

Equivalently, this quadratic expression takes the form

HF(X)[H} = V[H] MHFV[H] = Q(HT7GTHT) ( g C:4T ) (IfG) .
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The LDLT decomposition with no permutation applied to Myr is

I 0 B 0 I B cT
CB~' T 0 A—CB-CT 0 I ’

provided that B is invertible®

Therefore, when B is invertible and G # «l, for any scalar «, the necessary and

sufficient conditions for the Hessian to be positive semidefinite are

B>0 and A-CB'cT>o.

On the other hand, if A is invertible and a permutation is applied, the LDLT decom-

I 0 A 0 I A lC
CTA=Y T 0 B-CTA O 0 I '

For this case, the necessary and sufficient conditions are

position is

A>0 and B-0CTA'C>o.

3.5.1 NCAlgebra examples

Henceforth our examples will use notation which is standard in Mathematica and
NCAlgebra. This adds a level of precision and concreteness to the discussion. Also the
notation is quite transparent so it causes little reading difficulty. Sometimes for better visu-
alization, TEX notation is employed. In the course of illustrating the Convexity Algorithm

we actually show what is inside the command NCConvexityRegion]| |.

Before going through the examples, it is convenient to explain the basic notation used
in NCAlgebra. The transpose of an element x is denoted by tp[z]. The identity is denoted
1. The inverse of z is inv[z]. The product of the noncommutative elements z and y is x** y.
The product of a matrix A with noncommutative entries by another matrix B is provided
by the command MatMult[A, B].

The directional derivative, the Hessian, and the LDU decomposition, were already

introduced. They are provided from:

e Hessian[f(X,Y), {X,H}, {Y,K}],

®The list returned by NCConvexityRegion is {B, A—CB~'C"}.
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e DirectionalD[I'(X,Y), {X, H}, {Y, K}],

e NCLDUDecomposition[Matriz].

The border vector and the coefficient matrix of a noncommutative quadratic function

is given by

NCMatrixOfQuadratic[Q, {H, K}].

The command NCExpand[ezpression] expands out noncommutative multiply’s in-
side an algebraic expression. It is the noncommutative generalization of the Mathematica
Expand] |.

The command NCSimplifyRational[ |, simplifies an expression that includes polyno-
mials and inverses of polynomials. This works by applying a collection of simplifying rules

to the expression. The call is

NCSimplifyRational[expression]

This is in practice an essential command because the expressions obtained by other com-
mands, such as NCLDUDecomposition| |, Hessian| |, etc., usually are not in their simplified
form. For more details about simplification of noncommutative expressions and symbolic

implementation, the reader is referred to Helton et al. (1998).

The following examples describe the steps for checking the convexity of a noncommu-

tative function.

Example 3.5.2 Let the function I' be given by
F:=XA+ATX - (1" —=x BD1") (Y - D1 D1")"(C1 - D1 BTX) - XBB™X

with X = X7 and Y = YZ. The definition of this function F in Mathematica is:

In[6]:= F := X**A+tp[A]**X - X**B**tp[B]**X
~ (tp[C1-X**B**tp[D1])**inv[Y-D1**tp[D1]] ** (C1-D1**tp[B**X);

The Hessian of this function is produced by the command

In[7]:= hess = 1/2 NCHessian[F, {X, H}, {Y, K}] // NCSimplifyRational;
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The left (right) border vector and the coefficient matrix Mhess are produced by the

command
In[8]:= {LeftBorder, Mhess, RightBorder} = NCMatrixOfQuadratic|hess, H, K];

The matrix Mhess from the command above in TEX format is

—BBT - BD1TRD1BT —BD1TR BDI1TR
Mhess = —RD1BT —R R )
RD1BT R —-R

where we have made the substitution R := (Y — D1D17)~!. The LDLT decomposition of
Mhess is obtained by the command

In[9]:= {lu, di, up, P} = NCLDUDecomposition[Mhess| // NCSimplifyRational;

From the output of this command we obtain the diagonal matrix di, presented below in

TEX format
—(Y — D1D1T)~! 0 0

di = 0 —-BBT 0
0 0 0
The list returned by NCConvexityRegion is the entries of the diagonal matrix di:

{—(y — p1D1T)~t —BBT, 0}.
Therefore we may conclude that the function F is concave on the region G := {Y : Y —
D1D1T > 0}.

To determine that closure(G) := {Y : Y — D1D17 > 0} is the biggest domain of
concavity we need to check if the border vector is linearly independent and if the region G

satisfies the Openness PropertyS. The left border vector “LeftBorder” is
LeftBorder = {H, C1T(y — D1D1")™'K, XBD1T(Y — D1D1T)7'K}.

This border vector has linearly independent” coefficients for each H and K. To see that,
we need to analyze separately the coefficients for the H and K. The H case is trivial as

it appears only once. For the K, we need to show that the functions L1(Y) := C17(Y —

fSee the Openness Property in Section 3.7.2 referred to in item (ii) of Theorem 3.3.1
"A rigorous treatment is given in Definition 3.7.1, where the block linearly independence property is
defined.
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D1D17)~! and Lo(X,Y) := XBD1T(Y — D1D17)~! are linearly independent, which is
immediate as L1 does not depend on X. We remark that the output of the LeftBorder
is an option in NCConvexityRegion. Also a sufficient though not necessary test for linear
independence of the LeftBorder vector entries is automatically implemented. This test is

sketch later in Example 3.5.3.

It is also evident from the strict inequality that for matrices of any compatible dimen-
sion the domain M(G) of matrices is an open set; thus G satisfy the Openness Property.
Therefore we conclude the region closure(G) := {Y : Y — D1D17 > 0} is the biggest domain

of concavity for the function F'.
An interesting aspect of the next example is that it shows that the Mo representation
may not be unique. This may lead one to conclude that a function is matrix positive instead

of being matrix strictly positive.

Example 3.5.3 Let z, y, h and k£ be symmetric noncommutative elements. Let’s define

the noncommutative function F(x,y) to be used in the example as
F(z,y) = (z-y )"

This function F' in Mathematica takes the form:
In[10]:= F := inv[x - inv[y]];
Thus, the Hessian HI'(z,y)[h, k] of this function is produced by the command

In[11]:= hess = 1/2 NCHessian[F, {x, h}, {y, k}] // NCExpand

inv[x - inv[y]] ** h ** inv[x - inv[y]] ** h ** inv[x - inv[y]] + inv[x - inv]y]] **
h ** inv[x - inv[y]] ** inv[y] ** k ** inv[y] ** inv[x - inv[y]] + inv[x - 1nv[y]] ok
inv[y] ** k ** inv[y] ** k ** inv[y] ** inv[x - inv]y]] + inv[x - inv[y]] ** inv[y] **
k ** inv[y] ** inv[x - inv[y]] ** h ** inv[x - inv[y]] + inv[x - inv]y]] ** inv]y] **

**k**

k ** inv[y] ** inv[x - inv]y]] ** inv]y] inv]y] ** inv[x - inv]y]]

The left (right) border vector and the coefficient matrix Mhess are produced by the

command

In[12]:= {LeftBorder, Mhess, RightBorder} = NCMatrixOfQuadratic|hess, {h, k}];
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The Hessian of F', denoted by hess, can be rewritten in TEX format as
hess = VT Mhess V,

where VT = LeftBorder is given by
T

vT =

hz—y 1)t
ky Yz —y )t

and the matrix Mhess is given by

(z—y )~ (@—y )y ] |

Mhess:[ 1 1—1 1 1 =1, —1
y o (r—y )" y oty (r—y )Ty

The LDLT decomposition of the coefficient matrix Mhess is given by the command
In[13]:= {lu, di, up, P} = NCLDUDecomposition[Mhess| // NCSimplifyRational;

From the output of this command we obtain the following factorization for P Mhess PT =

I 0 (x—yH™t 0 I gyt
vl T 0 y~! o 1 )’

where P is a permutation matrix generated automatically by our LDU algorithm. Finally,

Iu di up

the list returned by NCConvexityRegion is the entries of the diagonal matrix di, i.e.,

{@—y D vy
Therefore the Hessian is matrix strictly positive on the Symbolic Inequality Domain

G:={(z,y):y>0 and z—y'>0} (3.10)

Now, Let’s analyze the effect of a different representation for the Hessian. Where
instead of expanding the expression for the Hessian with the command NCExpand, we

apply the command NCSimplifyRational.

In[14]:= hess = 1/2 NCHessian[F, {x, h}, {y, k}] // NCSimplifyRational

k ** h ** inv[x - inv[y]]+inv[x - inv[y]] ** h ** k - k ** x ** inv[x - inv[y]] **
h ** inv[x - inv]y]]+k ** x ** inv[x - inv[y]] ** inv]y] ** k - inv[x - inv[y]] ** h
kR x FR inv[x - inv(y]]+inv[x - inv]y]] ** h ** inv[x - inv[y]] ** h ** inv]x
- inv[y]] - inv[x - inv[y]] ** h ** inv[x - inv[y]] ** x ** k - inv[x - inv[y]] ** x
Ok RR B ** inv[x - inv]y]] - k *F x *F inv[x - inv[y]] ** inv]y] ** k o x R*
inv[x - inv]y]]+inv]x - inv]y]] ** h ** inv[x - inv[y]] ** x ** k ** x ** inv[x -
inv[y]]+inv[x - inv]y]] ** x ** k ** x ** inv[x - inv[y]] ** h ** inv[x - inv[y]] -
inv[x - inv[y]] ** x ** k ** x ** inv[x - inv[y]] ** inv[y] ** k4 inv[x - inv[y]] **
X ¥ kK x *inv([x - inv]y]] ** inv[y] ** k ** x ** inv[x - inv[y]]
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The LeftBorder (RightBorder) vector and the coefficient matrix Mhess are produced

by the command
In[15]:= {LeftBorder, Mhess, RightBorder} = NCMatrixOfQuadratic|hess, {h, k}];

The Hessian of F' can be rewritten in TEX format as hess = VT Mhess V', where V7T
= LeftBorder, given by

VT = (kv ($ - y_l)_lh’ (:73 - y_l)_lxk) )

has linearly independent coefficients, and the matrix Mhess is

rx—y H Yyt l—z@—-y )t —xe—yHly !
Mhess= | 1—(z—y )tz (z—yH! “l+(@-y e
_x(x_y—l)—ly—l _1+x<x_y—1)—1 x(w_y—l)—ly—l

The LDLT decomposition of the coefficient matrix Mhess is given by the command
In[16]:= {lu, di, up, P} = NCLDUDecomposition|Mhess];

From the output of this command we obtain the following factorization for P Mhess PT =

lu di up
I 0 (x—yH™t 0 0 I y=b —y!

y ' 1 0 0 y' 0 o 1 -1 |. (3.11)

—y b T I 0 0 I
Finally, the list returned by NCConvexityRegion is

{(I‘ - y_l)_17 y_17 0}
Thus the region of convexity for F' contains
G:={(z,y):y>0 and z—y '>0} (3.12)

Naturally, this is the same domain that was already determined in (3.10).

To insure that closure(G) := {(x,y) :y >0 and z—y~' >0} contains the biggest
region of convexity of F', we must verify hypotheses (i) and (ii) of Theorem 3.3.1. The
linear dependence of the coefficients of the border vector states, as in hypothesis (i), that

there exist A1, Ao scalars such that A\ + (z — y‘l)_la;)\g = 0 for all symmetric x, y. It
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follows that the coefficients of the border vector are linearly independent. Now we say a few
words about a practical test guaranteeing linear independence of the border vector, that is
guaranteeing hypotheses (i) of Theorem 3.3.1. This test is implemented in the command
NCConvexityRegion. The idea is to declare all variables to commute; then compute a linear
combination of the coefficient functions of the border vector which is 0. If the only linear
combination is 0, then this insures that condition (i) holds. This is a conservative test and

our example passes it.

To check condition (ii) of Theorem 3.3.1, without going into the topology involved, we
just say that because the inequalities in 3.12 are strict, the set of n X n symmetric matrices

which satisfy them (for each large n) contains an open set. This suffices to satisfy (ii).

We should emphasize the fact that if we conclude that a function is matrix convex, it
could be quite possible that the function actually is matrix “strictly” convex. This happens
because we do not have a way to guarantee a unique representation for the matrix Mo.
However, the biggest possible domain of convexity of F', the “closure” of G, is uniquely

determined whatever representation is used.

Now we discuss permutations. One can observe that for this example (the 3 x 3 case)
there are 12 LDLT factorizations, related to all possible permutations. We computed them
and found that four permutations provide identical decompositions to the one in (3.11), four

permutations give division® by 0, and the other four give the following diagonal matrix:

—z+alr—y )z 0 0
—yt+a = (@—y ) gz —y !
0 +@—y D) ey+(@—y ) Ta@—yH) T p 0| (3.13)

—(@—y ) aya@—y )

0 0 0

Example 3.5.4 Define the function I' as
F:=-X+Y - (Y +A"XB)(R+B"XB) ' (Y + BTXA) + ATX A, (3.14)

with X = X7, Y = Y7 and R = RT. In Mathematica it takes the form

In[17):= F = - X + Y - (Y+tp[A]**X**B) ** inv[Rtp[B**X**B] ** (Y-tp[B**X**A)
+ tp[AJFFXHA;

8NCLDUDecomposition[ | contains (automatic) logical rules for permutations to bypass division by 0.
Using this automatic permutation, which is the default, the four decompositions provide diagonal matrices
identical to the one in (3.13).
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For that function the Hessian and the coefficient matrix are obtained from the commands:

In[18]:= hess = NCHessian[F, {X,H}, {Y,K}] // NCSimplifyRational;

In[19]:= {LeftBorder, Mhess, RightBorder} = NCMatrixOfQuadratic|hess, H, K];

The LDLT decomposition of Mhess is obtained by

In[20]:= {lu, di, up, P} = NCLDUDecomposition|Mhess] // NCSimplifyRational,

From the output of this command we obtain the diagonal matrix di, presented below

—2inv[R+ tp

B] * %X % xB]|

0
. 0
di =
0
0

o O o O

0
0
0
0

o o O

The list returned by NCConvexityRegion is the entries of the diagonal matrix di

above. The corresponding lower triangular matrix lu is

I 0 00
B I 00
Iu=
-B 0 I 0
-B 0 0 I

The coeflicient matrix is

I

B .
Mhess = —2 inv[R + tp|B] * X x «B] < I tp[B] —tp[B] —tp[B| ) .

-B

Therefore the condition for negative semi-definiteness of Mhess is R + tp[B] * *X * B > 0.
In which, one concludes that the function F' in (3.14) is concave on the region {X : R +
tp[B] * X * xB > 0}.
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Earlier in Section 3.3.2, we saw that positivity of the matrix Mg implies matrix
positivity of the associated quadratic function Q. Also, Example 3.3.1 in Section 3.3.1
gives a glimpse of the main linear independence idea behind the converse. Part II fully
addresses the converse; we know that the quadratic function Q is matrix positive in some
sense and we wish to conclude that the matrix Mg is also matrix positive. Our main results
show a substantial class of cases in which this is true. From these results we obtain under
weak hypotheses that our Convexity Algorithm determines exactly the correct Symbolic

Inequality Domain up to its “closure”.

Part II of this chapter is a bit redundant with Part I, so that it can be read without
constantly flipping back to Part I.

3.6 Main Theorem on Sufficient Condition for Convexity

As we now see, it is easy to prove that our Convexity Algorithm in Section 3.4 produces
a Symbolic Inequality Domain G on which a noncommutative symmetric rational function

T" is matrix convex on G.

Remark 3.6.1 We do not analyze the full Convexity Algorithm, but we shall treat only the
case where the residual matriz R in the LDU decomposition is identically zero. The reason

we do little work on this case is that matriz D can be partitioned as

Pl(z)

0

This matrixz D is positive semidefinite for E only ifz makes pj(z) >0 forj=1,...,d and
pl(z) =0 fori=d+1,...,r. The constraint pl(z) = 0 is very demanding and typically
will force the Symbolic Inequality Domain G to violate the Openness Property. We have not
analyzed this situation carefully, since we felt confident that it would not cause difficulties in

our Convexity Algorithm. The NCConvezityRegion command lists the domain of convexity
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G for F(E) as those 7 such that
Q:{E:pj(§)>0, jzl,...,d}ﬂ{zzpi(z):O, i:cz—i-l,...,r}.

The strict inequality pj(Z) > 0 reflects the fact that the LDU algorithm requires invertibility
of the p; for j =1,.. ...

Theorem 3.6.2 (Sufficient Condition for Convexity) Let 7 = {Z,;(} and F(E) be
a noncommutative symmetric rational function. The function F(E) may be or may not
be hereditary’. Suppose that the coefficient matriz Myr of the Hesszan HF(_))[]?I] has a
noncommutative L(Z)D(E)L( Z)T decomposition with diagonal D( ) whose entries are all

matriz positive on a Symbolic Inequality Domain'® G. Then F(Z) 1s matriz convex on G.

Proof. It sufﬁces to prove that the Hessian HI'(X)[H]| is a matrix positive quadratic
function for Z= {A X } in the Symbohc Inequality Domain G. Let HI'(X ) [H] be in the
form V[H ]TMHFV[ ], where My = L(Z)D(Z)L( )T, Thus

HU(X)[H] = VIH|' L(Z)D(2)L(Z)TV[H]. (3.15)
Now, substitute for Z and H in (3.15) any tuple of matrices 3 and Z = {A, X} in M(G)'! of
compatlble dlmensmn Since D(Z) has positive semideﬁnite entries, formula (3.15) implies

that HF(DC)[J‘C] is positive semidefinite. This says that I'(Z ) is matrix convex on G. ]

3.7 Key Definitions

This section presents the definitions essential for the statement of our most general
theorem, which shows that no “bigger” Symbolic Inequality Domain than the G produced
by our Convexity Algorithm yields a function I' which is matrix convex on G. We start with

a simple illustrative case and then we present the general case.

3.7.1 Definitions of linearly dependent functions and borders

To make sure there is no confusion in understanding our results and discussion of
borders we include notational discussion which looks at the border of a quadratic function

Q carefully.

9 Defined in Section 3.2.1, Part I.
Y Defined in Section 3.2.4, Part I.
"Defined in Section 3.2.4, Part I.
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The basic idea

Now we illustrate what we mean by linearly independent border vector. For simplicity

of exposition, the hereditary function Q is limited to be quadratic in two noncommutative

—

variables Hy and Hy (H := {Hy, H2}). In the next section, we will extend the idea to the

—  —

case of several variables. Let the hereditary quadratic function Q(Z)[H] take the form
—  — 2! 2! T = — —
QZ)H] =) Y Ly (Z)H{ A (2)H\L{(Z)
s=1 t=1
0 6

T = — —
+sym > > LY (Z2)H{ Ag e, (2)Ha L7 (Z)
s=1 t=1

by U3 .

+Y > L2 (Z)HE Agsvy, 100, (2) Ha L2 (Z).
s=1 t=1
Where each L;(E) is a rational function not necessarily distinct; may even be the identity
matrix. The quantity ¢; is the number of times that the monomial of order two in H;
appears. For the case above, the border of the matrix valued function Q(E)[I_{) | has the
form
H,y Li(

HiLY(

)
)

NIl N

V2)H = | mLl(z) |- (3.16)
HyL3(Z)

—

HyLj (Z)
In this border, the H; and Hy parts operate independently, so we shall consider separately

the polynomials, which are the coefficients of H; and Hs:

-1 —

L (Z):={L\NZ),..., L} (2)} (3.17)
and )
L (Z):={L}(2),...,L},(2)}. (3.18)

Definition 3.7.1 (Linearly Independent Functions Property)
For a given i, the noncommutative rational functions L;(Z) for j=1,...,¢; are said to be

linearly independent functions if the only scalars \;, such that

4; -
> NLNZ)=0
j=1
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are A\ = Ay = --- = Ay, = 0. We emphasize that the scalars \j do not depend on Z. If
there exists such nonzero scalars, the functions L;-(Z ) are said to be linearly dependent

functions.

—1
As we shall see what is critical for our Convexity Algorithm is when either L (Z) or
—2 - —  —

L (Z) is a linearly dependent set of functions. We say that the border vector V(Z)[H]

—1l —

in (3.16) has block linearly independent coefficients, if neither the functions L (Z) in (3.17)

nor the functions L (Z) in (3.18) are linearly dependent. In the next section, we repeat all

of these definitions for the most general case.

The general case

—

In the most general case, the quadratic function Q(Z)[H] is not constrained to be

hereditary. Let’s define H as

—

H:={H_,...,H_,Hy,...,Hp,Hp11,...,Hy, Hg11, ..., Hy}, (3.19)
where {l’{j}é‘?ngrl are constrained to be symmetric and H; = sz, for j = 1,...,h. That
is, we can separate H into three different parts as follows: the first part'? {H j}?:—h has

the pairwise restriction that H_; = H]T, for j = 1,...,h, the second part {Hj}?:h+1 has

no restriction, the third part {H j}?:g 41 has each Hj constrained to be symmetric. Let 7

denote the integers between —h and k except for 0. This is the index set for the H; which

are the entries of H.

— —

Any noncommutative symmetric quadratic Q(Z)[H] can be put in the form

V(Z)H M, V(Z)[H]

—

where the border V(E)[H ] has the form

. ve@um
V(Z)[H]:= | vrwe(z)[H] |, (3.20)
Ve (Z)[H]

2The integer 0 is not included in the index set j = —h, ..., h of the first part, but for simplicity of notation
we do not make this explicit, since it is clear from context.
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—

with Vm””(z)[l?l], Vp“’"e(z)[H], and Vsym(z)[l_{)] defined as follows:

Hy 1 LH(Z)
H_pLi"(Z) :
B Hy Lyt (Z)
H_yL;" () VIUe(Z)[H] = :
5 H,LY(Z)
H_ L (Z) :
: 9 (7
- HyLy (Z)
miz [ o\ 1T H—lL_ (Z)
o= | T
1
.1 g+,
Hy L7 (2)
1Ly, (Z) -
: o Hg+1LZ:1(Z)
H,,L}(Z) VU (Z)[H] = :
: HyL§(Z)
HyLL (Z) -
HyLE ()

In order to illustrate the above definitions, we give a simple example of a quadratic
function and its border vector representation. Let the quadratic function Q( 2)[]’—17> ] be given
by Q(E)[]?I] = HI « Hy+ Hy » HY + Hy x HI + Hg x Hy + Hy *+ Hy, where Hy, Ho, and
Hj3 are not symmetric and Hy = HZ. The symbol * means any expression that does not

contain H;. For this quadratic, the border vector has the following structure:

H
! } Mixed
af
ViH) = | H] }
Pure
Hs

Hy } Symmetric

Note that this representation of Q(Z)[H] might require simple relabeling of variables.
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For example, if Q[{H, K} = H'AH + KBKT then H = H, H, = KT and

V[H] = VPUre[H] = @1) . (3.21)
2

—

Indeed, the representations with only V% ¢[H] give precisely the hereditary'® Q. Allowing
simple relabeling of variables increases the scope of such representations to include all cases

like those in example (3.21).

Definition 3.7.2 (Block Linearly Dependent Coefficients)
The border vector V(Z)[H] in (3.20) has block linearly dependent coefficients if for
some i the functions L;(Z) for 7 =1,...,¢; are linearly dependent, otherwise the border

vector V(E)[ﬁ] has block linearly independent coefficients.

The “block” nature of the definition above is because we shall often consider separately
the set

—1 — — —

L(2) =A{L\(Z),..., Ly (2)}

for each 7 € 7.

3.7.2 Substituting matrices for indeterminates

In this section we discuss the substitution of matrices for indeterminates and give
some definitions. Let Z = {Z1,...,Z,} be all indeterminates (variables) occurring in what-
ever noncommutative rational functions I'(Z) and constraints G we are studying. If these

indeterminates are replaced by matrices we must be careful to replace them by tuple of

matrices Z := {Z1,...,%,} of sizes
—#
Z ={mg Xng,...,my XNy}
compatible with the function I'(Z) and the constraints G. Let C%™ denote the set of all

. —)# —)[l#
compatible dimensions. A partial order = on C%™, denoted by Z = Z , is given by

{m1 >mf,n1 >n,...,my >mi n, >nl},
. . . . . . _)# _)a# . d
and if strict inequality holds in every entry we write Z > Z . Once a size A € C*™

has been selected we let M denote the set of all v tuples of matrices of size A. Moreover,

13Note that in our definition of hereditary the variables Hj; can not be constrained to be symmetric.
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if G is a Symbolic Inequality Domain, then let M(G) (resp. Ma(G)) denote the set of all
matrices meeting the constraints defining G (resp. and lying in M a). Often we suppress

the subscript A because its presence is clear from context.

Definition 3.7.3 (Openness Property)
The domain G has the Openness Property provided that there is a size Ao in CU™ with the
property that when indeterminates are replaced by matrices with size A = Ag, then the set

of matrices Ma(G) is contained in the closure of the interior of Ma(G).

3.8 Theorems on Convexity and Positivity

3.8.1 Main result on convexity: Theorem 3.8.2

Theorem 3.8.2, which follows, gives a test which can in fact be implemented with a
noncommutative Grobner basis algorithm (Fréberg (1997); Mora (1986, 1994)). The lin-
ear dependence check is purely algebraic and can be performed automatically by computer
(software willing). We have not considered seriously the practicality of the Openness Prop-
erty. However, in all the examples we have done, it is obvious that the set G obtained
satisfy it. Now we set down a class of quadratic functions for which the theory works. The

definition also serves as a reminder of Theorem 3.3.3 on LDL” decompositions.

Definition 3.8.1 (Nice Quadratic on a Symbolic Inequality Domain)

A noncommutative symmetric function Q(E)[I_{)], which is rational in 7 and quadratic in
]?I, can be always put in the form V(E)[E]T MQ(Z) V(E)[I_{)] with V(E)[I_{)] as in (3.20).
Suppose that the coefficient matriz MQ(E) has a noncommutative L(E) D(E) L(E)T de-
composition (we may have applied some permutation) with D(z) a diagonal matriz (no
matriz R in Theorem 3.3.3, unless all entries of the matriz R are identically zero) having
entries Dj(z), forj=1,...,r =1, each of which are zero or invertible matrices whenever
tuple of matrices E of compatible dimension in Ma(G) for large enough A are substituted

- —

for E, then we call Q(Z)[H| a nice quadratic.

Theorem 3.8.2 (A Checkable Necessary and Sufficient Condition for Convexity)

Assumptions: Define Z = {A, X} where X; may or may not be constrained to be sym-

—

metric. Let T'(Z) be any noncommutative symmetric rational function, whose Hessian

HT(Z)[H] is a nice quadratic, satisfying the following two conditions:
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i. the function T'(Z) is matriz convex for Z on a Symbolic Inequality Domain G satisfying
the Openness Property for some big enough Ag;

— — —

ii. the border vector V(Z)[H] of the Hessian 'HF(E)[H] has block linearly independent

coefficients.
Conclusion: The following statements are equivalent:

a. when any tuple of matrices Z in Ma(G) of compatible dimension A = Ag is substi-
tuted into the Hessian HT', we obtain HI'(Z)[H] > 0 for all H.

—

b. for all tuple of matrices Z in the closure of Ma(G) the diagonal entries of the L(Z)
D(Z) L(Z)T decomposition are positive semidefinite matrices (that is D(Z) > 0)
provided that D(Z) is defined.

Proof. That (b) implies (a) is easy to prove and follows from Theorem 3.6.2. That (a)

implies (b) is difficult to prove and follows from:

e the next Theorem 3.8.3 which applies only to quadratic functions and proves under
appropriate hypotheses that HT'(Z)[H] > 0 implies Myr(Z) > 0 for Z defined as in
(a) above;

— —

e and that Myr(Z) > 0 implies D(Z) > 0, which is true since

My (2) = L(Z)D(Z)L(Z)T

—

with L(Z) an invertible matrix.*

3.8.2 Main result on quadratic functions: Theorem 3.8.3

This section gives results about quadratic functions. The main result is Theorem 3.8.3
that concerns positivity of a noncommutative rational function Q(Z)[H| which is quadratic
in H. The statement of this theorem is presented in this section and its proof is finished in

Section 3.10.

—

7(2) is an invertible matrix since it is lower triangular with ones on its diagonal.
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Theorem 3.8.3 (Main Result on Quadratic Functions)

Assumptions: Let H := {H_y, ..., Hy} be defined as in (3.19). Consider a noncom-
mutative rational function Q(Z)[H] which is a quadratic'® in the variables H on a Symbolic
Inequality Domain G. Write Q(Z)[H]| in the form

QZ)[H) = V(Z)H" M, V(Z)[H]

Suppose that the following two conditions hold:

1. the Symbolic Inequality Domain G satisfies the Openness Property for some big enough
AO;

—  — —  —

ii. the border vector V(Z)[H] of the quadratic function Q(Z)[H] has block linearly inde-

pendent coefficients.
Conclusion: The following statements are equivalent:

a. when any tuple of matmces Z in Ma(G) of compatible dimension A = Ay is substituted
mto Q, we obtain Q( )[ | is a positive semidefinite matriz for each tuple of matrices
f]'f;

b. we have MQ(E) >0 for all 2 in the closure of Ma(G) on which M 0(3) 1s defined.

Proof. Clearly (b) implies (a). The hard part is (a) implies (b). The proof of this result

consumes the following Section 3.9 and is finalized in Section 3.10. [

3.9 Theorems Concerning Quadratic Functions

Before beginning the proof of Theorem 3.8.3 in earnest, we sketch some of the ideas
for the simplest type of quadratic functions. Section 3.9, which consist of Section 3.9.1
and Section 3.9.2, concerns primarily a matrix valued quadratic function Q] ] of tuple
J'C of n X n matrices; there is no dependence on symbolic variables or on varlables Z In

Section 3.9.1, we treat quadratic functions which are hereditary in the variables fJ-C.

Later, in Section 3.10, we begin to combine the matrix results of Section 3.9.1 with
symbolic variables, and also we study quadratic functions of H which also depend on Z.
We reemphasize that the function Q(Z)[H] is quadratic in H, but it need not be quadratic
in Z.

5 We emphasize that Q(Z)[H] is not restricted to be a nice quadratic.
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3.9.1 Some ideas of the proof

This section gives a very special case of Theorem 3.8.3 in order to illustrate a few of
the ideas involved and expose the readers to easy cases of the notation. This tutorial proof

takes up Section 3.9.1 and then after that the fully general proof begins.

—

The specual case we consider is that of a hereditary quadratic functlon Q[H]. To
assume that Q[H ] is a hereditary function is equivalent to imposing that ﬂ{ has the special
form H = {Hpy1,...,H,}, which in our notation says that {F;}_, and {J; }J ot
missing in H = {Fp, ..oy 1, I, oy o Hnsts ooy Hgo Hysts -..r H}. Note
that we are treating a purely quadratic function Q[ﬂ_{)], in other words, Q(z)[ﬂ_{)] has no Z

| are

dependence. This special type of Q[H] has the following representation
Q[j__)q _ Vpure[j__)f]TMQVpure[j_CL

where VPUre [ﬂ_{)] is defined as follows

Hpr LI+
h+1
. th—i—ng,::l
VPUeIH] = : , (3.22)
H, LI
g
j{ngg

—

with each Lé- being a fixed matrix, that is, they do not depend on matrices Z.

The main result of this section, Proposition 3.9.1, is easy to prove, and serves as an

introduction to the ideas of the proof of the main Theorem 3.8.3.

Proposition 3.9.1 (Necessary Condition for Positivity)
Let Q[H] be a hereditary quadratic function of tuple H = {%'}g_hﬂ, where each matriz 3,
has dimension nxn. Also assume that this quadratic has a border vector of the type defined

in (8.22). Suppose that Q[H ] is a positive semidefinite matriz for each tuple ﬂ{, then either

i. the matriz Mg is positive semidefinite

or
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ii. there is an integer d € [h+ 1,g] and real valued functions
/\jZRnHR, jzl,...,gd,

such that
Ly

Z )\j(:U)L;-l:E =0, forxzeR".
j=1

We now define some sets that will be used throughout, and especially in the proof
of Proposition 3.9.1 above. Let each L; be fixed matrices of dimension n X n. For a given
x € R™, define the set R""“" to be

L
RPEOT = : call H; e R™ 5 (3.23)
L )
j{ingil‘

The Proof of Proposition 3.9.1 follows immediately from Lemma 3.9.2 and Proposi-

tion 3.9.3, which we now present.

Lemma 3.9.2 Let Q[H] be a hereditary quadratic function of tuple H of matrices of di-
mension n X n. Also assume that this quadratic has a border vector of the type defined in
(8.22). The function Q[H] is positive semidefinite for all H implies Mg > 0, provided that

for some y the space RPY fills out the whole space R™ for alli=h+1,...,g.
L

Proof. Let Q[H] be positive semidefinite. By definition this implies that y” Q[H]y > 0
for all y € R™ and all {}Cj}gzhﬂ € R™". Therefore

y Q[H]y = y" VI MoV [H]y = w" Mow > 0
for all w = V[H]y € R*nt1t+6s) and all {g{j}?:h—}—l € R™ ™. Now it suffices to prove that
for some y all vectors of the form w equals R™“n+1t+¢) Byt this condition is directly
satisfied from the assumption that the space R fills out the whole space R™ for all
L

i=h+1,...,9. [

Proposition 3.9.3 For a given x € R"™, let RPY'“" be defined as in (3.23). The following
L
holds:

i. If R’%ufe’x is all of R™:, then Lix, Lix, ... ,inx are linearly independent vectors.
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ii. If RPY“" is not all of R, then Lila;, Léx, e Léix are linearly dependent vectors,
and ]éonsequently there exist nontrivial scalar functions \;(z), that may depend on z,
such that

M (2)Liz + a(z) Lz + -+ Ay, (x) Ly = 0. (3.24)

Proof. For a given z € R", let RP"*" be all of R™i. Suppose Lix, Liz, ... ,LZ:E are
L
linearly dependent vectors. Without loss of generality, let Liz = Zﬁ;z Aj(x) Léx, where

Aj(x) are scalar functions. Define s; = J{iLz-x, then RYY“" becomes
L

/\2(1‘)52 —+ e+ )\S(ZL')S[

3

52
RPUTOT = ] : some s; € R"
L .

Sy,

7

which can not possibly be R™. This fact contradicts our assumption on RP"** being all
L
of R™:, thus Liz, Ly, ..., Ly x must be a linearly independent set of vectors.

To prove (ii), suppose for a given x € R" the vectors L'z, Lix, ... ,L%Z_x are linearly
independent. Let

w1

be any vector in R™#. Then we can choose H; € R™™ with the property that w; = H;Liz,

wy = H;Lyz, ..., wy, = H;Ly z. Thus RPY is all of R .
L

What we have just demonstrated is only the beginning of the proof of Theorem 3.8.3
for a hereditary quadratic function. Next, we must show that the \; do not depend on
x. For the particular case we have been treating, there are several ways to do this, but
they do not all work for the general case of interest. The method we use later to prove
that the )\; are independent of x uses the fact that the quadratic function depends on
the variables Z (see Theorem 3.10.10 in Section 3.10). Another difficulty is that the sets

analogous to R”"“* never equal the whole space for the case where Q is non-hereditary or
L

—

H contains symmetric elements. Fortunately these sets have co-dimension which depends
only on the dimension of the coefficient matrix Mo and does not depend on the dimension
of the matrices contained in the tuple E substituted for Z (See Proposition 3.9.8). We
combine this fact about co-dimension with the algebraic dependence of the functions Q(E)

and Lé(z) on Z to complete the proof of Theorem 3.8.3 in Section 3.10.
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3.9.2 The range of the border vector of a matrix quadratic function

Earlier in Section 3.9.1, a necessary condition for positivity was presented in Propo-
sition 3.9.3 for a particular type of quadratic function. The key was a linear independence

property guaranteeing that the space Rp UreT is all R™, that means, the co-dimension of

the space Rp YreT equals zero. Unfortunately, this only characterizes the unconstrained

part (the second part) of H defined in (3.19). Section 3.9.2 gives similar conditions on the
other two parts of ]?I , the pairwise symmetric part (the first part) and the symmetric part
(the third part). General quadratic functions are treated in Proposition 3.9.4, and the key
property is a uniform bound on certain co-dimensions. Again, as in Section 3.9.1, we study

—  —

quadratic functions Q(Z)[H] with no Z dependence.

First define R*™* and RTZZM to be

L L
RIME = : call 7 = H e RS (3.25)
L .
j‘Cingil’
( s
: Ho,L;"
RIS = J{L'Li call Hoy = H e R 5 (3.26)
L i ZIJI
. fH,sz J

sym T

s
mix,x . . . . ure.,xr . . o e
R™** and also summarizes similar results concerning R”%“* given in Proposition 3.9.3.
L

The following Proposition 3.9.4 introduces our main results concerning R and

—1

L

YT and R be defined as in

S
—1

Proposition 3.9.4 For a given x € R"™, let R/ ", R
L L L

(3.23) and (3.25-3.26). The following holds:
i. If Rpme " is all of R™, then Liz, Liz, ... ,LZ:E are linearly independent vectors.

i. If Rpwex is not all of R™ (resp. If Rsymx has co-dimension in R™ greater than

0;[0;—1]/2), then Lix, Lz, ..., L} 7, T are lznearly dependent vectors, and consequently

there exist nontrivial scalar functions Aj(z), that may depend on x, such that

M (@) Lix + Xa(2) Lz + -+ Ag, (ZL')L%ZJL’ =0. (3.27)
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. If RT?” has co-dimension in R™MEi+=i) greater than £;(_;, then either Liz, Lyz, ...,
. L . . .
inx or L'z, Ly'z, ..., inaz are linearly dependent vectors, and consequently there

exist nontrivial scalar functions \j(x), that may depend on x, such that either

M (@) Lix + Xa(2) Ly 4 - - 4 Ay, (ZL')LZ_JJ =0 (3.28)
or
M (z)Ly'z 4+ Xap(@) Ly 'z 4+ + A, (z) L, @ = 0. (3.29)
pure,r

Proof. The results concerning R were proved in Proposition 3.9.3.

—1

L
First we treat the case where the H; are constrained to be symmetric. If (3.27) fails,

then Lix, ... ,L%ix are linearly independent; thus we may use Lemma 3.9.5 below to obtain

that R*™™" is a space of co-dimension equal to £;(¢; —1)/2. This contradicts the assumption

L

that R°Y"™" has co-dimension in R™ greater than ¢;(¢; — 1)/2. This proves part (ii) of
L

Proposition 3.9.4.

The proof of part (i) follows the same line. If both (3.28) and (3.29) fail, then both

Liz, ... ,LZ_ZE and Ll_ix, L;izp, ceey Le_ji"E are linearly independent vectors; thus Lemma 3.9.6
m;’m,m
T

sumption that R";*" has co-dimension greater than ¢;¢_;. This completes the proof of

below implies that R is a space of co-dimension equal to ¢;¢_;, contradicting the as-

L
Proposition 3.9.4. m
Now we present the Lemmas required in the proof of Proposition 3.9.4. We use H
instead of H to stand for a matrix in R™*" in Lemma 3.9.5 and Lemma 3.9.6. This makes
the rather involved formulas easier to read.

Lemma 3.9.5 For linearly independent vectors v1,...,vp € R™ the space S defined by

H’U1
S = : . all H=HT e R™"
H?)g

is a subspace in R™ with co-dimension £(£ —1)/2.

Proof. Define invertible matrices P € R™ ™ and Q € R/ by

(ol - |w)=P<é>Q,
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where [ is the identity matrix with dimension ¢ and ( vl e e > denotes the matrix
whose columns are vy, ...,vp. (Note that the hypotheses of this theorem imply n > ¢.) The

dimension of the space S is

dim(S) = dim call H=HT e R™"

dim {H(m o fo )5 all H=HT eR™ ")
P

([,
(
(H< ) HHHR}>
<
[
o

di

5

= dim {HP( >: aHH:HTGR”X”})
= dim {PTH < >: allH:HTeR”X”}>
= { ( ):allH HT € R"”’})
=nl — ({0 —

Thus the co-dimension equals ¢(¢ — 1)/2. The last step above was a consequence of the

following argument. Partition

¢ n—/{

H= ¢ Hy  Hypp \ -
n—~{\ Hy  Hop

) . forall H = ﬁT}>
H
= dim <{ ( H ) . for all Hy; = HY, € R and Hy, € RW—@“})

= dim ({Hll : for all Hyq = HlTl € RZXZ}) +

Then

dim ({Hgl : for all Hyp € R("_Z)XZ)})
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Lemma 3.9.6 Suppose that {u;}{_; and {v;};_; are two sets of linearly independent vec-
tors in R™. (The set {u;,v;};; need not consist of linearly independent vectors.) Then the
space S defined by

Huy

S = : for all H e R™"
HT’U1

T
H- vy

is a subspace in R™"9) with co-dimension rs.

Proof. Define invertible matrices P; € R™*", Q1 € R™", P, € R™", and Q2 € R*** by

(e
<v1] ]v8>=P2<;S>Q2,

where I, and I are the identity matrices with dimension r and s respectively. (Note that

the hypotheses of this theorem imply n > r and n > s.) The dimension of the space S is

Hu1

. ) Hu,
dim(S) = dim : for all H € R™"
HT’U1

T
H vy

—aim({( A (wl e ) LTl o))

for all H € Rnxn})
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: I, I
:lel({( HP1< 0 )Ql ’ HTP2< 0 )QQ ) : for aHHE]Rnxn}>
-1
s (5 )e e (0)e ) (5 o)
0 0 0 Q'
for allHGR”X”}>
: I, I
can{(n (%) () e s
:dim({(PgHH(IT) | PlTHTP2<IS>>:
0 0
for allHeR”X”}>
. ~ [ Ir 5 I -
:d1m<{<H< ) \ HT< ) ): forallHeR"”‘})
0 0

=n(r+s)—rs.

Thus the co-dimension equals to rs. The last step above follows from the following

argument. Partition (assume r < s)

r S—r m—s

- r H H H

i n Hip His | (3.30)
s—r | Ho Ha Hys

n—s \ Hz1 Hs Hss

Then

= dim Hy HEL, HIL | : forall H € R™" as in (3.30)
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= dim({H : for all H € R™"}) — dim({(Hgg Hs3) :

for all Hzp € R™9%6=") and Hy; € R("_S)X(n_S)}>

=n? —[(n—s)(s =)+ (n—s5)(n — 5)]

=n(r+s)—rs

We now present a lemma concerning co-dimensions, which will be used in the proof

of Proposition 3.9.8.

Lemma 3.9.7 Suppose that each S; fori=1,...,k is a subspace in R™ with co-dimension
S1

m;, then the space S = : is a subspace in R™T T with co-dimension mi+---+my,.

Sk

Proof. The space S is the direct sum of the spaces | S; |, each of which has dimension

0
n; —m;. The dimension of S equals to the sum of the dimensions of S;, or equivalently the

co-dimension of S equals to the sum of the co-dimensions of S;, which ismq +---+mj. =

Finally, we present Proposition 3.9.8, which introduces our main result concerning

the co-dimension of the range of a border vector.

Proposition 3.9.8 If there is an x € R™ such that Lila:, . ,L@ix are linearly independent

vectors for every i € I, then the following space RO

tot: =11+ -+ tx, where

has co-dimension less than or equal

f_ifi fOTiZl,...,h
ti=4q 0 fori=h+1,...,g
Ei(fi—l)/Q fori=g+1,...k
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Uz .
and RS is defined as
L

R\
L H_pLi"x
RT?LLL"Z‘ h
L j_ChLéhx nxn o y
RPUTe G0 L forallH; e R (i € T), satis-
L B ~ fying the constraints H_; = ﬂ{f
. - * . o T
— 9 19 4 for j =1,....;h and H; = 3(;
7’ g égg_H forj=g+1,...,k
RV Hypr L7
L
k
L
Proof. It follows directly from Lemma 3.9.7, Lemma 3.9.6, and Lemma 3.9.5. [

3.10 Linear Dependence of Symbolic Functions

Let Ag be a size sufficiently large that the domain G possesses the Openness Prop-
erty'0. Let Ma,(G) be the subset of the set of all matrices meeting the inequality constraints

M(G) defined by Na,(G) := U MA(G). Define also three subsets of Na,(G), namely A,
A>Ag
B, and €, by

A= {E € Na,(G) : the matrix MQ(E) has less than or equal to ¢ negative eigen-
values}, where t is defined in Proposition 3.9.8.

B = {E € Na,(G) : for every = with compatible dimension, there exists i € T
such that the vectors L’l(Z)J;, e L;Z(Z)m are linearly dependent, that is, for

each Z and =, there exists \;(Z, ), such that 3 \;(Z,2)L}(Z)x = 0}. We
j=1
emphasize that ¢ also depends on Z and =z, that is i = i(Z, ).

C:= B A°, where A¢ denotes the set-theoretic complement of set A.

We will show later that the set Na,(G) is the disjoint union of the two sets A and €. Let
Aa be the set of tuples in A with size A. Similarly, Ca is the set of tuples in € with size
A. The next three lemmas give basic properties of the sets A, B, and C.

16Gee definition 3.7.3 in Section 3.7.2.
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Lemma 3.10.1 Let the sets A, B, and C be deﬁned as above. Suppose that the quadmtzc
function Q(a)[_)] s positive semidefinite for all J'C provided that the variables Z having
compatible dimension, are in Na,(G). Then the set Na,(G) is the union of the sets A and
B, that is, Na,(G) = AU B, furthermore, Na,(G) is the disjoint union of the sets A and

C.

Proof. Observe what happens when we replace Z by tuple of matrices Z of compatible
dimension. Fix a vector . Suppose that 27 Q(Z)[H]z > 0 for all 3. This implies, that
T

w M _—w>0forall win R® . Thus the number of negative eigenvalues of M - isless
Q(2) L(Z) oz

than or equal to the co-dimension of the space RH ", which by Proposition 3.9.8 either is
L(2)

bounded by t or there is a d € Z, which depends on E and z, such that ch(z)x, . ,L?d(z)w

are linearly dependent for every vector x with compatible dimension.

As a consequence of the above result, the set Na,(G) is the union of the sets A and
B, and consequently the disjoint union of the sets A and €. In particular, the set M a(G)
is the disjoint union of Aa and Ca for each A = Ag. m

Lemma 3.10.2 For every A = Ay, suppose the closure of Aa, denoted by closure(Aa),
contains Ma(G), in other words, Aa is dense in Ma(G). Then Aa actually equals the
whole set Ma(G).

Proof. The lemma follows directly from the fact that the eigenvalues of a symmetric
matrix continuously depend on the norm of the matrix, c.f. Appendix D of Golub and Loan
(1983). ]

We present some definitions about direct sum and sets which respect direct sums,
since they are important tools for proving linear dependence of the coefficient of the border

vector.

Definition 3.10.3 (Direct Sum) Our definition of the direct sum is the usual one, which

for two matrices Z1 and Zo is given by

Z, 0
Zl ©® Z,g = ! .
0 2o

Now, we extend this definition for v tuples of matrices Z :={Z1,...,2,}. For any positive

integer J, we denote by Z  the direct sum Z @ ---® Z of J copies of Z. For instance, the



80

direct sum of three v tuples of matrices Z1 := {Z11,...,210}, 22 = {Za1,...,29}, and
Z3:={Z31,...,23,} is given by

218 Z22® Z3:={Z11® 221 B 231,210 DB Loy B ZL3p} -

Note that from the above definition, if noncommutative functions L; applied to a v

—

tuples of matrices Z produce matrices L;(Z) € R™ " then these functions L;'- applied to

the direct sum Z produce matrices L;(Z ) € RIMXIn,

Definition 3.10.4 (A Set Respects Direct Sums) A set P is said to respect direct sums
—J

if Z; fori=1,...,p is contained in the set P implies that the direct sum Z,; 1is also con-
—J —J

tained in P for each positive integer J. Furthermore, the direct sum 2, @®---® 2, is also

contained in P.

We present Proposition 3.10.5 below because it foreshadow a key idea in the proof of
Theorem 3.8.3.

Lemma 3.10.5 Under the same assumptions as Lemma 3.10.1, the set C (a subset of B)

respects direct sums.

Proof. The proof is by contradiction. Pick E, € C, thus E, € A€, which means MQ(Z-)
o '

has at least ¢t + 1 negative eigenvalues. Next suppose that Z, is not contained in € for some
integer J. Then by Lemma 3.10.1, Z,;] is contained in A, which by the definition of the

set A implies that M (*,J) has less than or equal to ¢ negative eigenvalues. On the other
Q(Z;
hand, by the property of direct sum, the number of negative eigenvalues of M (HJ) equals
Q(Z;
J times the number of the negative eigenvalues of M oz Thus, M o(Z) also has less than

—J

or equal to ¢ negative eigenvalues, which is a contradiction. Hence, Z; is contained in € for

all integers J.

Similarly, we can further prove that the direct sum 2, & ---® Z, is also contained

in C. ]

3.10.1 Subsets of B which respect direct sums

The following few lemmas pertain to a subset P of B which respects direct sums. The

next lemma shows that for a finite set denoted by S, consisting of different elements in P,
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we can find a linear combination of the coefficients of the border vector which equals zero

for any Z € §. We actually prove something a little more general. That is,

Lemma 3.10.6 Let P be a subset of B which respects direct sums. Suppose that S is a
finite subset of P. Then, there are scalars \;j(S) and an integer d(S) € I (which depend
upon the choice of the set S) such that

Ly(s)

Z ML (2) =0, (3.31)

for every Z € S.

Proof The proof relies on taking direct sums of matrices. Write the set S as § =
{Zl, .., Z,}, where each Z; € iP for ¢ = 1,...,u. For thls proof, 1t sufﬁces to take each
L?(Z ) to be in R™*". Choose Z to be the direct sum Zl - D Z , where each Z for
i =1,...,u is the direct sum of n copies of Zi. Define the vector e* to be

€1

e = € ]R”z,

€n

where the e, for k = 1,...,n are the standard basis elements for R™. Also let * be a vector

that contains p copies of e*, that is,

e
* . n?
r = : S R‘u .
e*
—k
Since (by assumption) the set P respects direct sum, Z is also contained in P. Then, by the

— %

definition of the set B, there exist scalars A\;j(Z ,z*) and an integer d € Z (we reemphasize
that d = d(Z ,2*)), such that

It follows that
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This implies that for i = 1,..., u,

Zd —k —
> N(Z 2L (Zi)er =0, for k=1,...,n.
7j=1

Since the {ex},_,, is a basis for R", we obtain that

La e —
DNz, 2)LH(2i) =0, for i=1,...,pu.
j=1

—k
Since (Z ,z*) are determined by the choice of the set S, we conclude that

Lys)

as) &
ST NOLI (2 =0,
j=1

for each 22 € S, with X\;(S) := )\j(z ,x*) and d(S) := d(z ,x*). Thus we obtain equa-

tion (3.31) required for the lemma. ]

The next Lemma 3.10.7 extends this result from the finite set S to the bigger set
MAa(G).

Lemma 3.10.7 Let P be a subset of B which respects direct sums. For A = Ag, if there
is an open set Un contained in Pa := P(YMa(G), then there exist scalars Aj(A) and an
integer d(A) € I, such that

taca) _

PIRVIENLACIR)
j=1
for every 2 e MAa(G).

Proof. Fix a size A = Ag. Denote by vec the map which sends a tuple of matrices Z in

P to their entries arranged as a vector (y1,...,yx) € RE as follows
vec : Pa — RE,

where K is total number of entries in the matrices in E The order of the arrangement does
not matter, but the same order must be used consistently. Denote vec™ the inverse map of
vec. Then each entry of the matrix Lé(z) is a rational function of the elements y1,...,yx.
By multiplying through by some _E)olynomials if necessary, we can assume without loss of

generality that each entry of L;(Z) is a polynomial in the K variables yi,...,yx. Let D,
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be the maximum degree of y, among all of the polynomials which are entries of L;(Z), for

all ¢ and j.

Since Pa contains an open set Ua, we can choose a finite set

Si={(", ..., y¥) eRE herev, =1,...,D, +1forall r=1,...,K},

Dr+1

such that for every r = 1,..., K, the elements v, ...y’ are distinct. That is, the values

in each coordinate of S are distinct. The set S is a subset of the space R¥. As a consequence,

- N K
the cardinality IT of the set S (the number of elements in S) equals II = [ (D, + 1).
r=1

Define § = vec‘(S’) € Pa. By Lemma 3.10.6, for each tuple E € S, there are
constants \;(S) and an integer d(S) € Z, both depending on S such that

S AL 2y =0, (3.32)

for every tuple of matrices Z € S.

Now we show that (3.32) actually holds for every Z € Ma(G). Note that (3.32) can

be equivalently written as

a(s)

Z)\ [ L¥® Z)] (M):o, (3.33)

for every tuple of matrices E € S, where [L?(S)(z)] denotes the (p,q)th entry of
(p,q)

L?(S)(Z). By the previous argument, [L?(S)(Z)} is a polynomial in the K variables
(p,9)

Y1, ---,YK, and also the maximum degree on each indeterminate y, is no greater than
D,. Clearly all the elements in S give rise to matrix tuple 2 that satisfy the polynomial
equation (3.33) for all p and ¢q. By the elementary theorem of algebra which says that
every nonzero polynomial in one complex variable with degree D, has at most D, zeros, we

conclude by the construction (cardinality IT) of the set S that for every 2eM A(9)

tas) ~
Z Ai(S) [L?(S)(Z)L ) =0, for each p and g,
j P,

Thus it follows that
La(ay

ZA d(A )_0’

for every 2 € MAa(G), by choosing constants A;(A) := A;(S) and integer d(A) =d(S). =
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Now we have obtained the linear combination A;(A) of L?(A)(Z), which is zero for all

elements 2 in Ma(G) for one fixed size A. The following lemma connects the coefficients
A;j(A) of the linear combinations between different size. It says that if we have an annihi-
lating linear combination for Ma(G), then this same combination will also be annihilated
for all size A/ with A > A’.

Lemma 3.10.8 Fiz a size A. Suppose there are scalars \;(A) and an integer i(A) € T

such that
Gi(A)

Z)\ Z(A ):07

for every 2 e MAa(G). Then

4(A)
i(A) /o
>NV ) =0,

i=1

for every 2 e Mar(9), with A = A,

Proof Let @ = {@1, ...,0,} be a tuple of zero matrices of compatible dimension. For
every Zo € Mar(G) let 2 be

— —

EZZOGB

to get Z € Ma(G) with A = A’. By assumption, there are scalars \;(A) and an integer

i(A) such that
£i(A)

i(A) o
>NV (E) =0,
j=1
for every Z € Ma(G). Then plug in the decomposition of Z given above, together with the
fact that

—

L™ (Zyo 0) = L™ (Ze) 0 L) = | ,

to obtain
4(A)

ZA A(Zg) =0

for every 50 € Ma/(G). "
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So far we have shown that for every fixed size A, there exists an annihilating linear
combination (that may depend on the size A), which also holds for any size A’ with A =
A’. Now we show that actually there exists an annihilating linear combination for all

Z € Ma(G) that does not depend on the size A.

Lemma 3.10.9 Let P be a subset of B which respect direct sums. Suppose there is a
size A1 = Ag, such that for every size A = Ay there is an open set Ua contained in
Pa =P\ Ma(G). Then, there are constants \j and an integer d € T (we emphasize that
Aj and the integer d do not depend on the size A) such that

Ly .
> NLI(2) =0,
j=1

for every 2 e M(G).

Proof. Define the set A2 as

Ca(a)

AD = {<d<A>,A1<A>, A () DTN (2) =0,
j=1
for every Z € Ma(G) and an integer d(A) € I}.

Since for every A > Aj, the set Pa contains an open set U, from Lemma 3.10.7 we have

that the set A2 is nonempty. Thus there exists a point

(d(A), M (A), .. Agy(ay (D)) € AD

for every A = A;. We can define a collection of sets for every A = A and every integer

d(A) as
AZ((A)) = { Q).+ Ay (A)) £ (dA) AL Q). Ay ) (A)) € A2,

It is clear by the construction that A% (d(A)) is a linear space, which is nontrivial since
(A(A), ..., S\gd(A)(A)) € A2(d(A)) for every A = A;. Since the integer d(A) only has
finitely many possibilities in 7 there exists an infinite increasing sequence {j;}:2; and an

. . A . .
integer d in Z, such that A’ (d) is nonempty for any ¢ and such that

Aj, =4, forany ig > is.
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By Lemma 3.10.8, the dimension of the space A*Aji (d) is a non-increasing sequence, which
is bounded below by 1. Thus
min dim (A2 (d)) > 1.

i>1

Hence N A*Aj *(d) # 0, and consequently there is an integer d (that does not depend on A)
i>1
and scalars A;(A), such that

ty B

SoNA)E) =0,

j=1
— [e.e]
for every Z € |J Ma, (9).
i=1
So far we have shown that the integer d does not depend on the size A. The next step
is to show that the scalars \; are also independent of A. This is accomplished by applying

Lemma 3.10.8 successively. Thus, we conclude that
lg .
> NLH(Z) =0,
j=1

for every Z € M(G). ]
From all of this we obtain the following result.
Theorem 3.10.10 Let Li(Z),...,Ly(Z) be noncommutative rational functions of Z =
{Z1,...,Z,}. Let G be a Symbolic Inequality Domain satisfying the Openness Property.
Suppose for all A = Ag we have for each Z € Ma(G) of compatible dimension and each
vector x that the vectors
Ll(Z)IL‘, PN ,L@(Z)IE

— —

are linearly dependent. Then the functions L1(Z),...,Li(Z) are linearly dependent, that
is, there are scalars \; (that do not depend on Z) such that

l

S NL(Z) =0

i=1

—

Proof. Form a subset of B denoted by P associated with Lq(Z),... ,Lg(z) by

—

P= {E € Na,(G) : for each z,w there exist A(Z,x), such that

Z —
Z/\ij(Z)l‘ = 0}.
j=1
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Now, we show that this set P respects direct sums. For ¢t = 1,...,u let Z; be contained in

P. By definition of the set P, for each Z,x there exist A\(Z¢, x) such that

Z)‘j(ztaw)Lj(Zt)xzo, t=1,..., 4.
j=1

—J —

Let z* be a vector that contains J copies of x. Since L;(Z;) = Lj(Z¢) @ --- ® L;j(Zy), we
have that, for t =1,..., pu,

5 — —
)\j(Zt,x)Lj(Zt)w 0
- —J =t
> N(Zea)Ly(2, )" = =0,
j=1 )4 — —
0 Z )\j(Zt,x)Lj(Zt)w
7j=1
—J

and consequently Z, € P foreach t =1,..., u.

Thus, Lemma 3.10.6, Lemma 3.10.7, Lemma 3.10.8 and Lemma 3.10.9 apply to P. In
particular, Lemma 3.10.9 implies Theorem 3.10.10. ]

Also Theorem 3.10.10 lays behind Corollary 3.10.11, which is here repeated.

Corollary 3.10.11 Let Li(Z),...,Ly(Z) be noncommutative rational functions of Z =
{Z1,...,Zy}. For each vector x, suppose that the vectors L1(Z)x, ..., Ly(Z)x are linearly

dependent whenever matrices Z; of compatible dimension are substituted for Z; for all size

A bigger than some Ag. Then there exist real numbers \; for j =1,...,¢ such that

0
> NLi(Z) =0,
j=1

—

that is, the functions L;j(Z) are linearly dependent.

Proof. In Theorem 3.10.10 take G to be everything. That is, G contains no inequality
constraints. Thus G has the Openness Property, since Ma(G) = M. m

We need the following lemmas to complete the proof of the main Theorem.

Lemma 3.10.12 Let Ag be any size. Assume that T is a symmetric matriz with non-
commutative rational functions t;j(Z) as entries. Suppose there is an integer r such that
whenever tuple of matrices Z € Na,(G) of compatible dimension are substituted for Z, the

resulting matriz T'(Z) has at most r negative eigenvalues. Then T(Z) is positive semidefi-
nite (that is, r =0) for each Z € M(G).
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Proof. The key fact is
T(Z®2)=T(2)®T(2).

—

This implies that if 7(Z) has 7 negative eigenvalues, then 7" applied to the 2r-fold direct
sum Z @ --- @ Z has 2rn negative eigenvalues. Consequently the hypothesis 2rn < r implies
that n = 0. [

Lemma 3.10.13 Suppose MQ(E) is positive semidefinite for every Z € Ma(G), then

MQ(E) is also positive semidefinite for every Z € Ma/(G) with A = A.

Proof. Use an idea similar to the one in the proof of Lemma 3.10.8. [

3.10.2 Proof of Theorem 3.8.3

Proof. For any A = Ay, if A is dense in Ma(G), that is, closure(Aa) 2 Ma(G), then
by Lemma 3.10.2, we have Ax = Ma(G). Hence, the number of negative eigenvalues of

—

MQ(E) is uniformly bounded by ¢ for all Z € Ma(G). Now we apply Lemma 3.10.12 with

r =t to obtain that, for each tuple of matrices Z € Ma(G) substituted for Z, the matrix
MQ(E) is positive semidefinite. On the other hand, if Aa is not dense in Ma(G), then by
Lemma 3.10.1 there exists an open set Ua contained in Ca C Ma(G).

So far we have shown that for any A = Ag one of the following must be satisfied,

either

a. the matrix M o@) is positive semidefinite for each Z € Ma(G),
or

b. there exists an open set Ua contained in €A C Ma(G).

The final step is to show that if positivity of MQ(E) fails, then the block linear
independence of the border vector (in assumption (i) of Theorem 3.8.3) of the quadratic
function Q also fails. Assume there is a size A* such that (a) is not satisfied. Then
by Lemma 3.10.13, (a) is not satisfied for every A > A*. Hence (b) is true for every
A » A* which by Lemma 3.10.9 (with PA = Ca) and Lemma 3.10.5 implies that there are
constants A; and an integer d such that Z§i1 Ang(E) = 0 for every 2 € M(G). Thus, by

Corollary 3.10.11, the noncommutative rational functions L;-l(Z ) are linearly dependent for

- —

j=1,...,¢; and consequently the border V' (Z)[H] has block linearly dependent coefficients.
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But this contradicts assumption (i7) of Theorem 3.8.3, finalizing in this way the proof of

the main Theorem 3.8.3. n

Remark 3.10.14 [t is enough (a weaker hypotheses) to consider square matrices of dimen-
sion n X n (when substituting matrices for indeterminate) to prove the theorems concerning

convexity and matriz positive of noncommutative rational functions.



Chapter 4

Convex Optimization over Matrix

Functions

4.1 Introduction

This chapter provides tools that can solve system and control problems, or any other
type of engineering problem that can be posed as Matrix Inequalities (MlIs). To use these
tools, no knowledge of Linear Matrix Inequalities (LMIs) or how to manipulate matrix
inequalities to be expressed as LMIs is required. Furthermore, the tools presented here may

have the same advantages as the LMI framework.

To understand the motivation of this task, one must expose some of the advantages
and disadvantages of the LMI framework. The wide acceptance of LMIs stems from the
following facts: 1) if a control problem is posed as an LMI, then any solution is a global
optimum; 2) efficient LMI solvers are readily available; 3) once a control problem is posed
as an LMI, any other constraints in the form of LMIs can be added to the problem. On the
other hand, the LMI framework has the following disadvantages: 1) there is no systematic
way to produce LMIs for general classes of problems; 2) there is no way of knowing whether
or not it is possible to reduce a system problem to an LMI without actually doing it; 3)
the user must possess the knowledge of manipulating LMIs; 4) transformations via Schur

complements can lead to a large LMI representation.

If someone has the ability to check if a MI is convex and convertible to an LMI,
then the optimization problem can be solved by the many available LMI solvers. Most of

the numerical implementation of these solvers are based on the Semidefinite Programming

90
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(SDP) machinery. To cite a few of them Gahinet et al. (1995); Sturm (1999); Vandenberghe
and Balakrishnan (1997); Vandenberghe and Boyd (1995, 1996) and references therein.
Fundamental results in primal-dual interior-point methods are found in Wright (1997), and
a collection of many results on convex optimization can be found in Boyd and Vandenberghe
(2003). An elegant exposition of interior-point methods in convex optimization is found in
Renegar (2001). A large collection of control problems that can be posed as LMIs, and
algorithms used to solve them, can be found in Boyd et al. (1994); Colaneri et al. (1997).
In particular, the book by Skelton et al. (1998) demonstrates that many linear controller

design problems reduce to a single linear algebra problem having the form
I'GA + (TGA)T +0 <0,

for the unknown matrix G.

Unfortunately, if one does not have the ability to deal with LMIs, it is not clear what
one should do. An available alternative is to restate the entire optimization problem in the
form used by some particular numerical nonlinear optimization solver. In this case, since
optimization over matrix functions are inherently not smooth, there is no guarantee of a
local minimum. Furthermore, the tedious process of reformulating a matrix optimization

problem usually requires a high level of algebraic skills.

There are a few papers on solving matrix inequalities which are not linear in the
unknowns (Jarre (2000); Leibfritz and Mostafa (2002) and references therein). In Leibfritz
and Mostafa (2002), the authors presented and analyzed a numerical interior point trust
region algorithm that can be used for solving a class of nonlinear (nonconvex) semidefinite
programming problem, posed as:

min J(F,L) st. h(F,L)=0, Y(F.L)<0, L>0 (4.1)

where the functions h,Y : RP*" x S — S"™ and J : RP*" x S® — R are assumed to be
twice continuously differentiable. The author solved the above problem (4.1) by a barrier
method. Their formulas for the update directions naturally depend on the functions J,
h, and Y, and its derivatives. They have applied the algorithm to a variety of numerical
examples, including static output feedback control designs. Their approach requires the
user to compute the derivatives of the matrix functions in order to implement the code,
while to use our approach the user does not need to compute derivatives, since this is
done automatically. Moreover, this thesis focuses much attention on the efficient use of the

formulas for the derivatives (see Section 4.6). Even though in this dissertation, we have
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focused on convex optimization problems over matrix inequalities, the extension of our ideas

to a nonconvex approach is immediate.

The NCSDP numerical optimization solver to be presented in this chapter can be used
to solve optimization problems corresponding to matrix inequalities. This approach does
not require any knowledge of LMIs, or how to manipulate MIs to be expressed as LMIs.
Consequently, there is no need to determine Schur complements in order to express the
matrix constraints as LMIs. Moreover, since transformations via Schur complements can
lead to an LMI representation with large matrices, the presented solver has the potential
to reduce the optimization time significantly when the dimensions of the matrices involved

are large (when compared to primal-dual numerical solvers, see Section 4.7).

The NCSDP solver is based on an implementation of the method of centers (see
Boyd and El Ghaoui (1993); Colaneri et al. (1997); Huard (1967); Lieu and Huard (1965)).
This solver is implemented in Matlab and Mathematica, and it can be split into two parts:
a symbolic and a numerical one. Roughly speaking, at the symbolic level, Mathematica
computes the gradient map Q and the Hessian map H(d x ) of an auxiliary potential function
that appropriately incorporates the objective and the constraints. Thereby, producing a
linear system of equations H(dx) = Q in the update direction dx. Then, a Matlab code
numerically solves this system for dx. The method successively iterates, at the numerical

level, until the algorithm converges to an optimal solution.

To convey what it is meant for minimization over matrix functions, suppose one is
given matrices of compatible dimensions A and S where they need to solve the following

problem for symmetric matrices X and Y > 0 within the unit ball:
Tr{X
R
subject to

XATY'AX — AX(XATY1AX — )71 X AT — (v ixATy tAxy 1 —y—1H)~!
—AX(T+Y I XATY ' AX) ™ - (T + XATY ' AXY X AT - S <0

XX <I and YY <.

Where the matrices A and S are given by

1 -1 2 0
, 8= .
0 2] [0 1]

This type of problem is easily handled by our numerical NCSDP solver.

A=
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This chapter is organized as follow: Section 4.2 presents the notation used, and some
important results that are needed in later sections. Section 4.3 presents the theory behind
our methodology, showing how we pose our feasibility optimization problem and the inner
product optimization problem. Section 4.4 provides a tutorial example of our methodology
using a Riccati feasibility problem. Section 4.5 extends the results presented in Section 4.3
for the more general multivariate case. Section 4.6 shows how simplifications rule can
be applied to improve the evaluation time of the numerical solver. Section 4.7 provides
numerical results of the NCSDP code implemented, comparing its performance with other

available SDP solvers, and analyzing its behavior through a variety of control problems.

4.2 Notation

This section presents the notation used throughout this chapter and some important
facts that will be needed. Although the presentation here is a bit redundant with the
notation presented in other chapters, this chapter is intended to be self-contained so that

it can be read independently of the other chapters.

4.2.1 Linear transformations on an Euclidean space

The n-dimensional Euclidean space, endowed with the usual dot product (z,y) = yTx,
is denoted by R". The standard basis of R™ is denoted by {ej,ea,..., e}, in which e; has 1
as ith component and 0’s elsewhere. The space of n X m real matrices is denoted by R"™*".
The space of n x n symmetric matrices with real entries is denoted by S™. In this space,
an ordering > can be define as: given two matrices A, B € S”, the order A > B means that
A — B is a positive semidefinite matrix, in the sense that the inner product ((A— B)z, x)
is nonnegative for any vector x € R™. This space is denoted by S . If strictly inequality is

used in the definition, we obtain the space S , of positive definite matrices.

The Kronecker product of two matrices A and B is denoted by A ® B. To define
the vec operation, let us associate the vector vec(X) € R™ with each matrix X € R™*™

by the rule
VeC(X) = [X117X21,. .. ,an,Xlg,. .. ,Xng,. .. ,le, v ,Xnm]T.

We provide two definitions for the inner product of two matrices A and B. The first
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definition is given by
<A,B> ="Tr {ABT} = ZAZ]BZ]
ij (4.2)
= vec(B)T vec(A) = (vec(A), vec(B)).

And the second definition, the symmetric case, is given by
(A, B)s := Tr {AB" + BA"} (4.3)
The corresponding induced norm, the Frobenius norm , is

X = V(X X). (4.4)

Let us define the canonical basis E = {E11, Eo1, ..., En1, F12, ..., Epn }, where each
E;j € R™™ denotes the matrix with 4, j entry 1 and all other entries 0. With this ordering,
E; means the fth component of the set E. When we refer to the matrix representation
of a linear transformation L : RP*? — R"™*™ we mean the representation relative to the

canonical basis F and E in RP*? and R™™ respectively.

L: RP*¢ _— RM*M

l vec l vec

M: RFE — R™
Figure 4.1: Isomorphism of the mapping X — vec(X).

With this notation, the matrix that represents a linear transformation L : RP*? —

R™ ™ is the matrix M € R™*P4  as illustrated by Figure 4.1, such that
Mvec(X) = vec(L(X)) (4.5)

for all X € RP*? (Lemma 4.3.2 in Horn and Johnson (1999)). This representation is unique
and depends solely on the map L. The existence and uniqueness is immediate from the fact
that any linear operator on a finite dimensional space has a unique matrix representation
relative to a given basis (Lemma 4.2.3). This can also be deduced from the fact that: (1)
the map vec : RP*9 — RP? is an isomorphism; (2) any linear transformation 7" : RP9 — R™™

has a unique matrix representation relative to a given basis.

Suppose that L : RP*X9 — R™ ™ ig a linear operator’, then the unique adjoint

operator L* : R™*™ — RP*? gatisfies

(LX), Y) = (X, L*(Y)) (4.6)

!The name operator, transformation and map are used interchangeably.
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for all X € RP*? and Y € R™™. A map L is said to be self-adjoint if L = L*. It will be
shown that a linear transformation L is self-adjoint if and only if the matrix M representing

L is real and symmetric.

An example of a self-adjoint operator L(X) is the map X — AXB + ATXBT .
R™*™ — R™ "™ for given A,B € R"* ™. The matrix representation for L is given by
M=DBT® A+ B® AT, where the symbol ® stands for the Kronecker product. It should
be emphasized that the map L(X) being self-adjoint does not necessarily imply that the

matrix? L(X) is symmetric for a given matrix X.

To prove that L(X) = AXB + AT XBT” is a self-adjoint operator, one needs to verify
that for any X,Y € R™ ", the adjoint relation (4.6) holds with L(X) = L*(X). This is

accomplished by the following manipulations:

(L(X),Y) =Tr {(AXB+ ATXB")Y"}
=Tr {X(BY"A+ BTY"A")}
=Tr {XL*(Y)"}
= (X, L*(Y)).

The adjoint map L*(Y) is therefore given by Y — AY B+ ATY BT from which one prompt-
ly concludes that L(X) = L*(X). Symmetry of the matrix representation M comes from
the fact that the Kronecker product (BT ® A)7 equals B® AT. Many properties of functions

on matrices can be found in Horn and Johnson (1999).

After this example, we should state and prove a simple but very useful result, Theo-
rem 4.2.1, which says that if L : RP*? — RP*Y is a self-adjoint linear transformation, then
its matrix representation M € RP9*P? is real and symmetric. This theorem is a particular
case of a more general result which holds for any self-adjoint linear transformation on finite-
dimensional inner-product® spaces. This is a standard result available in many textbooks
like MacLane and Birkhoff (1999) and Michel and Herget (1981).

Theorem 4.2.1 Let L : RP*Y — RP*? be q linear transformation. Then L is self-adjoint

if and only if its matriz representation M is real and symmetric.

Proof. Follows immediately from Proposition 4.2.2. [

*We do not use different symbols to distinguish a map L(X) from its matrix value L(X) for a given X,
as done in the previous chapter 3.

3 An inner-product space is sometimes called a pre-Hilbert space. If the space is also complete, then it
is said to be a Hilbert space.
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Proposition 4.2.2 Let E and E be canonical basis in RP*? qnd R™™ respectively. The
matrix representation (relative to E, E ) of each linear transformation

L :RP*T 5 Rx™
is the transpose of the matriz representation (relative to E‘, E) of its adjoint map

L*: R™*™M _, RPX4,
Proof. From Lemma 4.2.3, the matrix representation M of L given by M;; = (L(E;), E;)
satisfies Eq. (4.8). By an analogous argument, the matrix JV[, for the adjoint L*, is J\N/[ji =

(L*(EZ-),Ej>. Using the symmetry property of the inner product and the adjoint relation
(4.6), we obtain

My = (L*(Ey), Ej) = (Ej, L*(E;)) = (L(E;), Bi) = My,
Hence, M = J\N/[T, as asserted. [
Lemma 4.2.3 Let L : RP*? — R™™ be a linear transformation, and take E and E to
be canonical basis in RP*? and R™ "™ respectively. Then the matriz representation M of L

satisfies
Mvec(X) = vec(L(X)) (4.8)

for all X € RP*Y, and it is uniquely determined by
Mi; = (L(Ej), Ei).

Proof. For X € RP*? let {(;} be the coordinates that represent X relative to the basis
E ie, X =) ;G Ej. By linearity of the vec operator and of the map L, we have

vec(X) =) ¢jvec(E;) and  vec(L(X)) =) _ ¢;vec(L(E;)). (4.9)
J J

To find the matrix representation M, Eq. (4.8) must hold for all X € RP*?. Substituting
(4.9) in (4.8) gives
Mvec(X) = Vec(L(X))

Z(ﬂv[vec ZCJ vec(L

Z ¢j vec(E TM vec(E Z ¢jvec(E vec(L(Ej))
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vec

This choice of basis has the property that £; — e;. Thus, the above equations simplify to
>N = (3 ¢ vee(L(Ey)). vee(E) )
J J
= < > GLE), E2>
J

Hence M;; = (L(E;), E;) as asserted. ]

4.2.2 Noncommutative symmetric rational functions

That our goal is to use symbolic computation to compute the gradient and the Hessian
of the functions to be optimized, we abstract the notion of function on matrices to that of
function on variables which are symbolic noncommutative elements. The presentation here

is from Section 3.2.1 of Chapter 3.

What occurs in practice are functions F' which are polynomial or rational in non-
commutative variables (often referred to as indeterminate) with coefficient that are real
numbers. Noncommutative rational functions of X are polynomials in X and in in-

verses of polynomials in X. Examples of noncommutative symmetric functions are
3
F(A,B,X)=AX + X AT — ZXBBTX, X =XxT

F(A,D,X,Y)=XTAX + DYDT + Xy x7T, Y =Y7 and A=AT, (4.10)

and
F(A,D,E,X,Y)=AT(XDX + XTDXTYA+ E(XYXT + XxTY X)E", (4.11)

with Y = Y7 and D = DT.

It is also assumed that there is an involution on these rational functions which is
denoted by the superscript 7, and which will play the role of transpose later when we

substitute matrices for the indeterminate.

Often we should think of some indeterminates as knowns and other indeterminates
as unknowns and be concerned primarily about a function’s properties with respect to
unknowns. For example, in function (4.11) when we are mainly concerned about behavior
such as convexity of F'in X,Y we write F(A,D,E, X,Y) simply as F(X,Y). We call a
noncommutative function F(A, X) symmetric provided that F(A, X)T = F(A, X).
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First directional derivatives

The first directional derivative of a noncommutative rational function F(A,X)

with respect to X in the direction dx is defined in the usual way

DF(X)[3x] = lim % (F(X +tox) — F(X)) = % F(X + t5x)
t=0

For example, the first directional derivative of F/(X) in (4.10) with respect to X along the

direction dx is
DxF(X,Y)[0x] = 6% AX + XTAdx + oxY X' + XY 6%.

It is easy to check that derivatives of symmetric noncommutative rational functions always

have the form

k
DF(X)[0x] = sym {Z AiéxBi} . (4.12)

i=1
where the sym operator, defined as sym[M| = M + M T is used to make an expression

symmetric. As an example, the above derivative can be written in the form (4.12), by
defining £ = 1 and

Second directional derivatives

The second directional derivative of a noncommutative rational function is obtained

from the second order terms of a Taylor expansion of F'(X + tdx) about t =0 € R:
F(X 4+t6x) = F(X)+ DF(X)[6x]t + D*F(X)[6x,0x]t> + - -

Thus, the second directional derivative D2F(X)[0x,dx] of F(X) is defined by
2 d?
D*F(X)[0x,0x] = F(X 4+t
(X)[ox,0x] 72 (X +tox) o

An analogous more general expression holds for more variables. For example, the second

directional derivative of F/(X,Y) in (4.11) with respect to X along the direction 0 x is

D2F(X,Y)[0x,0x] = 2<AT(6XD6X + 08 DSTYA + E(6xY 6% + 5§Y5X)ET). (4.13)
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One can easily show that the second directional derivative of a symmetric noncommutative

rational function F'(X) with respect to one variable X in the direction d x has the form

D?*F(X)[0x,0x] =

w1 w2 w3
Sym ZMJ&XNJ&XTj + Z Mj5XTNj5ij + Z Mj5xNj5XTTj . (4.14)
Jj=1 J=1+4w: Jj=1+ws2
As an example, the second directional derivative given in (4.13) can be expressed in the

form (4.14) by defining wy = 1, we = 2, w3 = 3, and

M; =247, Ny=D, T,=A4
My =1/2E, Ny=Y, T, =ET
Ms=1/2E, N3=Y, Ty = ET

4.2.3 Equivalence between different notions of derivatives

We now provide very briefly some connections between different notions of derivatives.
For a more complete exposition and proof see Graves (1935); Hildebrandt and Graves (1927);
Luenberger (1969); Lusternik and Sobolev (1961); Ortega and Rheinboldt (2000).

The definition of the directional derivative of a noncommutative rational function
F(X) presented in the previous section did not assume any norm topology. However, in
the derivatives to be taken for the barrier, it will be assumed a topology provided by the
trace operator. Depending upon the choice of the inner product, one may have different
interpretations for the derivatives. To provide the definition for the gradient and the Hessian

map, we shall introduce the definitions of Gateauzr and Fréchet differentials.

Definition 4.2.4 (Gateaux differential) Let V and W be normed spaces. Let F(X) :
CcCV —W. If for some X in the interior of C, and dx € V, the limit

lim % [F(X + tox) — F(X)] = DF(X)[bx]

t—
exists, then F(X) is said to have a Gateaux differential at X in the direction § x, which
we denote by DF(X)[0x].

Definition 4.2.5 (Gateaux derivative) If the transformation DF(X)[0x]:V xV — W
exists for all 6x and is linear in 0x, then F(X) is said to be Gateauz-differentiable at X,
and the Gateaux derivative F'(X) satisfies

liny %HF(X Ftox) — F(X) — tF(X)dx H ~0.
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The map F'(X) is a linear operator from V to W, which depends, in general, on X. This
map is unique and it follows that DF(X)[0x] = F'(X)dx.

In the most general case, the Gateaux differential of F'(X) may exist at X for all

0x €V, and yet F(X) does not have a Gateaux derivative at X.

Definition 4.2.6 (Fréchet differential) Let F(X):C CV — W with V and W normed
spaces. Let X and dx be arbitrary elements in V. Then the map F(X) is Fréchet differ-
entiable at X in the interior of C, if there exists a map DF(X)[dx]:V XV — W which is

linear and continuous with respect to dx such that

lim LHF(X +0x) — F(X) — DF(X)[6x]|| = 0.

6x—0 [|0x||

This transformation can be written as DF(X)[dx] = F'(X)dx, where the linear operator
F'(X):V — W is the Fréchet derivative of F(X), which depends, in general, on X.

Remark 4.2.7 If the Fréchet differential exists, then the Gateaux differential exists, and

they are equal.

Remark 4.2.8 If the Gateauz differential exists for all X in an open neighborhood of a
point X° and if it is uniformly continuous in X and continuous in dx, then the Fréchet

differential exists in this neighborhood, and they are equal.

Remark 4.2.9 (Equivalence of the definitions) For the type of rational matriz valued
functions assumed in this thesis, any one of the above definitions of derivatives implies the

other one.

If the transformation DF(X)[dx] is a linear functional (in the direction dx), whose
range lies in W C R, then it follows from the Riesz representation theorem? that given any

inner product (,-), this functional can be represented as
DF(X)[6x] = (Q(X),0x), (4.15)

with Q(X) : V — V defined as the gradient map. FEvidently, this representation will

depend on the choice for the inner product.

4The Riesz representation theorem says that every continuous linear functional (similarly, every sesquilin-
ear form) on a Hilbert space can be represented in terms of an inner product (Kreyszig (1989); Reed and
Simon (2000)).
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Following similar ideas, we can also define the second derivative D2F(X)[6x,dx] of

the transformation F'(X):C C V — W as the limit
1
lim = [F'(X +téx) — F'(X)] = D*F(X)[6x,0x],

provided it exists. If the transformation D2F(X)[6x,dx]:V xV x V — W is a sesquilinear

form in dx, whose range lies in W C R, then from the Riesz representation theorem?, we

know that given any inner product (-,-) the map D?F(X)[0x,dx] can be represented as
D?F(X)[6x,0x] = (H(X,dx),0x), (4.16)

with H(X,0x) : V x V — V being the Hessian map, which is linear in the direction 0 x.

Evidently, this representation depends on the choice of the inner product.

Remark 4.2.10 Since ultimately one of the main concerns will be producing and solving
a linear system of equations of the “form” H(d0x) = Q for the update direction dx, the
dependence on X is usually omitted in the notation for the gradient Q and for the Hessian
map H(dx).

Lemma 4.2.11 Let F(X) : RP*? — S". Assume that the inner product (-,-) is the one
given in (4.2), then it follows that

D?F(X)[6x,0x] = (H(0x),0x) = vec(dx )T H vec(dx)

where H(dx) : RP*? — RP*Y js the Hessian map and H € RPY is the unique matriz repre-

sentation for H(dx).
Proof. It follows directly from (4.16) and (4.5) (or equivalently Lemma 4.2.3). (]

Corollary 4.2.12 An immediate consequence of the above Lemma 4.2.11 is: if
D?F(X)[0x,6x] >0 forall 6x,

then the Hessian matriz H is positive semidefinite. If strictly inequality is used, one finds

that H is a positive definite matriz.
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4.2.4 Preliminary results about the barrier function

This section presents some important facts concerning the log-det function. Let the
barrier function ©(X) be defined as:

O(X) =logdet F(X)™!: G - R, (4.17)
with the domain G given by
G={X€eV:FX)>0}

and F(X) a self-adjoint noncommutative rational function. Then its directional derivative,

along the direction dx € V, is the linear form in dx given by
DO(X)[6x] = —Tr {F(X)"'DF(X)[6x]} .
And its second directional derivative is the quadratic form in éx given by

_ 2
D6(X)[bx, ox] =Te { (F(X) "' DF(X)[ox])*} s
—Tr {F(X)'D*F(X)[6x,0x]} -
The proof is quite simple and follows by applying the definition of directional derivative

and the following result provided in Horn and Johnson (1999):

%log det A(t) = Tr {A(t)_lé (t)} :

In order to obtain the representation for the gradient and the Hessian map of the
barrier O(X), using the definitions introduced in the previous Section 4.2.3, we need to
specify an inner product. For this purpose, we take the inner product (-,-)s given in (4.3).

Thus the gradient Q is given by
DO(X)[ox] = (Q,0x)s = Tr {6xQ" +Qo% },
and the Hessian map H(dx) is obtained from

D?O(X)[0x,0x] = (H(dx),0x)s = Tr {6xH(0x)" + H(0x)o% } .

Obtaining the algebraic linear system of equation

The linear system of equations (which basically has the form H(dx) = Q) that will
provide the update direction dx is obtained by setting the directional derivative of a second-
order approximation of the barrier function ©(X) to zero:

0= D(DOX)[5x] + %DQQ(X)[cSX, 5x)) v, V. (4.19)
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Using the notation just introduced for the gradient Q and the Hessian H(dx ), the above

equation becomes
0= D(Tr {ox(1/2H(0x) - Q)T + (1/2H(6x) — Q)% } ) ov], Vo

Which, after taking the directional derivative along the direction dy-, reduces to

0= %ﬂ {ov (H(6x) — 2Q)7 + (H(6x) — 2Q)8{; + 6xH(dv)" + H(dy)d%x },  Voy.

Since the Hessian is a self-adjoint map, it follows that
Tr {6xH(6v)" } = (0x, H(dv)) = (H(dx),6v) = Tr {H(6x)8y }
And consequently the optimality condition reduces to,
0 ="Tr {6v(H(x) — Q)" + (H(6x) — Q) }, for all oy

Equivalently
0= <H(5x) - Q,(Sv>5, for all (5\/.

It is now clear that there are two “different” ways to produce the linear system of

equations, i.e., to determine the Hessian map H(dx ) and the gradient term Q:

1. One can take the directional derivatives of the Taylor expansion (4.19), and manipulate

the final formula to be expressed in the form
Tr {6y (H(6x) — Q)" + (H(x) — Q)éy } ,
determining in this way Q and H(dx).

2. Or, one can just determine Q and H(d x) respectively from the definitions provided in
(4.15) and (4.16).

In this chapter, we have determined Q and H(dx) directly by taking all the necessary

directional derivatives.

Convexity of the barrier

We now present another important fact concerning this barrier. Let the map F(X) :

RP*? — S™ be self-adjoint, and assume that the set

G ={X e RP*: F(X) > 0}
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is nonempty and bounded, then if the barrier
O(X) =logdet F(X)™': G —R
is real analytic and strictly convex for all X € G, it has a unique minimizer
Xg = arg;nin {6(X): X €G}.
We refer to this minimizer X¢ as the analytic center of the matrix inequality F(X) > 0.

Since the barrier ©(X) is the composition of the log-det function with a rational
matrix valued function F'(X), which is well defined on the domain G, it follows that the
barrier O(X) is real analytic (i.e., in each small region it has a convergent power series
expansion). It is easy to show that the barrier is convex if F'(X) is a concave function. To

see this, recall the expression for D20(X)[6x,dx] given in (4.18), and note that
Tr{(F(X)_lDF(X)[dx])Q} >0 forall Oy € Ryxg
and that (assuming F'(X) concave)
~Tr{F(X)"'D*F(X)[0x,0x]} >0  forall dx € Ryxq.

Thus
D*O(X)[6x,6x] >0  forall &y € Ryxy

Which from Corollary 4.2.12 implies that the Hessian matrix H of the barrier function

O(X) is a positive semidefinite matrix.

For the specific case where F'(X) is an LMI, having the representation F'(z) = Fy +
Yoty Fixg, with Fy € Sy, and F; € S, for i = 1,...,m, a necessary and sufficient condition
for the log-det barrier to be strictly convex is that the matrices F; be linearly independent
(Boyd et al. (1994)). However, for the more general case, where F(X) : RP*? — §" is
a matrix function, the characterization is more elaborate. Naturally, strictly convexity of
the barrier is equivalent to the Hessian map H(dx) being invertible. However, imposing
stronger assumptions on the function F'(X), such as being strictly concave on its domain
or its first directional derivative DF(X)[dx] being an invertible map, the barrier will be

strictly convex.

4.3 Convex Optimization over Matrix Functions

The numerical optimization solver for matrix functions is now presented. We shall
demonstrate our approach for two classes of problem: the eigenvalue minimization problem

and the more general inner product minimization problem.



105

In this section, the presentation is limited to the univariate case, which only considers
functions of a single variable. Later, in Section 4.5, the results are generalized to the

multivariate case, which considers functions of several variables.

4.3.1 The eigenvalue minimization problem

Let C be a bounded convex domain in RP*?. For each ¢« = 1,...,m, let the map

F;(X) : C — S™ be concave. Then, the eigenvalue optimization problem can be posed as:

find o, if one exists, such that
o =min{a: (X, a) € closure(G)}, (4.20)
where the feasibility set® G is the convex domain given by
G = {(X,a) €CxR:al —Fi(X)>0, B(X)>0,..., F(X)>0 }

In this setup, the maximum eigenvalue of F}(X) is minimized inside the convex region
provided by the set of matrix inequalities F;(X) > 0 for j = 2,...,m, as a function of a
single variable X. Section 4.5 expands the idea to the multivariate case, where the F; can

be functions of several variables X1, ..., X,.

4.3.2 The inner product minimization problem

We now pose a variation on the previous optimization problem. Let C be a bounded
convex domain in RP*?. For each i = 1,...,m, let the map F;(X) : C — S™ be concave.

Then, our main problem, the inner product minimization problem, can be posed as:

find t*, if one exists, such that
t* =min {Tr{X} : X € closure(G)}, (4.21)
where the feasibility set G is the convex domain given by
G= {XGC:FZ-(X) >0, i= 1m}

This type of problem incorporates the above eigenvalue minimization problem as a particular

case, where, instead of a univariate problem in X, we would have an optimization problem in

5The notation closure(G) means the closure of G.
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the unknowns X and a € R, and we also would have to redefine appropriately the constraint
Fi(a,X) :=al — F1(X); in addition, in place of Tr { X} we would have Tr{a} = a.

The inner product problem is solved using the method of centers presented in the

next Section 4.3.3.

4.3.3 Method of centers

The presentation here has its roots mainly in Boyd and El Ghaoui (1993). We present
the method of centers (also called Huard’s method of centers) and show how to use it in order
to solve the two problems stated above in (4.20) and (4.21). Other important references on
the method of centers are Huard (1967); Lieu and Huard (1965); Nesterov and Nemirovskii
(1994).

A more general formulation of the minimization problem

Let C be a bounded convex domain® in RP*9. Let the function f(X) : C — R be
convex, and for each i = 1,...,m the map F; : C — S™ be concave. Then, the constrained

optimization problem (COP) that we are interested in can be posed as:

find fOPt, if one exists, such that

fP* = min {f(X) : X € closure(G)}, (COP)
where the feasibility domain G is given by
G— {XGC:FZ-(X) >0, z:1m}

It is well known that, without the loss of generality, we can assume f(X) to be linear.
Since it is always possible to define a new cost function f(X,¢{) = £ and add the constraint
¢ — f(X) > 0 to the domain G.

The method of centers

The idea behind the method is to replace the above constrained problem (COP) by

a sequence of unconstrained conver minimization problems whose solutions eventually tend

5The set C imposes some regularity assumption on the set G. Actually one can relax this assumption and
let C be the entire Euclidean space, provided that the closure of {X : F;(X) >0, ¢ =1,...,m} is a compact
set.
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to the set of optimal solutions of (COP). This approach is in the context of interior penalty
methods, which was described in the classical monograph of Fiacco and McCormick (1990).

For a more practical presentation of optimization methods see Gill et al. (1999).

This sequence of unconstrained problems has to incorporate the inequality constraint
imposed by the functions F;(X) in the sense that its solutions have to always be feasible
interior points for (COP). In order to accomplish this, one needs to define a barrier function
for the feasibility domain G. This barrier function, denoted by ©(X), has to be a smooth
strongly” convex function such that ©(X) — oo for points converging to the boundary of

the set G. A usual barrier® is the one given by

O(X) =—) logdet F;(X):G — R.
i=1

With the barrier ©(X) defined in this way, the original problem (COP) could be

approximated by a family of unconstrained problems of the form
X*(7) = argmin {7(X) + 6(X) : X € G}, (4.22)

where v > 0 is a penalty parameter. Under some mild conditions, the solution X *() of
(4.22) approaches the set of optimal solutions of (COP) as v — oo. This technique belongs
to the well known class of barrier methods. The method we are interested in is not quite
yet this one, instead of the above parameterization, the method of centers is based on the

following family of unconstrained minimizations
min Y, (X) + 6(X),
with v > f(X), and the barrier function Y given by

Ty (X) =(log(1/(y - f(X)): Gy =R, (=1
(4.23)

G, ={Xeg: f(X)<n}.

It follows therefore, that the original constrained optimization problem (COP) can be ap-

proximated by a sequence of convex unconstrained optimization problems of the form

X*(y) = argmin {6, (X) : X € G}, (UOP)

"A function f(X ) is said to be strongly convex, provided there exists a constant k such that its Hessian
map H(dx) satisfies (H(dx),dx) > k|[0x || for all 5x.
8Section 4.2.4 presents some important properties about this function.
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with the unconstrained auxiliary potential function ¢, (X) given by

(X)) =Clog (1/(y — f(X ZlogdetF ): Gy — R, ¢>1.

The decrease of the parameter v has to be done in such a way that the method
maintains feasibility at each iteration and that the sequence {y*} is guaranteed to converge
to fOP' (the minimum values of the objective function). The formula for updating v, at

some iteration k, is given by
A= 1 —0)f(XF)+ 04, 0<O<1. (4.24)

Under mild hypotheses (see Section 4.2.4), for fixed v > f°P' the analytic center X*(vy) of
(UOP) is well defined and unique. It is evident that for a decreasing sequence of parameters
{+*} the corresponding sequence of minimizers {X*(v*)} form a path, the so called path of
center. It can be shown that this curve is analytic and has a limit as v — f°P'. Usually
the most desired result is the kh_)ngo X*(4%) — X°P, a solution of (COP). A weaker result,
but one that is frequently useful, is the kh_r)]go F(X*(v*)) — foP'. See Boyd and El Ghaoui
(1993); Fiacco and McCormick (1990).

Let X* denote X*(v*). Using these facts, one possible algorithm based on the method

of centers can be described by

Algorithm 4.3.1 Method of centers.
Fix 6 such that 0 < 0 < 1;

Choose feasible X? and 7 such that X" G0

k «— 0;

while not converged do
A (1= 0) F(XF) + 075,
Solve X*+1 = argmin {¢Wk+1(Xk) c Xk e Gt };
k—k+1;

end while

There are two important comments concerning this algorithm:

1. The bound v**! used in the determination of the analytic center of Gpr1 (X k), is

given by the formula

Y= (1= 0)f(X7) + 095,
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k+1

never produces infeasible starting points X* and **1, since

P — F(XF) = 0(+F — F(X)) >0,

and consequently f(X*) < 4**1 thereby satisfying the feasibility set G k41 given in
(4.23).

. Evidently, the expensive part of the algorithm is the inner loop, the part that computes

the analytic center using Newton’s method:
Xkl = argmin {@,Yk+1(Xk) D Gi= g.yk+1} .

This is the scope of Section 4.3.5. The book by Nesterov and Nemirovskii (1994)
provides a complete convergence analysis of Newton’s methods for a general class of

self-concordant barrier function. Another fundamental source is the classical mono-
graph of Ortega and Rheinboldt (2000).

From now on, we take the cost function f(X) to be Tr{X}. This leads to the

inner product minimization problem (4.21). For this cost function, and assuming that the

constraint F'(X) is linear in X, we give a simple proof of convergence. This proof is basically

a copy of the proof presented in Boyd et al. (1994) for the LMI case (a similar proof for LMIs

is also available in Colaneri et al. (1997)). First, let us characterize the analytic center, the

point X*(). For simplicity of exposition, assume that m = 1 and ¢ = 1 (the generalization

for m > 1 is immediate). The unconstrained potential function becomes:

6,(X) = log (1/(y — Tr {X}) — log det F(X).

The point X*(v) is characterized by setting the derivative of ¢,(X) to zero. Using the

derivatives given in Section 4.2.4 and Eq. (4.36), the optimality condition is given by

— T {F(X* () "' DF(X (1)) x]} + (v = Te {X* (1)) 7 Tr {6x} = 0, Vox.

To proceed, assume the kth iteration and substitute X*— X°Pt for §x in the above equation.

This gives

Tr {F(Xk)‘l <F(Xk) - F(Xopt))} - (% Ty {Xk}) Ty {X’f - Xopt} :

Since Tr { F(X*)~1F(X°P')} > 0, we conclude that

n > WM (Tr {Xk} - fopt> , (4.25)
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where n equals the dimension of the range of F/(X), and f°P' = Tr {X Opt}, which hold true
at the solution. From (4.24), it follows that

xRy = e X = (94— 098)/(1 - 0).

Replacing the expression for Tr {X k} in (4.25) yields

(,Yk—i-l B fopt> < Z—if (,Yk B fopt>7

which naturally is the result in Boyd et al. (1994). This last equation shows that the
method converges at least geometrically whenever F(X) is linear in X. Moreover, the
stopping criteria

Ak —Tr {Xk} <e€/n

guarantees (from (4.25)) that the solution is found within the precision € > 0 imposed by
the designer. Suggestions for improving the speed of this method are provided in Boyd
et al. (1994); Colaneri et al. (1997); Roubi (2001).

4.3.4 Feasibility problem

It will be necessary to find feasible starting points X° and +° to be used in the
algorithm 4.3.1. This is a feasibility problem that can be solved by the method of centers.

The idea is simple, and it suffices to solve the following convex minimization problem
o =min{a: (X, «) € closure(G)}, (FP)
where the feasibility set G is the convex domain given by
G = {(X,a) €CxR:F(X)+al, >0, z:lm}

with « being a scalar and each I,,, being the identity matrix of dimension n;.

To apply the method of centers to solve the above feasibility problem (FP), an initial
feasible guess has also to be provided, however, for this type of problem, this guess is trivially
obtained by choosing X to be any matrix in C and by setting 7° > o > max ||F;(X?)]|..
If the solution o is negative, then the corresponding minimizer X* has the Zproperty that
F;(X*) > 0 for each ¢ = 1,...,m. In practice, the algorithm can stop as soon as the
objective o is less than zero at some iteration k. However, if the scalar v* is positive for
all iterations, then the sequence {y*} converges to some scalar v* > 0, and consequently

the problem is infeasible and there is no X such that F;(X) >0 foralli=1,...,m.



111

Remark 4.3.2 An example of this technique is presented in Section 4.4, where the goal
s to find a feasible solution to the matriz Riccati inequality, that is, to find a symmetric
matriz X such that

AX + XAT —XRX +Q > 0.

This is a standard expression that appears frequently in many control applications.

4.3.5 Solving for the analytic center

The original convex optimization problem (COP) has now been replaced by a sequence
of unconstrained convex minimization problems of the form (UOP) for a decreasing sequence
of scalars {7} provided by formula (4.24). In other words, the problem reduces to finding
update directions which leads toward the central path for fixed values of «. To find those
directions, Newton’s method is applied by minimizing an approximation, the second-order
Taylor series expansion, of the potential function ¢ (X). In a vague sense, these procedures

can be summarized as follows:

1. Compute the second-order Taylor expansion of ¢~ (X + dx) in some direction dx
1
61(X) + Doy (X)[6x] + 5Dy (X)[dx, x]-

2. The Newton step 0% must satisfy the necessary optimality conditions for the following

quadratic minimization problem
8% € argmin <D¢W(X)[5X] + %DQ%(X)[(SX, 5X]> .
3. This first-order necessary optimality condition is algebraically given by
0= D[Do,(X)lbx] + 3 D6, (X)[ox,ox]| o], Vo (4.26)
4. Finally, find a Newton update 0% satisfying Eq. (4.26) for all dy.

Before presenting the main result of this chapter, Theorem 4.3.5, which concerns the
determination of the update direction as the solution of the algebraic condition (4.26), given

in step 3, some preliminary facts are now introduced.

Even though the goal is to determine the update direction dx for the general multi-

variate case, we first present the univariate case where the barrier

O(X) = —logdet F(X)
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depends on a single constraint F'(X). Later, Section 4.5 will show how to expand the idea
to handle multiple constraints F;(X), and the more general setup where each constraint
Fi(Xy,...,X,) can be a function of several variables X1,..., X,. Thus, the unconstrained

auxiliary potential function ¢.(X) is given by:

6,(X) = Clog (1/( — F(X)) — log det F(X),

where the map F(X) is concave, and f(X) : RP*? — R is the trace operator, f(X) =
Tr {X}. Later, in Section 4.4, we will provide the derivation for the eigenvalue minimization

problem, by means of a tutorial example.

Since we shall be taking derivatives of the potential function ¢~ (X) using symbolic
computation, the F(X) needs to be visualized as being a function on a symbolic unknown
X rather than on a matrix of given dimension. Thus, from now on, F(X) is a noncom-
mutative rational function of the unknown X. The same idea would extends accordingly
if F(Xq,...,X,) were a multivariate function on a tuple r of matrices Xy,...,X,. The
dependence of « in the notation is also suppressed, since -y is just a constant and does not

play any role in subsequent derivations. We also abbreviate F/(X)~! by just F~1.

To obtain the update direction dx, we have to take directional derivatives of the
potential ¢, (X), however, to simplify the exposition, it is useful to split this potential into

two parts: the cost term Y, (X) and the constraint term ©(X), given respectively by

Ty(X)=C(log(1/(y —Tr{X}), O(X) = —logdet F(X). (4.27)

Thus, let us first assume that the potential function contains only the constraint term
©(X) and is given by

d(X) = —logdet F(X). (4.28)

For this “simplified” potential, Lemma 4.3.3 below will provide the formulas for the update

direction dx. After proving Lemma 4.3.3, the next step will be to incorporate the cost

term Y, (X) into the potential function ¢(X), enabling us to prove a more general result,

Proposition 4.3.4.

Lemma 4.3.3 Let V be a subspace of RP*? and C be a convexr domain in V. Let the map

F(X):C — S™ be concave. Consider the following potential function

d(X) = —logdet F(X):G — R,
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where the feasibility domain G is given by
g:{XeCcV:F(X)>0}.

Then the update direction 0% toward the central path for the above potential satisfies the

following symbolically computable algebraic linear equation:
Tr {0y (H(0x) — Q)" + (H(6x) — Q)6 } =0, for all by €V, (4.29)
or equivalently
(H(0x) —Q),dv)s =0, for all oy €V,

where H(0x) is linear in 0x and Q is an independent term that does not contain dx.

Moreover, Q and H(dx) are given by

k
Q=) ATF(X)"'B,

1=1

and

Ed

k k k
E E T -1 -1 T E E Tro—1pRTT AT —11RT
=1 j=1 i=1 j=1

1
-5 Z NPOXM]F'T] + M FIT] 6% NJ

1
-3 Z N;SxT;F~'M; + N ox M F~'T]
Jj=14w1

RS -1 T —17T T
—5 > TiF'MjxN;+ M F7'T0xN;
j=1+w2
where the terms A, B, M, N, T are obtained from the first and second directional derivatives

of F(X) which have the form®

k
F(X)[6x] = sym {Z AiéxBi} , (4.30)

1=1

and
D*F(X)[0x,0x] =

w1 w2 w3
Sy ZM]’(;XN]'(SXT]'"F Z MjéXTNj(Sij-l- Z Mjfstj(SXTTj . (4.31)
Jj=1 J=1+w J=l+w2

Recall the expressions (4.12) and (4.14) in Section 4.2.2.
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Proof of Lemma 4.3.3

Proof. To start, let us consider the second-order Taylor expansion of ¢(X). To compute
the quadratic approximation of ¢(X), we take dx to be the update directions for X, so that

the series expansion of ¢(X) up to the second term is given by
1
P(X) + Do(X)[0x] + §D2¢(X)[5X, ox]+--

Now, we are ready to write down the requisites which will provide the update direction
toward the analytic centers. Recall that the Newton step 0% has to satisfy the first-order
necessary optimality conditions for the following quadratic minimization problem

1

§% € argmin (ng(X) [6x] + §D2¢(X)[6X,6X]> .

Which is equivalently described by the following algebraic equation
1
0= D(DPo(X)[ox] + 5 D*6(X)[ox, 0x])[ov],  Vov. (4.32)

Therefore, we will be taking directional derivatives along the direction dy of the potential

»(X) as a function of Jx. Recalling Section 4.2.4, the first directional derivative of
#(X) = —logdet F(X),
with respect to X along the direction §x has the linear form in §x given by
D¢(X)[6x] = —Tr {F'DF(X)[éx]}, (4.33)
and the second directional derivative has the quadratic form in §x given by

D2§(X)ox, 6x] =T { (F~ DF(X)[6x])° }
(4.34)
—Tr {F_1D2F(X)[5X75x]} .

In order to compute (4.32) let us apply separately the directional derivative in each

one of the terms:
D(Do(x)lox])ov] and  D(ZD6(X)lbx,dx]) ov].

Substituting the expressions given in (4.30) and (4.31) into (4.33) and (4.34), the first

directional derivative is given by

k
Do(X)[0x] = —Tr {F—l sym {Z AiéxBi}}

i=1

k
=—"Tr {sym {5)( ZB,-F_lAi}} ,
i=1
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and the second directional derivative is

D?¢p(X)[6x,0x] = Tr <F—1sym

E 2
AK;XBZ})
i=1

1
—Tr{ ! sym {Z M;éx N;joxT;j

= (4.35)

w2
> M;oxTN;oxT;
Jj=14w1

w3
—Trq FlsymQ > MoxN;ox"T;
Jj=14w2

Note that the direction dx appears linearly in D¢(X)[dx]| as already expected. Con-

sequently, it is clear that the independent term @Q will be provided from

k
D<D¢(X)[6X]> o] = — Tt {sym {5V 3 BZ-F_lAZ}}

i=1
=—Tr {6vQ" + Q5[ }.

Thus, the gradient term Q is given by
k
Q=> AfF'Bf.
i=1

Now, it remains to deal with the quadratic term D2?¢(X)[6x,dx]. Its directional
derivative, regarded as a function of d x, along the direction dy, will provide the Hessian map
H(dx ). Since the manipulation to obtain H(dx) is somewhat long and does not provide any
interesting insight, we present the final result here and provide the details of the derivation

in Appendix B.1.

Let us split the second directional derivative of the barrier (4.35) in four parts, Hy,
Ho, Hs, and Hy, so that the directional derivative in dy can be applied to each one of the

terms separately:

k 2
Hi(0x) = %Tr <F_lsym{ZA,-6XBi}> :
i=1

w1
Ha(dx) = —Trq F~ sym { Y " MoxN;oxTy o ¢,
j=1



116

w2
Hy(6x) = —Trq F'sym<{ > M;ox"NjoxTjp ¢,
Jj=14w1

ws
Hy(0x) = —Tr{ F~lsym Z M;5x N;ox™T;
Jj=14w2

After applying directional derivatives (see Appendix B.1), the first term H; provides

k k
Hi(6x) =2 ATF~'| Y Aj6xB; | F'Bf
i=1 j=1

k k
+2) ATF' | Y BIo%AT | 1B
i=1 j=1

the second term Hs provides

w1 w1
Ha(dx) =—» NFoxMIF'TF +3 MIF T oA NT

j=1 j=1
the third term Hg provides
w2 w2
Hs(0x)=— Y NioxTF7'M;j+ Y NloxM[F'1]
j:1+w1 j:1+w1

and the fourth term Hy provides

w3 w2
Hi(6x) = > T F'MsxN;+ > MJF'T[6xN]
Jj=14w2 Jj=14w2

The final term is

4
D <%D2¢(X)[5X7 5X]> [ov] = %ZDHi(éX)[(SV] = Tr {ovH(6x)" +H(5x)o( }

i=1

with
4

H(dx) = % > Hi(dx).
=1

Thus, the Hessian map H(dx ) is given by

k k k kK
H(ox)=>_ Y ATF'Aj5xBF'Bf +> > ATF'BI ok ATF~'B]
i=1j=1 i=1 j=1
1w1 TsT A gT pp—17T T p—=17T T 7T
=5 2N M FTUT + M T 6% N
j=1
1 S 1 T T 1T
—5 Y. NiOxTiFT'M;+ N ox M F~'T;
j:1+w1
1

w3
-1 T pn—1T T
—5 2. TF'MxNj+ M P 6xN;

Jj=14w2
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To complete the proof, just note that the optimality condition (4.32) can now be equivalently

written as
Tr {6y (H(6x) — Q)T + (H(dx) — Q)6i} =0, for all 5y € V,

with Q and H(dx) as given above. ]

Adding the term Y, (X) to the potential

The previous Lemma 4.3.3 did not account for the term
T5(X) == Clog (1/(y — Tr{X}).

However, the goal is to determine the update direction §x for the general unconstrained
auxiliary potential function ¢ (X) containing the term Y, (X). Thus, the potential is given
by

¢y (X) = Clog (1/(y = Tr{X}) — log det F'(X).

Since we have already taken all the necessary derivatives for the term
O(X) = —logdet F(X),

it now remains to determine the directional derivatives of the cost term Y. (X). Once those
derivatives are computed, the resulting expressions will be accordingly added to the expres-
sions for H(dx) and Q provided in Lemma 4.3.3. Thus, we proceed by taking directional

derivatives of T (X) along the direction dx. The first derivative is given by
DY (X)[ox] = ¢ (v = Tr {X})~" Tr {ox}, (4.36)

and the second by

1

S DY (X) 5, 0] = %g (v {x)) T {ox))

(4.37)

Now, to determine the expressions to be added to the terms H(dx) and Q, we must
consider (4.36) and (4.37) as a function of dx and take their directional derivatives along

the direction dy. Thus, for (4.36) we have
_ A 1 _
Cy-T{x) ' Tefdv} = Q=-5CO-Tr{X})7'L, (4.38)
and for (4.37), we have

Co-Te XN 2T {x} Tr () = Hx) = 3¢y~ T {X}) > Tr {5} 1. (439)
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Since we have just obtained the expressions Q and ]I:]I((S x ) which should be added to
the gradient term Q and the Hessian map H(dx ), the previous Lemma 4.3.3 can now be

generalized to Proposition 4.3.4.

Proposition 4.3.4 Let V be a subspace of RP*? and C be a convexr domain in V. Let the
map F(X) : C — S be concave. Consider the following unconstrained auxiliary potential

Sfunction
64(X) = Clog (1/(y = Tr {X})) ~ logdet F(X) : G, =R, (=1,
where the feasibility domains G and G., are respectively given by
g:{Xe(3cv:F(X)>o}, G, ={X€G:Tr{X}<n}.

Then the update direction 0% toward the central path for the above potential is the solution

of the following symbolically computable algebraic linear equation:
Tr {0y (H(dx) — Q)" + (H(0x) — Q)5{,} =0, for all 5y €V, (4.40)

or equivalently
(H(6x) — Q),0v)s =0, for all 6y €V,

where H(dx) is linear as regarded as a function of 0x, and Q is an independent term that
does not contain dx. Moreover, Q and H(dx) are given by

L -mxpT

k
Q=) ATF(X)'B! -
i=1

and

k k k k
H(ox)=>_ Y ATF'Aj5xB;F'Bf +> > ATF'BI ok ATF~'B]
i=1j=1 i=1 j=1
1 i Nj XM} F'T] + M F'T] 6% N}
9 j Ox M j J 7 Ox Yy
Jj=1

1 &
—5 >, NOXTFT'M;+ N oxM{F'T!

j:1+w1
1 &
-5 > T FTMisx Ny + M F T 5x NT
Jj=14w2
1 _
50y = T{X D) T {ox} 1,
where the terms A, B, M, N, T are obtained from the first and second directional derivatives
of F(X) as given by (4.30) and (4.31).
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Proof. Follows directly by adding (4.38) and (4.39) to the results provided in the previous

Lemma 4.3.3. -

In the next section, we shall eliminate the quantifier for all 4y, from the above algebraic
linear system (4.40), to produce an explicit conventional linear system of equations, which

0x must satisfy. This is the result provided in Theorem 4.3.5.

4.3.6 The Structure of the linear subproblem

An important feature inherited from the theory behind noncommutative rational func-
tions is that the Newton direction is obtained as the solution of a “matrix” algebraic linear

equation. Basically, this algebraic linear system of equations has the following structure:
N N
> AibxBi+ > Blox AT =Q,
i i

where the A’s and B’s are expressions obtained by collecting the terms on the left and on
the right side of the update direction dx that appear inside the Hessian map H(dx ), and Q,
an independent term which does not contain dx. (The entire Section 4.6 is devoted on the
issue of collecting terms on an expression.) Following the definitions given in Konstantinov
et al. (2000), the map

N N
Ox = Y AidxBi+ > Blox Al

has been defined as a Sylvester operator and the integer 2N has been defined as the

Sylvester index.

The result of Proposition 4.3.4, the algebraic linear equation (4.40), can be further
specialized depending upon the structure of the underlying subspace V; in other words, if
there is or is not some restriction imposed on X. For this purpose, let us define V* to be
the orthogonal complement of V. Moreover, just by appropriately defining variables A; and

B;, the Hessian map H(dx) from Proposition 4.3.4 can be expressed in the equivalent form

C1 co
H(dx) => AidxBi+ > A0%B;+CTr{x},

i=1 j=ci+1

where the integer c¢; is the Sylvester index associated with 0y, and the number ¢y — (¢1 + 1)
is the Sylvester index associated with (5;{. The term C is the cost term given by C =
1/2¢(y — Tr {X})~2I. Note that C is a scalar multiple of the identity matrix.

To be able to solve the linear system of equations (4.40) for §x, the structure of the
underlying subspace V must be specified. We describe three different situations that appear

frequently:
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1. The subspace V equals RP*9, so that the unknown X can be any matrix in RP*9,

Then the orthogonal complement of V' contains only the null vector, and
(H(0x) —Q),dy)s =0 forall oy €V = H(dx)—Q=0. (4.41)

Thus
c1 Cc2
ZAi(sti + Z Aj5§l3j +CTr {6X} = Q.

i=1 j=ci+1

2. The subspace V equals SP, so that the unknown X is restricted to being symmetric.

Therefore, the subspace V= is the set of all skew-symmetric matrices, and
(H(0x) — Q),dy)s =0 forall oy €V (4.42)

implies that
H(0x) + H(ox)" — (Q+ Q") =0.

Thus

c2
S BTx AT + Aidx B+ CTr {3} = Q + Q7.
=1

3. The unknown X is restricted to being a scalar multiple of the identity, that is, X = o[,

for some scalar o. Thus the orthogonal complement of V is given by
S ={X:0=(X,0D)} = {X : Tr {X} =0},
and consequently
(H(0x) —Q),dy)s =0 forall oy €V = Tr{H(éx)—Q}=0. (4.43)

Which can be equivalently written as
C2
Tr{ZAZBZ- +c} ox =Tr{Q}, éx eR.
i=1

Having thus expressed the structure of the underlying subspace V, the main result of

this chapter, Theorem 4.3.5 is now presented.

Theorem 4.3.5 Let )V be a subspace of RP*? and C be a convexr domain in V. Let the map

F(X):C — S be concave. Consider the following unconstrained auziliary potential function

64(X) = Clog (1/(y = Tr {X})) ~ logdet F(X) : G, =R, (>1,
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where the feasibility domains G and G, are respectively given by
g:{XeCcV:F(X)>0}, G, ={X€G:Tr{X}<n}.

Then, depending upon the structure of the underlying subspace V, the update direction 0%
toward the central path for the above potential is the solution of one of the following sym-

bolically computable algebraic linear equation:

1. The subspace V equals RP*?, so that the unknown X can be any matriz in RP*9:

c1 c2
Z'AZéXB’ + Z A](g;—B] +CTI‘ {5)(} = Q

i=1 j=c1+1

2. The subspace V equals SP, so that the unknown X 1is restricted to being symmetric:

Cc2
ST BTox AT + AidxB; + CTr {6x} = Q + Q.

i=1

3. The unknown X is restricted to being a scalar multiple of the identity, that is, X = ol

for some scalar o:

Tr{ZAZBZ-+C}5X =Tr{Q}, IxeR.

i=1
For this expressions, Q is the gradient term, which does not contain dx, given by

k
Q=> ATF'Bf - %4 (y—Tr{X})'I

i=1
The term C is the cost term given by C = 1/2¢(y — Tr{X})72I. And, by an appropriate
relabeling, the terms A; and B; are obtained from the Hessian map H(dx) presented in

Proposition 4.5.4.

Proof. Follows directly from Proposition 4.3.4 by expressing the linear system of equations

(4.40) according to the structure of the underlying subspace V given by (4.41)—(4.43). =

The above results provide the necessary conditions that the update § x must satisfy
in order to be a Newton direction toward the central path of the unconstrained auxiliary

potential function ¢~ (X).
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4.3.7 Solving the linear subproblem

An important question, which remains unanswered, is how any one of the above linear
system of equations can be solved efficiently. To address this issue, this section presents
a basic approach that uses the vec operation. By applying some properties of the vec
operation (see Horn and Johnson (1999)), it can be shown that any of the above algebraic

linear systems can be transformed into the equivalent vector form:
Hv =y, (4.44)

where H is the Hessian matrix, which by Corollary 4.3.7 is a symmetric matrix, g is the
gradient vector, and v is the vector of unknowns. Depending upon the restriction on X,

these parameters are given by one of the following cases:

1. The subspace V equals RP*4, then'®

c1 c2
H= ZBZT ® A; + Z Bl © A; | T 4 vec(C) vec(I)T and g = vec(Q),
i=1 j=c1+1

where I is a permutation matrix such that Il vec(dx) = vec(6%).

2. The subspace V equals SP, then'”

Cc2 ()
H=> Bl oA+> A @B +vec(C)vec(I)’  and  g=vec(Q+Q7).

i=1 i=1

3. The subspace V equals o1, for some scalar o, then

¢
}C:Tr{i:AiBi—l—C} and g="Tr{Q}.
i=1

The final equation (4.44) is now in the conventional vector form, and can be solved
by any conventional linear system solver. However, this “brute force” procedure does not
take advantage of the particular structure of H(dy). Naturally, after applying the vec
operation, the linear system (4.44) somehow contains this “nice” structure; however, from
the knowledge of the author, there is no known practical algorithm that can solve the linear

system (4.44) taking into account the structure of H(dx) for any arbitrary Sylvester index
N.

0The definition of inner product, given in Section 4.2, is used to obtain that

Tr{6x} = vec(I)” vec(dx).
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For the simpler case when N = 1, so that H(0x) = AéxB + BT6x AT, one has a
“Lyapunov” type of algebraic equation, for which there are many available numerical and
analytical results (see Golub and Loan (1983)). However, in the most general form where
the Sylvester index can be any number, there is no satisfactory numerical algorithm, or even
theoretical results, that can take advantage of the structure of the system. Some works in
this area are Konstantinov et al. (2000). Since most of the running time of the numerical
solver is spent on solving the algebraic linear system, a satisfactory theory and algorithm
would be valuable. We leave this major open area of work for others, although Section 4.6

describes some basics ways to improve speed.

It is important to show that the Hessian map H(dx) : V — V is self-adjoint. This

result is presented in the following Lemma 4.3.6.

Lemma 4.3.6 The Hessian map H(dx) : V — V, in Proposition 4.3.4, is a self-adjoint

operator.

Proof. To prove this Lemma, let us first recall the expression for the Hessian map given

by

k k
H(6x) =YY (ATFA))ox (B F ' B]) + (ATF'B])o% (ATFBT)
i=1 j=1

1wlTTT—lT Tp—1pTs T T
=5 2 N oM FTTE o+ M 6x TN
j=1

1 &
—5 > NJoxMFTT] + Niox TP~ M,
Jj=14w1
1 S T 1T T 1
—5 > MJFT'T{oxN] + T;F 7' M;oxN;
j=1+w2

The cost term CTr{dx} has been omitted from this expression, given that it is a scalar

multiple of identity.

The definition of an adjoint operator presented in Section 4.2 implies that for any

Y €V the adjoint map H*(dx ) must satisfy:

(H(dx),Y) = (0x, H*(Y))
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Thus, in order for the map H(dx) to be self-adjoint, one must show that H(dx) = H*(dx).

The manipulations are as follows:

k k
(H(ox),Y) =TeS [ >N (AT F'A)ox(B;F'B]) | YT
i=1 j=1

k k
S (AT P BSR(ATF- 1BT)) YT

i=1 j=1

J=1

1
— Tr Z

1w1 Ts Tasrl pp—17T Tr—17T s T T T
ﬁ{ 5 2 N ox M FTITE 4+ M FTIT 6 TN | Y

w2
> NIoxM]FT] + NjoxTyF'M; | v7
j:l+w1

1 S T p—1T T -1 T
~Ted |5 Do MFTTIoxN] + TiF ' MyoxN; | Y

j=1+U)2

k k
=Tr{dox > > (BiF 'BIYT(ATF~4;)
i=1 j=1

k k
ST d o (z S BE )Y (BFA)

i=1 j=1

w1
— %ﬁ {5X > T;FT'M;YN; + N;YT,F~' M }
j=1
1 —
—5Trqox | D M{FTTIYINT + TFTIMYTN;
j:1+w1
1 -
—5Trqox | Y NIYTMIFTT 4+ NyYTT R M,
j=1+U)2
=Tr {6xH*(Y)"}
= (6x, H*(Y))

Therefore
k
H*(Y) =Y > (ATF~'A;)Y(B;F'B]) + (AT F' Bl )YT(AT F~'B])
=1 j=1

1wlTTT—lT T —1pT~ T 7fT
— 5 2 NIYTMIFT'T] 4 M FITI YN
j=1
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w2

1

Ty T —17T -1
—5 2. NJYM{FIUTT 4 NyYT;F' M,
j=14w1
1 &
T p—1pTy NT -1
—5 2. MFTIYN] + T FTMY N,
Jj=14w2
and consequently H*(dx) = H(dx) as claimed. ]

An immediate consequence of the above Lemma 4.3.6 is the following Corollary 4.3.7
Corollary 4.3.7 The matriz representation H for the Hessian map H(dx) is symmetric.

Proof. Follows directly from the above Lemma 4.3.6 and from Theorem 4.2.1 on page 95.

4.3.8 An algorithm to solve the inner loop

The previous section has just presented the algebraic condition that the update di-
rection should satisfy in order to be a Newton direction toward the analytic center of the
unconstrained auxiliary potential function ¢~ (X). Thus, this section presents an algorithm

based on a modified Newton’s method which solves the analytic center:
X*+1 — argmin {m(x’f) L Xk e gw}

for fix scalar . This algorithm is described by the following steps:

Algorithm 4.3.8 Modified Newton’s method.
Let v* denote the update v¥ = vec(dyx);

Fix 7. Let X° € G,;
Fix N; k « 0;
while k£ < N and not converged do
Evaluate ¢* and 3*;
Compute v¥ such that H*vF = g*;
Xk XF 4 Py
by choosing ¥ such that F(X**1) > 0;

end while

The step length o is chosen such that F(X**1) > 0. We mention a few choices for o.

In the convex programming context, Nesterov and Nemirovskii (1994) provided a formula
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which always gives feasible steps. Defining 7 = /g2 H~1g, their step length o is given by

0:{ 1/(147) ,ifr>1/4

(4.45)
1 ,otherwise

For the LMI context, the work by Boyd et al. (1994) suggested that an exact line
search produces faster convergence of the method of centers. However, Colaneri et al.
(1997) provided a sub-optimal line search, which is computationally cheaper than the exact

line search. This suboptimal line search o is given by the following formula
= Anaz |[F@) 2 (F () = P(0))F(2)""/2]

o =1/(1+p)

(4.46)

Once the line search has been selected, the stopping criteria is given by 7 < €7 or

1 < €9, for some small enough positive scalars €y, €.

4.4 A Feasibility Example: Riccati Inequality

This section provides a tutorial presentation of the proposed methodology applied to
the problem of finding feasible solutions to the matrix Riccati inequality. Let us consider

the mapping Ric(X) : S" — S™ given by
X 5> AX + XAT - XRX +Q

with R € S} and ) € S". This expression is present in many control applications, and it is
known as the Riccati equation. To cite a few examples, it appears in the: Linear Quadratic
Regulator (LQR), H, central controller, output covariance controller, Kalman filtering,
and many others. See Boyd et al. (1994); Colaneri et al. (1997); Skelton et al. (1998); Zhou
et al. (1996). The book by Lancaster and Rodman (1995) is a good source on the properties

of the algebraic Riccati equation and its solutions.
One standard problem that appears frequently, is the one of finding feasible solutions
to the matrix Riccati inequality, that is,

find X such that Ric(X) >0 (4.47)

This is a convex problem. The easiest way to see this, is by restating the problem using the

Schur complement in the equivalent LMI form:

AX + X AT XR
find X such that * N T >0 (4.48)
RX I
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with R being the Cholesky factorization of R. There are many numerical algorithms avail-
able to solve LMIs. Most implementations are based on the Semidefinite Programming,
SDP, machinery. See Gahinet et al. (1995); Sturm (1999); Vandenberghe and Balakrishnan
(1997); Vandenberghe and Boyd (1995) and references therein. In the literature, one can
find specific implementations which are, in practice, very efficient, to deal with Riccati’s.

Thus, we do not claim that our code is efficient for this specific class of problem

4.4.1 Solving the feasibility problem

We now attempt to solve the feasibility problem (4.47) in its natural setup: find
matrix X such that Ric(X) > 0. For this purpose let us assume that set

R ={X : Ric(X) > 0}

is nonempty and bounded, or equivalently, the spectrum of Ric(X) is bounded!! on the set
R. This fact enforces the property that the larger set G, given in (4.50), is bounded for
fixed value of a. It is evident that to compute a solution to the feasibility problem (4.47),

it suffices to solve the following convex minimization problem
o =min{a: (X, a) € closure(G)} (4.49)
where the feasibility set G is the convex domain given by

Gg={(X,a): F(X,a) >0}
(4.50)
F(X,a)=AX + XAT - XRX +Q +al

As stated above, the idea is to maximize the minimum eigenvalue of the Ric(X) operator.
This type of optimization is a special case of the problem of minimizing the maximum gen-
eralized eigenvalue of symmetric definite pencils (Boyd and El Ghaoui (1993); Nesterov and
Nemirovskii (1994); Overton (1988)). The article by Helton and Merino (1997, 1998) pro-
vides second-order optimality conditions for minimizing the largest eigenvalue of nonlinear

matrix inequalities.

To use the method of centers to solve the optimization problem given in (4.49), an
initial feasible guess is needed. This is trivially obtained by choosing X° to be any ma-
trix in S” and by setting a® > || Ric(X?)||2. A few comments are in order now: (1) the

optimum «* is bounded from below, since Ric(X) is bounded; (2) for fix scalar 7, the

"The spectrum of Ric(X) is bounded whenever R € St .. It is always possible to impose convex con-
straints on X to guarantee boundedness, for example, X? < oI for o > 0.
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set {(X,a) € G:a <~} is bounded; (3) the minimization problem (4.49) may not have a
unique solution, in the sense that, for the attained bound «*, which is unique, there may
exist many minimizers X* such that (X*, a*) € closure(G). However, if such solution o*
is negative, then any corresponding minimizer X* has the property that Ric(X*) > 0. An
algorithm to detect feasibility, should stop in practice, as soon as the objective a is less

than zero at some iteration k.

4.4.2 Describing the central path

In order to implement an algorithm to solve the feasibility problem (4.49), using the
method of centers, one needs to be able to compute Newton steps toward the analytic
center of some conveniently chosen potential function. For this purpose, let us define the
unconstrained auxiliary potential function ¢~ (X, ) as described in Theorem 4.3.5 from

Section 4.3.5 (with Tr {X} replaced by «). Thus, the potential ¢.(X,«) is given by
6(X,0) = Clog(1/(y — a)) — logdet F(X, a) : G, — R (451)
where
Gy = {(X,0)€G:a<n}

The parameter ( is taken to be ¢ = n (see comments on Section 2.4.3 of Boyd et al. (1994)).
The analytic center for the potential ¢, (X, «) is the path given by

(X*(7%), a* (%)) = argmin {$.x (X, 0) : (X, ) € G} (4.52)

Solving for the analytic center

The optimization problem (4.49) has now been replaced by a sequence of uncon-
strained minimization problems in the form (4.52) for a decreasing sequence of scalars {y*}
provided by formula (4.24) from Section 4.3.3. In this way, we are interested in finding
update directions which lead toward to the central path of (4.52). To find those directions,
Newton’s method is applied to minimize an approximation (the second-order Taylor series
expansion) of the potential function ¢(X,«). In a vague sense, these procedures can be

summarized as follow:

1. Compute the second-order Taylor expansion of ¢ (X, ) in some direction 6 = (dx, dq)

6. (X, ) + D (X, a)[5] + %DQ%(X, &)[6. 4]
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2. The Newton step 0* = (d%, ;) satisfies the necessary optimality conditions for the

following quadratic minimization problem

d* € argmin <D<Z>V(X, a)[d] + %D2¢V(X, a)lé, 5])

3. This first-order necessary optimality condition is algebraically given by

0= D(Do,(X.0)l5] + 1D%, (X.0)[5.8]) ], V. .
0= D(D%(X, a)[] + %DZm(X, a)[s, 5]) 6], Vs, '

4. Finally, find a Newton update 6* = (6%, ;) satisfying (4.53) for all dy,, dv,.

We shall go through each step precisely. For clarity of notation, let us omit the
subscript 7 in ¢ (X, «). So, to compute the quadratic approximation of ¢(X, a), we take 6 x
and J,, to be the update directions for X and « respectively. Thus, assuming X* = X +0x

and o = a + J,, the series expansion of ¢(X, ) up to the second term is given by

H(X",0%) = 6(X, a) + DS(X, )[dx] + 5 D*6(X, 0)[éx. bx]

+ D‘b(Xv a)[(SOc] + %D2¢(X7 a) [5017 501] + D2 ¢(X7 a) [5X7 5&] +- (4'54)

Directional derivatives of F(X, a)

In order to compute the derivatives in Eq. (4.54), we need to have at hand the first
and second directional derivatives of F'(X, ). Recalling that X is symmetric, and therefore
so is the update direction dx, the first directional derivative of F(X, a) in the direction ¢ x

is given by

DF(X,a)[0x] = (A— XR)éx + 6x (AT — RX)
=sym{(A—- XR)ox}

and the second directional derivative is
DzF(X, a)[(S)(,(sx] = —Ssym {(5)(R(Sx}
For the direction d,, the first and second directional derivatives are easily found to be

DF(X,a)[0a) = 0o 1 and  D2F(X,)[04,04] =0
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Having the above derivatives available, we are ready to take the directional derivatives
needed by (4.54). However, to clarify the exposition, by identifying the contributions of each
term in the expressions for the derivatives, the potential function ¢(X,«) is split term by

term as:
$1(X,a) = —logdet F(X, ) and d2(X, ) = —nlog(y — a)

We also abbreviate F(X, «) to just F.

Directional derivatives of ¢;(X,a) = —logdet F(X, a)

The first and second directional derivative of ¢1(X, «) in the direction dx are given

by
Dé1(X,a)[0x] = —Tr {F'DF[5x]}
= —Tr{F 'sym{(4A - XR)éx}}
D%61(X, a)[dx,0x] = Tr {(F—IDF[éx])2} — Tr {F'D2F[6x,6x]}
Ty { (P~ sym {(A -~ XR)éx) )2}
+ Tr {F'sym {6xRox}}

The second directional derivative of ¢1(X, «) taken first in the direction dx and after in the

direction da is given by

D? 61(X, a)[dx, da] = Tr { F~H(DF[3.])F ' (DF[5x])}
= Tr {F~'6,F " sym {(A - XR)ox}}
—D? gbl(X, a) [5a, 5)(]

Finally the first and second directional derivatives of ¢1(X, «) along 4, are

Dé1(X,a)[0a] = — Tr {F~'6a} and  D?¢1(X,a)[0a, 0] = Tr {F %50}

Directional derivatives ¢5(X,a) = —nlog(y — «)

We need to find the directional derivatives of ¢2(X, ) relative to dx and da. For dx

we have

D¢2(X7a)[5X] =0 and D2¢2(X7O‘)[6X76X] =0
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and for ., we have

Déo(X, 0)[6] = Tr { (v%a)l}

and

5o’
2 =Tr{ ——
D%¢5(X,0)[ba, 6] = T {(7_ a)21}

The second derivative of ¢o(X, «) taken first in the direction dx and after in the direction

do (and vice-versa) is given by

D2%¢y(X,a)[0x,0a] = 0 = D?p2(X, )[04, Ox]

Optimality conditions

Now we are ready to write down the optimality conditions which will provide the
update direction. These conditions are the first-order necessary optimality conditions for
problem (4.52), obtained by taking directional derivatives of the Taylor expansion ¢(X +
dx,a + d4), given by Eq. (4.54), as a function of dx and 4, in the directions dy, and dy,

respectively.

Let us define 6x, = dx and dx, = d,. Then, from the directional derivatives just

computed, the expression for the second-order approximation

2 2 2
¢ =Y D¢(X,a)dx,] +%ZZD2 o(X,a)[dx,, dx,] (4.55)
i=1 i=1 j=1
becomes
¢ = 61(0x) + $2(5x,0a) + ¢3(Ja)
with

(251((5)() =—Tr {F_l sym{(A — XR)(S)(}}
1

+ §Tr{(F_1 sym{(A—XR)5X}>2}

+ % TI“{F_l Sym{(S)(R(Sx}}

$2(0x,00) = Tr {F 16, F ' sym {(A — XR)dx}}

- Sa 1 5o
@30 :Tr{il}—F—Tr{iI}
Col =T = T2 e —ap
Since there are two independent variables dx and d,, we have to set to zero the

directional derivative of Eq. (4.54), first as a function of §x in the direction dy;, and second

as a function of J, in the direction dys.
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Optimality conditions along the direction 0x

To accomplish the first step, we should compute
1
D <D¢(X, )[0x] + 5D2<;5(X, a)[0x,0x] +D*¢(X, a)[dx, 5a]> [61,] =0 (4.56)

That is, we should set to zero the directional derivative of (4.55) as a function of 6 x along

the direction dy; :

D<<Z~51(5X) + ¢ (dx, 5a)> [6v,] =0

To compute this expression, let us expand the terms <;~51(5 x) and b9 (0x,0q). The term

¢1(0x) becomes

¢1(0x) = =T {F_l ((A — XR)dx +dx(A - XR)T> }
+ %Tr{F‘l(A — XR)6xF~Y(A - XR)dx

+ F YA - XR)0oxF 10x(A— XR)T + 6xRéx
+0xRéx + FYox(A— XR)TF YA - XR)x

+ F1x(A - XR)TF15x(A - XR)T}
and the term <;~52(5 X, 0q) becomes

d2(0x,00) = Tr {F_léaF_l <(A — XR)ox +0x (A - XR)T> }

It remains to compute the expressions for D1 (8x)[0v,] and Dy(dx)[0v,]. After a

few manipulations, the term D¢y (8x)[dv;] is given by
Do1(6x)[0w] = Tr{évl (F‘lcSX(A —XRIFY(A-XR)-FY(A-XR)
- %RcSXF‘l + %F‘lcSXR + F Y A—XR)oxF (A - XR)>
- ((A ~ XRTFYA-XR)oxF + %F‘HSXR + %RéXF_l
— (A= XR)TF '+ (A-XR)TF '5x(A—- XR)TF_1>6V1}
and the term D¢y (dx)[0v;] is given by

Do(5x)[0v;] = Tr {5V1 (F‘léaF_l(A — XR)> + ((A — XR)TF_lcSaF_1>5V1}
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Therefore, the algebraic linear system of equations given by (4.56) becomes:

Tr {5\/1 Hl 5)(, ) Ql) (Hl(éx, ) Ql)é\/l} =0 (457)
with Hj (0x,d,) and Qq given by
Qi = (A- XR)TF!

H; (0x,00) = Hi1(dx) + Hi2(0a)

1 1
= 5F—15XR + 5RéxF—l +(A—XR)TF Y A—- XR)oxF!

+ (A= XR)TFx(A-XR)TF '+ (A- XR)TF 5, F!

Since the unknown X is restricted to being symmetric (so is dx) the subspace V; equals
S. Consequently, its orthogonal complement Vll is the set of all skew symmetric matrices.

Therefore,

<(H1(6X7 ) Ql) 5V1>s =0 — H1(6X76 ) +H1(6X7 ) (Ql +QT)
Thus, we obtain the following linear system in dx and J,
Q1 + Qf = Hi1(6x) + Hi2(0a)

sym {F~(A— XR)} = sym {F—15XR FEOX(A-XRTFTA-XR) o

1A~ XR)sx F~1(A - XR)}
+sym {F 16, F 1 (A— XR)}
Optimality conditions along the direction J,

Now we should follow a similar procedure for the direction d,. We begin by taking
directional derivatives of the second-order expansion of ¢(X, «) given by (4.54) as a function

of J, in the direction dys,:

1
D <D¢(X, @) [6a] + 5D2<;5(X, &) [0, 0] + D2 (X, a)[0x, 5a]> [01,] = 0
Which, after some manipulations, becomes

Ty {5\/2 Hg 5)(, ) Qg) (Hg(éx, ) Qg)évz} = 0 (459)
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with Hy(dx,d,) and Qg given by

=3 (F - 5 y)

Hs(dx,0q) = Ha1(dx ) + Ha2(dq)

1 1
=F YUx(A-XRTF '+ (F?+ ——T)6
X( ) + 5 + (7 _ a)2 o
In contrast to the previous case, it should be recognized that Eq. (4.59) does not
necessarily imply that the relation Hs + Hg — (Q2 + Q2T) = 0 holds true, since dy, is not
free to be all matrices in S™. In this case, the unknown « (and d,) is a scalar multiple of
the identity. If 5‘%2 is defined as the orthogonal complement of the space of all the matrices

having the form dy, = oI, for some scalar o, then
5y, = {X : (X,0l) =0} = {X : Tr {X} = 0}

Consequently what holds is that Eq. (4.59) implies Tr {Hg +HT — (Qq + Qg)} = 0. Thus,

we have the following linear system in dx and d,

Tr{Q2 + Q3 } = Tr {Hx (0x)} + Tr {Hz2(00)}

Tr {F—l ne i a)l} = Tr {sym {F (A - XR)6xF'}} (4.60)
Ty { (F—2 + ﬁ[)&a}

The algebraic linear system of equations

As expected, we have just obtained two equations, (4.58) and (4.60), in two unknowns
6x and da. Therefore, to find the Newton directions dx and d,, we need to simultaneously

solve the linear system of equations:

Hy1(0x) + Hi2(ds) = Q1 + QF

(4.61)
Tr {Ho1 (6x)} + Tr {Haz(64)} = Tr {Q2 + QF }

To solve this system, we need to apply the vec operation, transforming the matrix repre-

sentation (4.61) into the equivalent vector form:

Ho=gyg
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Before applying the vec operation to the first equation Hy; (6x) +Hia(d) = Q1 +Q7,

let us rewrite this equation using a suitable choice of variables A and B as:

4
sym {Z (Aill‘SXB’il) } +sym {Ajy da Bia} = Qi +QF (4.62)
i=1

where

Al = FYA-XR) B, = F1(A—- XR)

Al =F7! B} =(A-XRTF1(A-XR)

|
A = S ! B} =R
J

A%l =R Bll = §F 1

Ay =F Bly = F '(A- XR)
and

Qi=A-XRTF!

Applying the vec operation to both sides of (4.62), gives

4
Z ( ® All + All & (811) ) VeC((SX)
=1
- (<Bi2>T @ Aly + Aly @ (Bl)T ) vee(D)da = veo(@ +Qf)  (463)
In a similar way, the second equation

Tr {Hoi (6x)} + Tr {Hoo(d0)} = Tr {Qo + QF'}

can be equivalently written as

2
Tr { (BYASy + (A3)T(BY)T) ox ) + Tr {Z (,432 b 332)} =Tr{Q:+QF} (4.64)

=1
with
V= (A—XR) Bl = F~!
Ap=F! By =F"
1 1
A2, = I B2, = I
27 (v—a) 2 (1-a)
and
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Recalling the inner product rule given in (4.2), the above equation (4.64) becomes

2
vec(Byy Ay + (As) T (Bgy)")T vee(6x) + Tr {Z ( Z2215’32) } 0o = Tr{Q2 + Q2} (4.65)
i=1
The final equations (4.63) and (4.65) are now easily represented in the vector form

Hv=yg

where H is the Hessian matrix, g is the gradient vector, and v is the vector of unknowns.

These parameters are given by
Hii Hio vec(dx) vece(Qq + Qip)
H= , v = , and g= -
Hor  Hoo da Tr{Q. + Qf}

4
Hop =) ((Bﬁ)T ® Ajy + A} ® (Bil)T)

1=1

with

—(A-XR)TF 1o F Y A-XR) +F'A-XR) ®(A-XR)TF!
+F1'9R+RF '+ F 19 (A~ XR)TF (A~ XR)
+(A-XRIFYA-XR) @ F!

Hiz = [(Bly)" @ Aly + Aly ® (By)"] vec(I)
=[(A-XR)TF'oF '+ F'®(A-XR)TF]vec(I)

%21 = VeC(B;lAél + (Aél)T(Bél)T)T
= vec (F72(A— XR) + (A~ XR)"F2)"
= 3],

Hag = Tr {22: ( 32852)} =Tr {F‘Q + ﬁ[}
=1

The above Hessian matrix H is symmetric. This follows from Theorem 4.2.1, by
noting that Hi2(dy) is the adjoint map of Hoy(dx), and that Hyq(dx) and Hao(d,) are

self-adjoint maps.

4.4.3 A feasibility algorithm using the method of centers

This section introduces an algorithm that can be used to solve the feasibility problem

just presented.
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Algorithm 4.4.1 Feasibility algorithm using the method of centers.
Fix 0 such that 0 < 0 < 1;

Choose feasible XY, o, and 7° such that (X°,a%) € G,0;

k «— 0;

while 7* > 0 and not converged do
AL (1= g)ak 1 B,
Solve (X*1 o*1) = argmin {¢. v (X, @) : (XF,0F) € G ria };
k—Fk+1;

end while

To find a feasible starting point (X, a®,~4%), it suffices to choose a symmetric matrix
X9 (as e.g. X0 =1) and to set 4° > a® > || Ric(X?)||. Note that the parameter v*, given
by v*t1 = (1 — 0)a® + 6%, never produces infeasibility, since

AR ok — 9(’Yk _ ak) >0
Thus, the arguments X%, o ~**1 are always feasible starting points for the next iterate. If
at some iteration k the scalar ¥ is negative, then the problem is feasible and the respective
X* is such that Ric(X k) > 0. However, if the scalar v* is positive for all k, then the

sequence {7*} converges to some scalar v* > 0, and consequently the problem is infeasible
and there is no X such that Ric(X) > 0.

Describing the inner loop

This section describes an algorithm based on a modified Newton’s method, which

solves the analytic center:
(XFHL ofty = argmin{gb,y(Xk,ak) (xR M) e g,y}

for fix scalar . This algorithm can be described by the following steps:
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Algorithm 4.4.2 Modified Newton’s method.
Let v¥ denote the update (v*)T = (vec(6xx)”, d.1)7;
Fix 7. Assume (X%, a%) € G;
Fix N; k « 0;
while £ < N and not converged do

Evaluate g* and H*;

Compute v* such that HFoF = ¢F;

(XFEHL b+ 1) (XF ok) + R (8, Oon)

by choosing o* such that F(X 1 o*+1) > 0;

end while

A few choices for the step length o were presented in the previous Section 4.3.8. We
will not discuss which one is more efficient. In order to run this feasibility problem as a
tutorial, we use the formula provided in Nesterov and Nemirovskii (1994). Thus, the step

length o is given by

(4.66)

_{ 1/(1+7) ,ifr>1/4

1 , otherwise

with 7 = /gTH~1g. The stopping criteria is thus given by 7 < €, for some small enough

positive scalar e.

4.4.4 Numerical results for the feasibility problem

This section presents the numerical results for the Riccati feasibility problem (4.49),

using algorithm 4.4.1 and algorithm 4.4.2. The problem!'? is:

find o = min « subject to

AX + XAT —XRX+Q+al >0
X >0.

If o* is negative, then the Riccati inequality is feasible and a symmetric matrix X > 0

exists such that
Ric(X) := AX + XAT — XRX +Q > 0.

12 A copy of the Matlab code used to solve this problem is provided in Section C.1. This code is very simple
and is mainly intended to illustrate the proposed methodology. The major code NCSDP implemented by
the author to solve the experiments in this thesis is not provided, since it would take excessively many pages.
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However, the feasibility problem as presented in (4.49) did not impose the constraint that
X should be a positive definite matrix; in many control applications, this is required. Thus,
we now demonstrate how to incorporate the constraint X > 0 into the formulation. This is
accomplished!'® with no great difficulty by adding the barrier ©3(X) = —logdet X to the
unconstrained auxiliary potential function ¢~ (X, a). The directional derivatives of ©3(X)

along the direction dx are given by
D@g(X)[(Sx] =—Tr {X_lfsx}

and
%D293(X)[6X,6X] = %Tr {(Xx71ox)*}.

Thus, we only need to modify (4.61) by adding the term %X ~1 to the gradient map Q; and
the term %X‘léxX_l to the map Hy;(dx).

Trade-off between inner and outer iterations

For this first numerical experiment, the Riccati feasibility code is executed using four

different values of the centralization parameter 6 given by
0= 1001, 0.1, 0.3, 0.6].

The matrices used in this experiment are given by

—0.3508 —1.1081 0.7508 1.5696 —0.2331 0.0688
A=108920 —0.0259 0.5001 |, R=1-0.2331 02617 —0.0276] ,
1.5782 —1.1106 —0.5172 0.0688 —0.0276  0.5717

—1.4228 0.1976 —0.1470
Q= 101976 —1.6930 1.1355
—0.1470 1.1355  1.3836

Table 4.1 presents the result for # = 0.01, Table 4.2 for § = 0.3, and finally Table 4.3
for 8 = 0.6. The results are presented with six digits of accuracy. Figure 4.2 shows the
results for all the values of the parameter 6. In these tables, the first column, Iter, shows
the total number of iterations required to achieve the global minimum within an accuracy
of 107°, i.e., The code stops when the error on the upper bound  between two successive

iterations, Y**1 —~*  is less than 107°. The second column, NeNe, shows the total number

13The constraint X > 0 is included in the feasibility code presented in Section C.1.
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of Newton steps required to compute the analytic center using Nesterov-Nemirosvky step
length, within an accuracy of 1072, The third column shows the value of the imposed upper
bound ~ for the specific iteration, and the last column presents the value of « attained at

the end of the current iteration.

Iter  NeNe vy o' Iter NeNe 0 «

1 21 5.703920 3.847762 1 11 5.993920 4.018843

2 17 3.866323  2.775534 5 7 2452164  1.975021

5 17 1.822595  1.635819 10 6 1569275  1.509191

10 16 1467689  1.463884 15 6 1.469455  1.464607

15 16 1461376  1.461333 20 6 1461847  1.461521

17 16 1461316  1.461309 2% 6 1461325  1.461312

18 16 1461309  1.461306 27 6 1461316  1.461309
Table 4.1: 6 = 0.01 Table 4.2: 6 = 0.3

Iter  NeNe vy «

1 9 6203920 4196176 | || o

5 5 3.680773  2.668827 s 1

10 4 2.247156  1.862534 o

20 4 1535658 1.493563

25 4 1481364  1.469567 o

30 4 1466495  1.463398

35 4 1462627 1461707 |

48 4 1461341 1461319 ..

49 4 1461332 1.461315 Iteration

Table 4.3: 8 — 0.6 Figure 4.2: Influence of the parameter

6 on the method of centers

The initial feasible guess for this experiment was X° = I, a® = || Ric(X?)| + 1,
and 70 = o 4 1. For all the four centralization parameter 6, the solution converged to
v = 1.4613. Given that this is a positive number, the problem is infeasible and there is no
X > 0 such that Ric(X) > 0, for this set of data. The iteration log for the case § = 0.3 will

soon be presented.

As illustrated from the above tables, the trade-off between the number of inner itera-

tions, NeNe, and the number of outer iterations, Iter, is characteristic of Barrier methods,
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in particular, the method of centers (Boyd and El Ghaoui (1993)). For # = 0.01, 18 it-
erations (297 Newton steps) are required to reduce the objective value within 10~ of the
optimal value. For # = 0.1, the number of iterations is 20 (189 Newton steps). For 6 = 0.3,
27 iterations (171 Newton steps) are required. Finally for § = 0.6, the total number of
iterations is 49 (205 Newton steps). Since the cost of numerically computing the update
directions (Newton steps) is high, it is desirable to achieve the fewest number of inner it-
erations as possible. On the other hand, increasing § may lead to a large number of outer
iterations. From Figure 4.2, the parameter # = 0.3 seems to be a good choice as it provides
fast convergence, 27 iterations (few number of outer iterations), while keeping the number

of inner iterations (171 Newton steps) low.

Presenting the iteration log for § = 0.3

This section presents the iteration log for the specific case where the centralization
parameter is § = 0.3. The results are presented below in Table 4.4, where the first column
NeNe shows the number of Newton steps required to compute the analytic center using
the Nesterov-Nemirosvky step length given by (4.66), within an accuracy of 1073, i.e., the
stopping criteria is 7 < 1073. This computation is performed for each fixed value of the
upper bound parameter 7y, at each iteration. The second column shows the norm of the
gradient vector g, the third column shows 7, the fourth column present the step length o,
the fifth column shows the value of «, and the last two columns presents the minimum and
the maximum eigenvalue of the Hessian matrix J. The code stops when the error on the
upper bound v between two successive iterations, ¥t — 4¥ is less than 107°. Note that

the table does not show every iteration.

Table 4.4: Tteration log for 6 = 0.3

NeNe llgll T o «a Amin (H) Amax ()

Iteration 1 v = 5.993920
1 9.6E+00 | 1.9E+00 | 0.3 | 5.6004145 | 2.2E400 | 3.9E+01
2 7.1E+00 | 1.8E4+00 | 0.4 | 5.4780753 | 1.8E+00 | 2.5E+01
3 52E+00 | 1.7E4+00 | 0.4 | 5.3193023 | 1.5E+00 | 1.7E+01

11 2.8E-02 8.0E-03 1.0 | 4.0198197 | 1.1E4+00 | 1.6E401

continued on next page
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continued from previous page

NeNe llgll T o a Amin(H) | Amax(FH)
12 9.0E-03 2.6E-03 1.0 | 4.0190821 1.1E4+00 | 1.6E401
13 2.9E-03 8.6E-04 1.0 | 4.0188435 1.1E4+00 | 1.6E401

Iteration 2 v = 4.6113664
1 3.5E4+00 | 1.2E+00 | 0.5 | 3.8406879 1.5E+00 1.6E+01
2 2.3E4-00 9.4E-01 0.5 | 3.6384409 1.5E+00 | 1.8E401
3 1.3E+00 6.6E-01 0.6 | 3.4404751 1.6E+00 | 2.0E4-01
7 3.2E-02 8.4E-03 1.0 | 3.2081156 1.8E+00 | 2.6E401
8 1.1E-02 2.7E-03 1.0 | 3.2075432 1.8E+00 | 2.6E401
3.6E-03 8.8E-04 1.0 | 3.2073622 1.8E+00 | 2.6E401

Iteration 26 v = 1.4613251
1 3.3E+05 1.1IE400 | 0.5 | 1.4613168 1.3E402 | 8.4E+10
2 2.0E405 8.5E-01 0.5 | 1.4613149 1.3E402 | 5.9E+10
3 1.0E+05 4.8E-01 0.7 | 1.4613134 | 1.3E402 | 5.3E+4+10
4 3.5E+4-04 1.6E-01 1.0 | 1.4613127 | 1.3E+02 | 6.6E+10
5 6.7TE+02 3.0E-03 1.0 | 14613127 | 1.3E+02 | 7.8E+10
6 3.7E-01 2.0E-06 1.0 | 1.4613127 | 1.3E+02 | 7.8E+10

Iteration 27 v = 1.4613164
1 9.6E4-05 1.1E400 | 0.5 | 1.4613116 1.3E4+02 | 2.5E+11
2 3.5E+05 8.5E-01 0.5 | 1.4613105 1.3E+02 | 1.8E+11
3 1.8E+05 4.8E-01 0.7 | 1.4613096 1.3E+02 | 1.6E+411
4 6.0E4-04 1.6E-01 1.0 | 1.4613092 1.3E4+02 | 2.0E+11
5 1.2E+03 3.0E-03 1.0 | 1.4613092 1.3E+02 | 2.3E411
6 6.4E-01 1.8E-06 1.0 | 1.4613092 1.3E4+02 | 2.3E+11

As seen from Table 4.4 above, the prescribed accuracy is reached within 27 iterations,
with v = 1.4613164 and o = 1.4613092. Since « is a positive number, the problem is
infeasible and there is no X > 0 such that AX + XAT — XRX + @ > 0. The value of the

symmetric matrix X > 0 corresponding to the achieved « is

0.1429 0.0062 0.1300

X =

0.0062 0.7850 0.6378

0.1300 0.6378 0.8539
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with its eigenvalues given by

A(X):<0.07050, 0.24573, 1.46567)

For this X, the eigenvalues of Ric(X) = AX + XAT — XRX + Q are

)\(Ric(X)):(—l.46130, —1.46130, —0.91451>

which show that there are only two eigenvalues binding at the optimal value of a. From
Table 4.4, one finds that the condition number of the Hessian is large when « approaches
the optimal solution. This ill-conditioning in the Hessian is a well known fact with respect
to barrier methods (see Murray (1971); Wright (1992a,b); Wright and Orban (2001) and
reference therein). This behavior is highly influenced by the set of constraints that are
or are not active (binding) at the solution. It is not an immediate task to determine the
set of active constraints in the semidefinite programming formulation (the relation between
the binding eigenvalues and the unknown X). This thesis does not investigate this ill-

conditioning problem.

An inner product minimization problem

This section presents one more experiment, in which an inner product optimization
problem is solved instead of the feasibility problem. We take the same Riccati inequality as

before, and solve

find X* = argmin Tr { X'}, such that

AX+XAT —XRX +Q >0 (4.67)

Note that this problem does not impose the constraint X > 0.

Considering the development presented in the previous sections, the modifications
now proposed with regards to the feasibility code are minimal. Basically, the difference is
that the inner product case above is a function of one single variable X. There is no «

dependence. Thus, the equation (4.57) used in the feasibility problem now reduces to:

Q=(A-XRTF!

H(0x) = %F‘lcSXR - %RcSXF‘l + (A= XR)TFYA—-XR)oxF™!

+(A-XR)TF'5x(A- XR)TFL.
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Since there is no inner product part included in the feasibility problem, we shall add the
terms relating to the cost function, Tr { X}, to the above equations. As shown from Propo-
sition 4.3.4, this is a trivial step and it suffice to include an extra term to the gradient Q

and another one to the Hessian H(dx). Thus, the final expressions become:

Q= (A~ XBTF™ — L(y~ T {X})7'1

H(6x) = %F‘lcSXR - %RcSXF‘l +(A-=XR)TFYA—-XR)oxF!

+(A-XR)Fox(A-XR)TF '+ %(v - Tr {X})7*L

The example-code that runs this inner product minimization problem is available in
Section C.2. The iteration log for this experiment is presented in Table 4.5, where the
notation is the same as the one used in previous tables. To run this experiment, a feasible
starting point is needed; this is easily obtained by invoking the feasibility code!'*. The

numerical data used for this experiment are given by
Ao 1.4789 —0.6841 R 0.8585 —0.1979
11380 —1.2919] —0.1979  0.6785

[ 14884 —0.6966
—0.6966 —0.2463|

The centralization parameter was taken to be # = 0.3. Not all the iterations are presented in
Table 4.5. The stopping criteria was again 1075 for the objective and 1073 for the analytic

center.

Table 4.5: An inner product minimization problem

NeNe [l T a Tr{X} | Auin(30) | Amax(50)
Iteration 1 v = 0.2459247

1 4.7E+01 | 1.0E+00 | 0.5 0.2011414 6.0E-01 2.2E+03

2 3.2E+01 | 1.0E+00 | 0.5 0.1788383 6.0E-01 1.0E+03

3 2.1E+01 | 1.0E+00 | 0.5 0.1453416 6.0E-01 4.5E4-02

4 1.4E+401 1.0E-00 0.5 0.0951365 6.0E-01 2.0E+4-02

11 5.4E-01 4.3E-01 0.7 | -1.5339932 8.0E-01 2.4E+00

continued on next page

MThe feasibility code stops as soon as the objective is negative.
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continued from previous page

NeNe gl T o Tr{X} | Auin(30) | Amax(30)
12 2.0E-01 1.7E-01 1.0 -1.7350971 8.3E-01 2.4E4-00
13 3.6E-03 2.3E-03 1.0 -1.7369562 8.7E-01 2.5E+00
14 3.0E-06 2.0E-06 1.0 -1.7369554 8.7TE-01 2.5E4-00

Iteration 2 v =-1.1420914
1 1.7E+00 6.5E-01 0.6 -1.9563699 1.1E+00 7.0E4-00
2 8.8E-01 4.4F-01 0.7 | -2.1720246 1.3E+00 4.7TE400
3 3.5E-01 2.0E-01 1.0 -2.3312987 1.5E+00 4.0E4-00
4 1.8E-02 1.0E-02 1.0 -2.3395406 1.8E+00 3.9E4-00
) 1.9E-05 1.4E-05 1.0 -2.3395506 1.8E+00 3.9E4-00

Iteration 43 v = -4.0397834
1 1.8E+05 6.8E-01 0.6 -4.0397910 3.4E409 7.1E410
2 1.0E+05 5.3E-01 0.7 | -4.0397935 3.8E+409 3.8E+4+10
3 5.0E4-04 3.3E-01 0.8 -4.0397958 4.5E+09 2.4E+10
4 1.8E+04 1.3E-01 1.0 -4.0397972 5.2E4+09 1.8E+10
) 1.1E403 8.8E-03 1.0 -4.0397973 5.7TE4+09 1.6E+10
6 4.0E+00 3.2E-05 1.0 -4.0397973 5.8E409 1.6E+10

Iteration 44 v = -4.0397931
1 2.4E405 6.8E-01 0.6 -4.0397990 5.8E+409 1.2E+11
2 1.3E+05 5.3E-01 0.7 | -4.0398009 6.5E4+09 6.5E+10
3 6.6E4-04 3.3E-01 0.8 -4.0398026 7.6E4-09 4.0E410
4 2.3E4+04 1.3E-01 1.0 -4.0398037 8.8E+4+09 3.0E+4+10
) 1.4E+03 8.8E-03 1.0 -4.0398038 9.8E+409 2.7E4+10
6 5.2E4-00 3.2E-05 1.0 -4.0398038 9.8E+409 2.7E+10

From the above Table 4.5, the prescribed accuracy is reached within 44 iterations, with
the upper bound given by v = —4.0397931 and the final values for the objective given by
Tr{X} = —4.0398038. The corresponding symmetric matrix X is

—0.46865
—3.43764

—0.60215
X =
[—0.46865

For this X, the eigenvalues of Ric(X) = AX + XAT — XRX + @ are given by

A(Ric(X)) = (0.00004, 0.00002)
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Thus, the constraint are active (the eigenvalues are binding) at the solution. The condition

number of the Hessian for this example remains bounded.

4.5 Extending the Results to the Multivariate Case

The previous Section 4.3 limited the presentation to the univariate case, by considering
uniquely a function F(X) of one variable X. This current section extends the results to
the multivariate case by considering functions on several variables X1,...,X,. However,
we will not attempt to provide a detailed presentation of the derivations, as done in the
previous section, but rather, the exposition will be concise. Thus, the derivations will be

based on the results provided in Section 4.3 for the univariate case.

To introduce the multivariate case, let us start by posing a more general form of our
convex optimization problem for matrix functions. For j = 1,...,r, let C; be a bounded
convex domain in RP»%, Denote by C the usual Cartesian product C = Cy X --- x C,.. For
each i = 1,...,m, let the map F;(Xi,...,X,) : C — S™ be concave. Then, the inner

product minimization problem is posed as:

find t*, if one exists, such that

t* = min {Tr {X;} : X; € closure(G)}
where the feasibility set G is the convex domain given by

G={(X1,....X,) €C: F(X1,...,X,) > 0},

4.5.1 Unconstrained auxiliary potential function

The idea behind the method of centers is to approach the above constrained opti-
mization problem with a sequence of unconstrained optimization problems which minimize
a potential function. Thus, the auxiliary potential function has to be generalized to the

multivariate case:

$y(X1,..., X;) =log (1/(y = Tr {X1})) = ) _logdet Fy(X1,..., X,).
=1

The aim is to determine the algebraic linear system of equations which will provide the

update directions toward to the central path given by ¢~ (X1, ..., X, ). For the multivariate
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case, there will be r update directions dx,,...,dx,, since there are » unknowns Xy, ..., X,.

Therefore, the linear system will have dimension r x r. Basically, it will have the following

form:
Hi1(dx,) + Hia(dx,) + + Hir(0x,) = @
Ho (0x,) + Hap(dx,) + + Hor(dx,) = Q2
Hrl(éXl) + Hr2(6X2) + -+ Hrr(aXr) = Qr
where each one of the Hessian H;(dx;) is a Sylvester operator (defined in Section(4.3.6)),

a linear map on the update dx;, which has the form®:

Hi;(dx; ) ZAﬁX By + Z By 6% (AT

and the gradient term @Q; is an independent expression that does not contain the updates
dx;-

To build this system, one needs to take directional derivatives of a second-order Taylor
expansion of the auxiliary potential function ¢~(Xi,...,X,). For clarity of notation, let
us omit the subscript v in ¢,(Xq,...,X,). Also, let us use an arrow over a variable to
indicate that the variable is a list of elements, e.g., )—i: {Xy,...,X,}. So, to compute the
quadratic approximation of ¢(X ) let us denote by dx, the update directions for each Xj.
Thus, assuming X, = X; + Jx,, the series expansion of ¢(X ) up to the second-order term

is given by

r
O(XFreo o, XD) = $(X) + Y D(X)[0x,] + ZZN X)[ox,, 0x, ] (4.68)
i=1 i=1 j=1

Recall that the first-order optimality conditions, which will provide the update direc-

tions dx,, ..., dx,, are obtained by taking directional derivatives of the Taylor expansion

o(X1 +0x,,..., Xy + 0x, ), given by (4.68), as a function of dx,,...,dx, in the directions

Ovy,-..,0y,.. Since there are r independent variables dx,,...,d0x,, we first set to zero the

directional derivative of (4.68) as a function of dx, in the direction dy;, providing the first
equation

Hi1(dx,) + Hia(dx,) + - - + Hy, (dx,) = Q1.

Second, we set to zero the derivative of (4.68) as a function of dx, in the direction dys;,

providing the linear system

Ho1(0x,) + Haa(0x,) + - - - + Hap (0x,.) = Q.

5The notation presented in this formula for H;; (6x ;) is over simplified. The actual formula is presented in
Proposition 4.5.1. However, the emphases here is on the linear form (the Sylvester form) of the expressions.
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And so on.

4.5.2 Notation for the multivariate case

In Section 4.2, it was shown that the directional derivative of a noncommutative

rational function has the representation:

k
DF(X)[6x] = sym {Z AZ-éXBi} .
i=1
However, for the multivariate case, the notation becomes a bit more complex, since it must
be clear which function and which variables are being considered. Thus, the notation for

the first directional derivative of F;(Xj,...,X,) in the direction dx, is:

DF,(X)[0x,] =sym{ > Ay'ox, By (4.69)
/=1

where the subscript i corresponds to the function and the subscript ¢ to the direction. For
example, the notation for the first directional derivative of F3(X7y,...,X,) in the direction
0x, is represented by:
_ k(3,2)
DF5(X)[0x,] =sym<{ > A}?6x, By

/=1

For the second directional derivative, the notation is more involved, since there are two
different directions. Thus, the second directional derivative of F;(Xj,..., X, ) taken first!6

in the direction Jx, and second in the direction dx, is represented by

D2 E(X)[5Xt75Xs] =

wi (4,t8) wa(4,ts)
Sym{ > MpRox, NP, T+ Y MRy, NPk, T

=1 0=1+w1 (i,ts)

w3 (%,ts) w4 (i,ts)
FOY st Y el a
0=1+w2(i,ts) {=1+w3(i,ts)

16The subscript ts denotes: first in the direction ¢ and second in the direction s. However, it is immaterial
the order in which the derivatives are taken, since D* F;(X)[0x,,0x,] = D* F;(X)[0x.,0x,].
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However, for the specific case where the directional derivatives are taken along the same

direction dx,, the formulas reduce to
w1 (’i,t)

D? Fy(X)[0x,, 0x,] =sym{ 7 Mytox, Nptox, T)
/=1

wa(4,t) w3 (4,t)
+ ) MR N, T Y le’téxtNg’té)T(tTg’t} (4.71)
L=1+w1(i,t) £=14w2(i,t)

Which is equivalent to the univariate case given by expression (4.14) from Section 4.2.

4.5.3 Deriving the optimality condition

We should now proceed with the derivatives, however, since the cost term

log (1/(y = Tr{X1}))

in the potential ¢(X) is exactly the same as the one in the univariate case, we concentrate

the efforts in manipulating only the Barrier term given by

O(X) = =3 logdet F(X1,..., X,).
i=1

And later, we add the contributions from the cost term.

Analogous to the derivation in the previous Section 4.3, the gradient term Q; is

obtained from the first-order approximation of the potential function:
D(DO(X)[6x,]) bv:]-

Thus, we first need to take the derivative of the potential ©(X) in the direction dx,. From

the formulas for the derivative of the logdet function (see Section 4.2), we have:

DO(X)[dy,] = —Tr{ZF LDE(X) 5&]}

m k(i,t)
Tr{ leym A”& B”
(=1
m k(i,t)
Tr{sym Z F- 1Alt5 Blt
i=1 (=1
m k(i)
Tr {Sym 0x, Z Z Bé’tFi_lAé’t
=1 (=1
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Now, regarding the above result as a function of dx,, we need to compute its first derivative
along the direction dy;:

k(i,t)

D(DO(X)[5x,])[0v,] = —Trqsym < oy, > > By F Ay
i=1 (=1
= —Tr {6v,Qf + Q1 } -
Thus, we obtain the gradient term Q; as
m k(i
Qt — Z AZ t TF BZ t)
i=1 ¢=1

forl <t<r.

The first-order approximation of the potential function provided the gradient term Q.
On the other hand, the formulas for the Hessian maps Hy;(dx, ), Hi2(dx,), - -, Hpr(dx,.)
are obtained by taking directional derivatives of the second-order approximation of the
potential function

—ZZW X)[x., 0]

s=1t=1
along the direction dy;, for 1 < ¢ < r. Since the above expression is linear as a function of

either one of the directions dx, or dx,, the formula for each Hys(dx,), for 1 <t < s <7, is

given by

Hiu(dx,) = D (D? 6(X)[bx,, 6x.] + D? <z><?<>[5xs,5xt]) v
2 (4.72)

=D (00X o 0x.]) ]

For the particular case where 1 <t = s < r, the map Hy is given by

1 —
() = 30 (D2 0(X) o] ) e
Since the Hessian is self-adjoint, each Hg (0x,) is the adjoint map of Hy(dx, ).

To find the expressions for the above formulas, the second derivative of the potential
function needs to be computed. Since we are not considering the cost term yet, we just

present the formulas for the second directional derivative of the barrier ©(X), taken first

in the direction dx, and second in the direction dy,:

D?©(X)[bx,. dx,] = {ZF 'DF,(X)[6x,F; ' DF,(X )[M]}

—TI‘{ZF D2 [(5)(“(5)(5]}

(4.73)
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Again, for the specific case where the directional derivatives are taken along the same

direction dx,, the formulas reduce to

m 2
D? G(X)[(SXtvéXt {Z < lDF [5Xt]> }

=1

—Tr ZFZ 1 [6Xt75Xt]}

=1

Which is equivalent to the univariate case presented in Section 4.2.2. In this way, the
formula for the map Hy(dx,), for t = 1,...,r, is easily obtained from Lemma 4.3.3 by

noting that instead of a single function F'(X) we have Y ;" F;(X):

where the terms A, B, M, N, T are obtained from the first and second directional derivatives

of FZ()—Q:) given by (4.69) and (4.71).

We should now proceed deriving the formulas for Hys(dx, ), for the case where 1 <
t < s < r, presented in (4.72), by first evaluating expression (4.73) and later substituting

the result inside (4.72). Considering the expressions for the first and second directional
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derivative of Fj(X), the expression for D? ©(X)[0y,,dx,] becomes

D? O(X)[3x,. 0x,] =
k(i,s) k(i,t)

m
Z F'sym Z Ay%ox,By” Flsym Z A;’tcSXt Bf?’t
] /=1 n=1
m w1 (4,ts) wa(1,ts)
_1 '7t '7t '7t '7t T '7t '7t
—Tr{ZFZ- sym{ S MpRex, NP, TN+ Y MRk Ny Rk, T
i =1 L=1+w1 (i,ts)

w3 (i,ts) wq (i,ts)
+ ) MU NPT+ YT MRk, Ny, Tg’m}} (4.74)
£=14w2(i,ts) L=1+w3(i,ts)

To compute the above second directional derivative, let us split this expression into
five parts, Hy, Ho, H3, Hy and Hs, so that the directional derivative can be applied to each

one of the terms separately:

1 m k(i,s) k(i,t) . .
H, = 3 Tr ZF sym AZScS Bl * Fi_1 sym Z A%’téxtB%’t
i=1 =1 n=1
1 w1 (4,ts)
Hg———Tr{ZFllsym{ Mzts(S Nzts(s ths}}
m wa(3,ts)
Hy = —5 Tr { > Fl'sym { M}“&QN}“&XST;“}}
i=1 0=1+w1(i,ts)
m w3 (%,ts)
H4__1Tr{ZFi lsym{ Z Mzts(; NztséX zts}}
=1 L=14w2(i,ts)

wa(3,ts)
H5:——TI‘{ F sym{ Z Mzts(;)( N”S(ST zts}}
=1

=1+w3(,ts)
After applying directional derivatives (See Appendix B.2), the first term H; provides

m k(i,s) k(i,t)

Hl((SXs):Z <(Azt)TF 1A255 st (th) >

i=1 (=1 n=1
k(i,8) k(i,t)

+Z Z(AZtTF (BZS)T(SX (AZS)TF (th) >
i=1 (=1 n=1
the second term Hy gives
m wi(i,ts) . ' .
Hy=—) > (M) F I ok (N
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the third term Hs gives

wa (,ts)

Z Z Nzts(s thsF 1Mzts

i=1 f=1+w1 (i,ts)

the fourth term Hy provides

w3 zts

Z Z (Mzi,tS)TFvi—l (Tei,tS)T(SXS (NZ’tS)T

i=1 {=1+ws (i,ts)
and finally the fifth term Hj gives

m wy (4,ts)
i,ts ¢T riyts —1 g ri,ts
_E: E: Ny ox T M,
i=1 {=1+w3(i,ts)

The final term

1
His(0x,) = 5 Zl H;
is thus given by
1 k(i,8) k(i,t)
His(6x,) = 52 Z(A”TF LAy ox, By F (BT )
=1 =1
1 m (7’? ) (th) ) . . )
iy (s iy ok, Ay 0
i=1 (=1 n=1
1 m w1 (,ts)
52 Z Mz s TF (Tz tS)TaT (Nz tS)
=1 =1
w2(2 ts)
__Z Z Nzts(s thsF 1Mzts
i=1 f=1+w1 (i,ts)
1 m w3 (,ts) '
5 Z Z (MZ tS)TF (TZ tS)T6 (Ng,tS)T
i=1 {=1+w2(i,ts)
1 wy (4,ts)
1,ts 1,18 13 si,ts
) > NyBOR Ty ET My

i=1 f=1+ws3(i,ts)

We conclude this section by presenting Proposition 4.5.1 which summarizes the results

obtained for the multivariate case.

Proposition 4.5.1 For j = 1,...,r, let V; be a subspace of RP1"% and C; be a bounded

convex domain in V;. Denote by C the usual Cartesian product C = Cy X --- x C.. For each
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i=1,...,m, let the map F;(Xy,...,X,): C — S™ be concave. Let { > 1. Consider the

following unconstrained auziliary potential function

dy(X1,..., X,) = Clog (1/(y = Tr {X1})) = ) logdet Fy(X1,...,X,) : Gy — R,
=1

where the feasibility domain G is given by
G = {(Xl,...,XT) €C:F(X1,.... X)) > 0},
and the domain G, is given by
Gy={X1€G :Tr{Xi} <~}

Then the update directions 0% ,...,0%, toward the central path for the above potential is

the solution of the following symbolically computable algebraic linear system of equations:

{cm <21H1 (6x,) — ) (ZHM Ox.) — )6%1}0,

for all oy, € Vq

{5v2 <21H2 (6x,) — ) (ZHQS dx,) — )6 }0,

for all oy, € Vo

T T T
Tr 5V'r (Z Hrs((SXs) - Qr) + (Z Hrs((SXS) — Qr) 5TT =0,
s=1 s=1
for all 6y, € V),

or equivalently

((Hls((sXs) - Ql)a 5V1>g =0, f07’ all (5\/1 €V
((H25(5X5) - Q2)7 5V2>g =0, f07’ all (5\/1 €V,

(Hys(0x,) — Qr),6,)s =0, for all 6y, €V,

where each Hys(dx,) is linear in dx,, and Q; is an independent term that does not contain
the update directions. Moreover, the gradient terms are given by

k(i,1)

- il 1 gi 1 _
=3 Y B EAY - S - T

i=1 (=1
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and for2 <t <r

1" bts) . . .
“52 2 TR e (N
i=1 (=14ws(i,ts)
1 m w4 (i,ts) ' ' '
_ 5 Z Ng,tség“(s Tz,tsFi—lMé,ts

m
Hi(6x,) = » (AT FEN B ok (AT FH (BT
i=1 (=1 n=1
m k(i,t) k(it
'7t - ‘7 ‘7 -
YD DA A e, B E T (BT
i=1 /=1 n=1
TG , : , : ,
~3 > (NyY T oxd (MY EH T + (M) EHT  oxd (N
=1 (=1
1 w2(i,1) . . . . .
-3 S (Yo (MyYTFTNTNT 4+ Nytox Ty F MY
1=1 f=1+w1(i,t)
13 it) ) ) ) . ) .
> (YT I S (NPT + T F M 8N

with Hy1(0x,) containing the cost term:

206 = T (X)) T (o, } 1
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4.6 Improving the Evaluation Time for the Linear Subprob-

lem

It was briefly stated that an important question is how one can symbolically simplify
the expressions that appear in the linear subproblem in such a way that when we substitute
matrices for the symbols which appear in these expressions, the evaluation time is reduced,
thereby improving the overall time spent by the linear solver. This section addresses this

issue more closely.

4.6.1 The algebraic equation

Recall that the algebraic linear system of equations, which provides the necessary
conditions that the update d x must satisfy in order to be a Newton direction, has basically

the following structure:
N N
> AvxBi+ > BloxAT =Q (4.75)

where the A’s and B’s are obtained by collecting the terms on the left and on the right
side of the update direction dx that appear inside the Hessian map H(dx), and Q is an
independent term that does not contain dx. In this expression, the integer 2N has been

defined as the Sylvester index.

The next subsection explains in further detail how the evaluation time of our linear
solver can be reduced by collecting the terms which appear in the expressions for the Hessian
map; in other words, the aim is to represent the Hessian map H(Jx ) with the Sylvester index

N as small as possible.

4.6.2 Basic ideas on collecting terms in an expression

Even though we will not present the details of how our optimization code is imple-
mented, we expose the fact that the algorithm can be split into two parts: a symbolic part

and a numerical part.

Roughly speaking, at the symbolic level, Mathematica computes the first and second
directional derivatives of the unconstrained auxiliary potential function ¢-(X), which in-
corporate the objective and the constraints. From those derivatives one obtain the maps

for the Hessian H(dx) and for the Gradient QQ, producing in this way an algebraic linear



157

equation like (4.75). As already emphasized, the aim is to simplify symbolically the fi-
nal expressions such that when we substitute matrices for the symbols, the time spent on

formulas evaluation can be minimized.

To attain this goal, we should observe that even if two symbolic rational functions
may at a first glance, look different, they in fact can be totally equivalent. This happens
frequently inside noncommutative rational functions containing a large number of terms.
It is also important to collect terms in an expression. This is illustrated by a very simple
example which, in practices, appears in a more complex fashion. Suppose one has an
expression like

A16x + -+ Apdx

To evaluate this expression, after the dx and the A; have been replaced by matrices, one
would need p matrix additions and also p matrix multiplications. On the other hand,

collecting the above expression in dx gives

Now, the Sylvester index has dropped from p to 1, and one needs p matrix additions and

only one matrix multiplication.

The process of collecting terms in an expression may not be unique. Suppose that

H(dx) is given by
H(0x) = Adx AT + XT6x X + Box BT — Adox X — XT6x AT + Box AT + Asx BT (4.76)

The Sylvester index in this case is seven. This expression can be collected in at least two

different ways, having the same number of terms. One possibility is:
3
H(0x) = (A= XT)ox (A= XT)" + (A+ B)ox(A+ B)" — Asx AT = AidxB;
i=1

for A; and B; given by

A= (A-xT), Ay = (A+ B), Az =—A
By =(A-XNT, By = (A+ BT, By = AT

Another one is

3
H(dx) = (A+B—X")ix(A+B - X")" + BéxX + X"oxB" =) Ai6xB
=1
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for A; and B; given by

A =(A+B-XT), As = B,
Bi=(A+B-XHT, By =X,

As = XT
Bs = BT

In both cases the Sylvester index decreased to N = 3. There is yet another possible way to

collect terms in the expression (4.76). This is presented in the next subsection where our

NCCollectSylvester command is introduced.

4.6.3 Implementing a simple NCCollectSylvester command

The recipe presented here was implemented in NCAlgebra/Mathematica and is used

by our optimization code for solving matrix inequalities. The idea is as follows:

1. The user identifies the terms in which the expression should be collected. In the

example given by expression (4.76), this term is dx.

. Now, we build a “right list” of terms that multiplies d x from the right side (including

dx itself). For the expression (4.76), we would obtain
RightList={6x AT, §xX, oxB”}.

. For each element inside RightList, we add together all the terms that multiplies this
element from the left side, thereby producing a list which is defined as “CollectList.”

To apply this idea to our example, using the above RightList, we proceed as follows:
the first element 6x AT in RightList appears inside the expression (4.76) in the terms
ASx AT, Box AT, and —XT5x AT, thus the first entry in CollectList is (A + B — X7T);
in a similar fashion, the element §x X in RightList appears in the expression (4.76) as
XT§5xX — Adx X, thereby providing the second entry in CollectList given by (X7 —
A); finally the element dx B” appears in the expression (4.76) as Aéx BT 4+ BéxB”,
thereby providing the term (A+ B) as the third entry in CollectList. Thus, we obtain

CollectList={(A + B — XT), (XT — A), (A+ B)}.

. The collected expression is now readily obtained by combining together the CollectList
and the RightList.

H(6x) = (A+B—X")ox A" + (X" — A)6x X + (A + B)oxB" (4.77)
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The above “right sided” implementation of the collecting algorithm begins by building
a list of multipliers from the right side of d x. Evidently, a similar implementation can also
be done by obtaining a “left list” of terms that multiplies d x from the left side, instead of
the right side. In this way, we can implement two collect commands that differ only by the
side in which the process of collecting begins, thus, we can have a NCRightSylvester|]
command and a NCLeftSylvester[] command. The implementation used in our NCSDP
optimization code is nothing more than a single collect command, defined as NCCollect-
Sylvester|expr, var|, that sequentially applies both commands NCRightSylvester[] and
NCLeftSylvester|] to the expression. Thus, the command NCCollectSylvester|expr, var]
collects the Sylvester terms of expression expr according to the element var. Now, we
show how to use this command in NCAlgebra/Mathematica language'”. First, define the

expression (4.76) in Mathematica as:

In[21]:= P := A ** DX ** tp[A] + tp[X] ** DX ** X + B ** DX ** tp[B] - A ** DX ** X - tp[X]
# DX ** tp[A] + B ** DX ** tp[A] + A ** DX ** tp[B];

To collect this expression in DX (which represents ¢ x), we apply our NCCollectSylvester|]

command to the expression P using the following syntax:
In[22]:= NCCollectSylvester[P, DX]

This command outputs the expression:

(A + B) ** DX ** tp[B] + (A + B - tp[X]) ** DX ** tp[A] + (-A + tp[X]) **
DX ** X

Which, as expected, is the same expression as the one given in (4.77).

Based on these ideas, a few important questions can be formulated. For instance, given
an expression for the Hessian map H(dy) it is fundamental to know what is the minimum
Sylvester index associated with this expression and if there exists a theory that shows how
to provide this minimum Sylvester index. It is also a fundamental question to know how
many different ways of collecting an expression achieving this minimal Sylvester index are
possible. Once the formula for the minimum is obtained, can a practical Collect algorithm be
implemented which guarantees this minimum Sylvester index? These fundamental questions

remain open.

1"In NCAlgebra, tp[] stands for transpose and the noncommutative multiplication is represented by **.
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4.6.4 Illustrating our NCCollectSylvester command by an example

The previous examples were presented in order to illustrate what we mean by col-
lecting terms in an expression, and did not present any numerical evidence validating the
usefulness of the idea. Thus, we now explore the main point of this section: the time saving
obtained on formulas evaluation by applying our NCCollectSylvester command. For this
purpose, let us use the optimization problem presented in Section 4.7. The example is the

following eigenvalue minimization problem
min Apax (CXCT)

subject to

0< F(X):=AX+XAT - XRT'X +Q,—
(ATX + X Ay) (AsX + XAT — XR3'X + Q3) ™ (ATX + X Ay)

0<G(X):=A3X + XA - XRI'X + Qs
with all the matrices having dimension n x n.

As already described, we need to compute symbolically, at the level of Mathematica,
the Hessian of a potential function. For the above example, the auxiliary potential function

is given by the following formula
¢(X) = —logdet F(X) — logdet G(X) — logdetyI — CXC”

where 7 is a scalar which is not relevant here. The above expression ¢ (X) is a function of
the unknown X. If the update direction is taken to be dx, the Hessian map H(dx), as a

function of §x, will have a structure similar to:
N N
H(ox) =Y AibxBi+ > Bl ox Al

where the A’s and B’s are noncommutative rational expressions, functions of the symbols
C, A1, Ay, A3, R1, R3, Q1, Q3, X. To find the update direction dx, we must be able to

solve the algebraic linear system of equations given by
H(éx) =Q (4.78)

where Q is the gradient map obtained from the first directional derivative of ¢~ (X) along
the direction dx. As already described, using the vec operation, the above system can be
equivalently written as

Ho=yg (4.79)
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where H = YN BT @ A+ 32N A; @ BT, g = vec(Q), and the unknown is now v = vec(6X).

We do not show the formulas for H(dx ) and Q, since these expressions are quite large
and will consume several pages. What is important is the fact that the formula for H(dx)
as computed originally, before applying any simplification rule, has 1014 Sylvester terms.
However, after applying our NCCollectSylvester command, the Sylvester index decreases to

just N = 43.

In order to numerically solve the linear system given in (4.79) one needs:

1. to substitute matrices for the symbols appearing in the expressions for the A; and B5;;

2. to evaluate the Hessian matrix H by applying 2N Kronecker products:
N N
}C:ZBg®Ai+ZAi®B?
i i

These are the two main steps where collecting terms in the expression for H(dx) can sig-

nificantly affect the evaluation time.

Time saving obtained by applying NCCollectSylvester

To find out how much time is actually saved at the numerical level, the NCSDP code is
executed using the collected formulas for H(dx) with N = 43, and the not collected formula
for H(éx) with N = 1014. For this set of experiments, the size n of the matrices involved
assume the following values n = 4, 8,16,32,64. For each one of this size, we execute ten
times the inner loop where the linear system (4.79) is numerically solved. We also measure
the overall CPU time (over 10 iterations) spent on the above items 1 (formula evaluations)
and 2 (Kronecker product). In this way, we can analyze how the time spent on formula
evaluations behaves as a function of the size of the matrices involved in the expressions, as

well as the Sylvester index.

The results are presented in Table 4.6, where C stand for the Collected case (the
Sylvester index is N = 43), and NC stands for the Not Collected case (the Sylvester index
is N = 1014). In this table, the row labeled “ratio” is the ratio between the Not Collect
column and the Collect column. The time spent on solving the linear system, presented
in the row labeled “Solv. System,” is not affected by the expression being or not being
collected. The other labels are as follows: MS for matrix size, SI for the Sylvester index,

FE for formula evaluation, KP for Kronecker product, and LS for the linear solver.
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MS 16 32 64

SI C NC C NC C NC C NC C NC
FE 0.46 2.12 0.45 1.95 0.73 2.79 2.6 9 17 64
KP 0.02 0.28 0.04 0.55 0.90 14.05 23 226 1166 | 4467
LS 0.01 0.01 0.02 0.02 0.36 0.33 15 14 588 543

Ratio NC/C NC/C NC/C NC/C NC/C
FE 4.6 4.3 3.8 35 3.8
KP 14 13.8 15.6 9.8 3.8

Table 4.6: Timing (seconds): formulas evaluation, Kronecker products, and linear solver

The results provided in Table 4.6 show that collecting terms in the expression for the
Hessian map H(dx) represents a huge saving, since the average time spent on substituting
matrices for the symbols that appear in the expressions for the A; and B; when the expres-
sions are not collected is approximately four times longer than the time for the collected
case (row labeled Formula Eval). Collecting the expressions significantly improves the time
spent on evaluating Kronecker products: the timing improved by a factor of approximately
14 for matrices of dimension 16 and under. In this same range of matrix size, the overall
time spent (over 10 iterations) on numerically solving the equation Hv = g for the unknown
v was relatively insignificant. However, for matrices of size 32 and over, the ratio between
the Collected and Not Collected case for the time spent on Kronecker products decreases
with the dimension of the matrices. For matrices of size 32 this ratio is 9.8, and for matri-
ces of size 64 the ratio'® goes down to 3.8. Moreover, the time spent on solving the linear
subproblem becomes significantly larger than the time spent on substituting matrices for
the symbols. The computer used for these experiments was a dual processor Pentium III
(Coppermine), with 1004.530 MHz cpu clock, 4GB of RAM, 4GB of SWAP, running Linux
(kernel 2.4.18-27.7.xsmp) and Matlab version 6.1.0.450 (R12.1).

We have just seen that for matrices of large size, the time spent on numerically solving
the linear system of equations Hv = g for the unknown v becomes large. To understand
this fact better, suppose the dimension of the matrices involved is chosen to be n = 32.
Thus, the unknown matrix X having size 32 x 32 implies that the unknown vector v and the
system to be solved will have size 322 = 1024. (Our implementation at this point does not
take advantage of the symmetry). If one could solve the linear system of equations for J x

in its original structured form given by H(éx) = Q, without applying Kronecker products

18We believe that for matrices of dimension 32 and over, a considerable amount of time might be spent
on allocating dynamically memory for the matrix J at each inner loop. This fact may have interfered with
the ratio.
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and keeping the dimensions of the linear system low, a huge saving on the numerical linear
solver would probably be attained. This is an open area which we hope will be pursued by

others.

4.6.5 Applying our NCCollectSylvester command to a variety of matrix

inequalities

Another interesting experiment is to analyze how the Sylvester index behaves by
applying our NCCollectSylvester command to a variety of formulas. We would like to find
out how much reduction of the Sylvester index can be accomplished by applying our collect
command to a variety of matrix inequalities which appear in control design. The example
just presented, taken from Section 4.7, has shown a great improvement since the Sylvester
index reduced from N = 1014 to N = 43. Now, two more examples are presented, so
that the reader can have a more realistic understanding about how the process of collecting

behaves on matrix inequalities that appear frequently in control problems.

Example 4.6.1 For the following standard Riccati inequality:
AX+XAT —XRX +Q >0

the Hessian map H(dx) for the not collected case has a Sylvester index of N = 20, while

the collected expression has a Sylvester index of N = 6.

Example 4.6.2 Now, a more realistic example is used: the mixed Hy/H, control problem

presented in Chapter 2:

min Tr {Q}

(4.80)
Q — (CoX + Doy F)X YCoX + Dy F)T > 0

AX + XAT + B,F + FTBT + B,BI +
(xcT + FTDY, + B,DT ] R [xCT + FTDT, + B,DL,]" <0
with R = n*I — Dy, D%, > 0.

For the above control problem, there are three unknowns denoted by Q = Q7, X =

XT and F (not symmetric). Thus, the linear subproblem to be solved will have dimension



164

3 x 3, and consequently each entry on this system will contain a Sylvester operator. For

instance, the (1,1) entry will have an expression of the form

N11 Nll

> AleoBI +) " ALB!

(2

The (1,2) entry will have the form

Ni2 le

S AR+ Y AlTBY

The (1,3) entry will have the form

Ni3 Nl.‘i

> ABsxBIE+> " APSLBE

(2

The (2,1) entry is the transpose of the (1,2) entry. The (2,2) entry will have the form
Noao N22

> AP + 3 (AR SHET

and so forth. It should be noticed that the Sylvester index Nll, ng, and Noy are zero, since
the corresponding variables @ and X are symmetric. For the MIs given above in (4.80),
the set of Sylvester indexes N and N for the case where the Hessian map H(dg,0x,0F) was

collected and was not collected is provided in Table 4.7.

In this Table 4.7, the variables X and F' are associated with the entries
[22, 23, 32, 33]

for each one of the subtables. If we only pay attention to the Sylvester index N, we see

that the submatrix associated with X and F for the

73|33 912 .
not collected case reduces to only in the collected case.

33| 35 212

Similarly, a large reduction is also obtained for the Sylvester index N. Thus, for the variables
X and F we found that a large reduction on the Sylvester index N and N is obtained after
applying our NCCollectSylvester command. Naturally, this will represent a considerable

saving on the evaluation time for the numerical linear solver.

Remark 4.6.1 Another step is taken in order to improve the overall timing, and it is not

related to the idea of simplifying expressions by collecting terms, but it is valuable. We look
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Hessian H(dg,0x,0r) Not Collected

Sylv. index Nj; Sylv. index Nij
i,j 1 2 3 1 2
1 8 8 4 0 4
2 8 73 33 0 0 33
3 4 33 35 4 33 32

Hessian H(dg,0x,0r) Collected

Sylv. index Nj; Sylv. index Nij
i,j 1 2 3 1 2 3
1 6 2 1 0 0 1
2 2 9 2 0 0 2
3 1 2 2 1 2 4

Table 4.7: Sylvester index N and N for the Collected and Not Collected cases

for inverses of matrices which appear inside the expressions for the Hessian map and we
replace each occurrence by a new wvariable. In this way, all the inverses are evaluated only
once at the beginning of the code. This can considerably improve the overall performance,
since numerically evaluating an inverse of a matriz may consume a large amount of time,

mainly for matrices of large dimensions.

It is also true that at the symbolic level of Mathematica, the process of collecting
terms on an expression and the process of simplifying rational functions, can consume a
considerable amount of time. However, this computation is done only once at the beginning
of the run. This is in contrast with the numerical part, where solving the linear system
to provide the update direction takes place at each inner iteration (which occurs several
times). Therefore, the ability to collect factors in an expression (decreasing the Sylvester

index) plays a very important role.

4.7 Numerical Experiments: Timing of the NCSDP Solver

The previous section has shown how the theory could be implemented for a simple
example: the problem of finding feasible solutions to a Riccati inequality. For this purpose,
we have shown the details of the derivations of the formulas for the update direction (which

can also be done automatically using the NCAlg toolbox for Mathematica), we have made
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available a Matlab code which implements those equations, and finally we have presented a
few numerical results using this code. In this section, however, our main focus is to compare

the timing of our NCSDP solver against available professional SDP solvers.

In this thesis, we have focused solely on convex problems, as we have made no effort
in providing a reliable implementation of a nonconvex code based on the proposed method-
ology. However, with a simple modification of our convex code, basically by implementing
a rudimentary line search and a “strategy” for dealing with indefinite Hessian, we were
able to successfully run a few nonconvex examples. See the Appendix D for a collection of

problems that our code was successful for.

4.7.1 The problem used in our tests

The optimization problem to be used in this section is the following eigenvalue mini-
mization problem

o =min{a: (X, a) € closure(G)} (4.81)
where the feasibility set G is the convex domain given by
G={(X,a) eS"xR:al —CXC" >0, F3(X)>0, F(X)>0}
with F(X) = F1(X) — Fp(X)F3(X) "' F5(X) and the function F;(X) given by
Fi(X)=AX+ XA - XR7'X +@;
In our experiment we have set Fy := AT X + X Ay, thus F(X) is given by
F(X)=A X+ XAT - XR{'X + @
C(ATX £ XAg) (AsX + XAT — XR7IX + Q)" (ATX + XAp) (4.82)

The matrices C, Ay, Ag, and Az belong to R™*™, the invertible matrices Ry, R3, belong to
ST, and the matrices @1, @3, and X belong to S". In this example all matrices are square
matrices of dimension n X n. Note that by Schur complement techniques the above problem

(4.81) can be equivalently restated as the following LMI problem

o = mina subject to
al —CXxXCct >0
R ATX + XA AsX + X AT 0 X
0 < F(X) — 2 + 2 3 + 3 + Q3
X 0 Ry O
0 X 0 Rsg
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It is clear that the feasibility set for both problems (4.81) and (4.83) are equivalent.
However the dimensions of the equations for each one of the above problems are quite
different. Since our NCSDP method is solely a primal method, the only dimension that
counts is the dimension of the unknown matrix X, which is N = dim(S"™) = n(n + 1)/2,
on the other hand, for the primal-dual method, the dimension of the dual system has to be
taken into account, which for this problem is four times bigger, being 4N. This happens
because the dimension of the dual variable is related to the dimension of the LMI in (4.83),
more precisely, it is related to the dimension of the range of F (X). Therefore, for matrices

of large size, the computation time will increase considerably.

4.7.2 An implementation of the method of centers for linear matrix in-

equalities

We will provide a simple implementation of the method of centers for LMIs, which is
denoted by MCLMI. This implementation is based on the algorithm proposed in Colaneri
et al. (1997). Then, we apply MCLMI to the LMI formulation (4.83), and compare its
performance to our NCSDP code applied directly to the matrix inequality problem stated
in (4.81). Since we are using the same method of centers for both codes, NCSDP and
MCLMI, one point to be illustrated is how much improvement can be obtained by dealing

with the constraint in its natural form (4.82) instead of in the LMI form (4.83).

For the particular case of LMIs, the implementation is easier, given that there is no
need of symbolic computation to obtain the gradient vector and the Hessian matrix. These
formulas are obtained by noting that any LMI can be represented in the following affine

form in z:

F(x):Ao—l-Alwl—l-Ang—i-“‘—i-ANwN

with A; a symmetric matrix, N the dimension of X and z € R™. Thus, for a suitable choice
of matrices A; the LMIs in (4.83) have this affine representation. For this implementation,
one needs the assumption that the feasibility set G = {X : F(X) > 0} is nonempty and
bounded, which implies that the matrices A1,..., Ay are linearly independent. This is a
common assumption, and is verified in most of the control problems of interest. All those
facts are quite standard and can be found in Boyd et al. (1994); Colaneri et al. (1997).
From the above affine representation for F'(x), it can be shown that the gradient vector is
given by

gi=—Tr{F'4;}, i=1,...,N (4.84)
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and that the Hessian matrix is given by
Hyj=Te {F1AF14A;}, i=1,...,N, j=1,....N (4.85)
In this case, the update direction v is the solution of the linear system

Ho=g (4.86)

4.7.3 Timing of NCSDP against MCLMI

Before comparing our NCSDP solver with other SDP solvers, we show how the time
is spent among the main parts of the code. There are two distinct parts: The symbolic

computation, which is done in Mathematica, and the numeric part, which is done in Matlab.

Inside the numeric part of our NCSDP code, we will be timing: 1) The time spent
on evaluating the Sylvester terms. That means, the time Matlab spent on calculating the
terms A;, B;, and Q. 2) The time spent on building the Hessian matrix H. This is the
time spent on the Kronecker products. 3) And finally, the time spent on solving the linear

system Hv = g for v.

The results for this first numerical experiment are presented in Table 4.8 for the
MCLMI code (the LMI implementation), and in Table 4.9 for the NCSDP code. In those
tables, the first column n shows the dimension of the unknown matrix X (all matrices in
the formula for F'(X) have the same dimension n x n). The second column IT/NeNe shows
the total number of outer iterations required to achieve the objective within an accuracy
of 107°, and the total number of Newton steps required to compute the analytic center
within an accuracy of 1072, For the computation of the analytic center, the line search
plays an important role. For the LMI case, the MCLMI code, the suboptimal line search
given in (4.46) has been used. The NCSDP code implements the Nesterov-Nemirosvky step
length given in (4.45). The last three columns in Table 4.8 present the CPU time spent
on computing: the gradient g, the Hessian H, and solving the linear system for v (given
respectively by (4.84)-(4.86)). In Table 4.9, the column FE, formula evaluations, shows the
time spent on computing the Sylvester terms, since this time may be large in some cases!?,
the column KP presents the time spent on the Kronecker product, and column v presents
the time spent on the linear solver. The starting feasible point was the same for all the

experiments.

9The time spent on computing the Sylvester terms are usually large when the corresponding symbolic
expressions are also large. So, it might be convenient to simplify the formulas symbolically.
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n  IT/NeNe g H v
1 12 / 63 3.7E-02 47E-02  5.2E-03
2 9 /42 4.6E-02 1.0E-01 4.9E-03
4 8 /45 2.4E-01 2.0E4+00 1.1E-02
8 8 / 45 4.4E+00 1.7E402  4.0E-02
16 7/ 41 1.1E4+02 1.6E+04  6.0E-01
32 - - - -
64 - - - -
Table 4.8: MCLMI
n  IT/NeNe FE KP v

1 48 / 144 8.4E-01 3.1E-01 3.0E-02
2 33 /99 1.4E+00 1.1E-01 7.0E-02
4 43 / 129 1.9E4-00 3.0E-01 8.0E-02
8 38 /114 2.3E+00 5.7E-01 3.0E-01
16 30 / 90 3.3E+00 1.8E+4+01  3.7E+00
32 27 / 81 1.1E401  24E+02  1.0E402
64 18 / 90 71E+01  3.0E4+03  2.9E+03

Table 4.9: NCSDP

For the LMI case, we did not run the code for matrices of dimension 32 x 32 and
greater, since it would take more than 100 days, as one can conclude by extrapolating
the data on Table 4.8. In this table, one finds that the most expensive part, for the
LMI implementation, is the evaluation of the Hessian matrix. This can be seen from the
formulas for the gradient and for the Hessian, given in (4.84)—(4.85). Thus, in order to
obtain the gradient one needs to evaluate approximately N trace operations and N matrix
multiplications. Recall that N = n(n + 1)/2 is the dimension of the space S™. To compute
the Hessian matrix, one needs to evaluate approximately N2/2 trace operations and 3/2N2
matrix multiplications. Thus, the time spent on the Hessian is over N?2/2 the time spent
on calculating the gradient, which agrees with the results presented in Table 4.8. For the
NCSDP code, as seen from column FE on Table 4.9, the most expensive part for matrices
of small size is the time spent on evaluating the Sylvester terms A;, B;, and Q. However,
when the size of the matrices increases above 8, the time spent on Kronecker products,

column KP, and the time spent on solving the linear system, column v, begin to dominate.
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4.7.4 Timing of NCSDP against others SDP solvers

For a second set of experiments, the NCSDP code is compared to many available
semidefinite programing solvers, most of them are Primal-Dual methods. The results are
presented in Figure 4.3. The LMILab toolbox, which is the only implementation based on
the projective method of Gahinet et al. (1995), is one of the most widely used solvers for
linear matrix inequalities. It has a GUI editor for interactive problem specification. From
Table 4.10 and Figure 4.3, one sees that for the eigenvalues minimization problem stated in
(4.81), the LMILab was the fastest code. As the size of the matrices increases, our NCSDP
code approximates LMILab. And probably, for matrices of dimensions larger than 64 x 64,
NCSDP may be faster than the LMILab solver. We did not run this experiment since the

time would be significantly long.

5
10 . e T s

—==— SP
—— SDPHA
10° & —©— SeDuMi

4 —=— NCSDP
—— LMiLab
—— MCLMI

Seconds

1 2 4 8 16 32 64

Matrix size

Figure 4.3: Performance of the LMI Solvers

At this stage, it is important to emphasize that while our NCSDP code is “com-

pletely” 20

implemented using Matlab functions, most of the other solvers have their core
subroutines written in Fortran or C. The fact that either piece of the code or the whole
code is compiled, significantly improves the overall performance. The performance can in-
crease by a factor of 10, or even more. The implementation of an efficient line search is also

important and it significantly improves the overall performance.

20The part that manipulates the Kronecker product was implemented in C, since the Matlab command
kron.m was very inefficient.
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n cpu time n cpu time

1 4.00000E-02 1 3.00000E-02
2 3.00000E-02 2 1.00000E-02
4 1.00000E-01 4 3.00000E-02
8 6.70000E-01 8 5.20000E-01
16  6.29000E4-00 16 2.62000E+01
32 1.27250E4-02 32 8.14900E+02
64  4.40163E403 64 -

Table 4.10: LMILab Table 4.11: SP

The performance of the SP code is shown on Table 4.11. This code implements
the Nesterov and Todd’s primal-dual potential reduction method (Vandenberghe and Boyd
(1995)). The code is written in C/C++ with calls to BLAS and LAPACK. It was one
of the first software tools that was developed for semidefinite programing. Table 4.12
presents the SDPpack code (Alizadeh et al. (1998)), which was implemented using Matlab
MEX files. It is a primal-dual path following method, which implements X Z + Z X search
direction, Mehrotra predictor-corrector, and other specialized routines. Table 4.13 presents
the SDPHA code (Fujisawa et al. (1997)), which is another primal-dual path following
method that uses Mehrotra predictor-corrector. And finally Table 4.14 presents the SeDuMi

code from Sturm (1999). This is a recent code which implements the self-dual embedding

technique for optimization over self-dual homogeneous cones.

n cpu time n cpu time n cpu time

1 8.000E-01 1 1.500E-01 1 4.700E-01

2 7.000E-02 2 6.000E-02 2 1.300E-01
4 2.500E-01 4 2.200E-01 4 2.000E-01
8 2.480E4-00 8 1.580E+00 8 4.600E-01
16 1.269E+02 16 1.270E+02 16  1.295E+01
32 1.907E403 32 1.314E+404 32 4.951E402
64 - 64 - 64 -

Table 4.14: SeDuMi

Table 4.12: SDPpack Table 4.13: SDPHA

Since the above codes are for general SDP problems, where the data should be ex-
pressed in a “standard” SDP form, which is not particularly the standard LMI form or even

an LMI matrix representation (which appears frequently in engineering), we make use of
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the Matlab package LMITOOL, and its graphic GUI editor TKLMITOOL, to act as an
interface for the above SDP codes. In this way, these interfaces provided all the necessary
conversions from LMI to the SDP form. We should make it clear that the timing presented
does not incorporate the time consumed by these interfaces. However, for matrices of size
64 or larger, we were not able to run LMITOOL, since Matlab runs out of memory. We
believe this is not a lack of RAM/Swap memory but rather a Matlab inefficiency on man-
aging a large amount of memory. The computer used was a dual processor Pentium III
(Coppermine), with 1004.530 MHz cpu clock, 4GB of RAM, 4GB of SWAP, running Linux
(kernel 2.4.18-27.7.xsmp) and Matlab version 6.1.0.450 (R12.1).



Chapter 5

Convexifying Method for
Integrating Structure and Control

Design

5.1 Introduction

The history of structure design can be characterized by four eras: In the first era, the
design sought simply to oppose gravity — a statics problem. In the second era, the dynamic
response was important. The third era sought to add control features to an existing structure
design. In the fourth era, the design of the structure and the design of the controller are
integrated so that the dynamics of the control system and the dynamics of the structure are
cooperating, rather than competing, to reduce a selected performance objective. During
the last two decades, the mathematical tools of control theory have produced algorithms
which allow one to bound the dynamic response given a class of uncertain time varying
disturbances. Such tools can now be used for structure design, even if no control is involved.
In this context our approach for structure design allows performance bounds on the dynamic
response of the output, whereas the more standard structural design code focus on the static

response and eigenvalues.

It is a well known fact that the design of the structure and the design of a controller
for a given system are not independent. Consequently, it might happen that both the
control design and the structural design are competing with each other in order to achieve

some prescribed dynamic behavior. That is, more control energy than necessary might be

173
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required to achieve the objectives. This is an important consideration, for instance, in the
control of civil structures since the apparent necessity of large control forces have impeded
the acceptability of control as a viable method to impose structure design. Simultaneous
design (Grigoriadis and Skelton (1998); Housner et al. (1997); Skelton et al. (1992)) can
significantly improve the overall performance of the system, in the sense that either the new
system (designed by this “hybrid” approach) would need a smaller amount of control energy
to attain the same performance, or the new system would provide superior performance than
the systems designed by standard techniques. Unfortunately, the simultaneous design of
structure and controller is not in practice tractable, and results in a nonconvex optimization
problem. The available algorithms are computationally expensive (see Grandhi (1989); Jin
and Sepulveda (1995); Onoda and Haftka (1987); Yang and Chen (1996) and references
therein), without guaranteeing a local minimum. It can be shown that the integrated
structure and control design problem is equivalent to a decentralized output feedback control

problem, which is well known to be hard to solve.

Following a two-step redesign approach, one idea extensively used by Grigoriadis
et al. (1996) and Skelton and Kim (1992) was as follows. In the first step, a controller for
a given nominal structure was designed to meet some prescribed closed loop performance
bound (2. In a second step, the structure and the controller were simultaneously redesigned
in order to minimize the active control energy subject to the constraint that the closed
loop system matrix is kept constant. This preserves the same level of performance v from
one iteration to the next. The feature that makes the joint structure/control problem
convex is the constraint that holds the closed loop system matrix constant. Based on
this idea, the algorithm for solving the integrated control and structure problem can be
stated as: 1) for a given nominal structure, design the controller; ii) redesign structure and
controller (keeping the closed loop plant matrix constant); iii) with this new plant return
to step i). This constraint on the closed loop system reduces the redesign (iteration ii) to
a constrained convex quadratic programming problem. This was a significant improvement
over the existing methodologies. A further improvement was given in Lu and Skelton
(2000), where the authors considered more general structures and used the mixed Hg/Ho,
performance criteria via a Linear Matrix Inequality (LMI) framework, but in the redesign

step they still needed the convexifying constraint of matching the system matrix.

A more direct approach via LMI to deal with the integrated structure and control
design that does not impose constraints in the closed loop system matrices was used in
Grigoriadis and Skelton (1998) and Grigoriadis and Wu (1997). The techniques proposed

solve the two-step redesign procedure by iterating between two convex subproblems posed



175

as LMIs. The algorithm can be summarized as follows: while keeping the parameters of
the structure fixed, solve a convex control problem; and in a second step, fix the Lyapunov
matrix (which provides the controller) and optimize for the parameters of the structure.
This approach has the drawback that it does not allow the mass matrix to be optimized
and it may have a slow convergence, since the Lyapunov matrix in the structure redesign

step is fixed.

There are few techniques available in the literature that allow one to treat the mass
as an uncertain parameter (Grigoriadis et al. (1996); Housner et al. (1997); Jin and Sepul-
veda (1995); Skelton et al. (1992), among others), though these techniques are not in the
LMI framework. Our algorithm has also the advantage of optimizing directly the physical
parameters of the structure instead of optimizing an uncertain matrix AA (Grigoriadis and
Skelton (1998); Hsieh (1992)), and at the end of the redesign, trying to find suitable physical

parameters that match this uncertain matrix A A, which might not exist.

This chapter presents a new theory for the simultaneous design of structure and
controller that improves the existing methodologies in two different ways. Our approach
is completely posed in the LMI framework, so many different type of convex performances
and convex constraints can be incorporated. The proposed methodology is an improvement
over the result given in Grigoriadis and Skelton (1998) and Grigoriadis and Wu (1997) since
we do not constrain the Lyapunov matrix to be fixed in any step of the algorithm. The
method also allows one to optimize the mass parameter of the system. More precisely, it
allows one to optimize any parameter that appears affinely in any of the system matrices.

Here we define some notation that will be used in this chapter. The superscript ()T

and (-)~! means respectively the transpose and the inverse of a matrix. The operator Tr {}
is the usual trace of a matrix. The operator diag(aj,...,a,) stand for a diagonal matrix

whose entries are the elements aq, ..., a,. The function &[] is the expectation operator.

5.2 Problem Statement

A large class of dynamic systems in the field of mechanics and structures can be

represented by a second-order differential equation of the form
MG+ DG+ Sq = f(t), (5.1)

where ¢ € R"™ is the vector of generalized coordinates, M € R™™ is the mass matrix,

S € R™ " is the stiffness matrix, and D € R™" is the damping matrix (with only viscous
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damping force D = DT, but if gyroscopic terms are presented, then D is not symmetric).
The mass matrix is assumed to be symmetric and positive define, M = M 7T > 0. The vector
f(t) is an external force applied to the system. For our purpose, this force will represent the

control input and the disturbance input actuating on the system. So f(t) takes the form
f(t) = Byu(t) + Byw(t),

where u(t) is the control signal to be determined, and w(t) is the exogenous disturbance.
We cast our problem in the stochastic framework so that w(t) is a white noise process.
However, equivalent results apply when w(t) € Lo (meaning that w(t) is bounded in the

sense of two norm. In other words w(¢) has a finite power spectrum).

T
Using a convenient change of variables given by = = [qT q‘T} , the second-order
differential equation (5.1) is promptly written in the state space form

I 0/, 0 I 0
xTr =
0 M -S -D

By,

T + U+ w

or equivalently

Ei = Az + Byu + Byw. (5.2)
This is a descriptor representation for this system. This form is frequently adopted when
the matrix E is not invertible.

In our approach for the integrated control and structure design problem, the parame-
ters of the structure which are available for optimization appear in the mass, the damping,
and the stiffness matrices. A very important property assumed here is that the system

equation (5.1) is affine in these parameters. By this affine representation we mean that

M(n) = Mo+ nsMs, D(B)=Do+) §D;, and S(y)=So+ Y Sk
S j k

where matrices M, D;, and S}, are given. Since matrix A in (5.2) is affine in D and in S,

and matrix E is affine in M, the system (5.2) can also be written as
E(a) & = A(a)x + Byu + By(a)w,
for A(a) and E(«) affine matrices given by

A(a) = Ay + Z o; Az, E(a) =Fy+ Z oa; B, Bw(a) = Byo + Z a; By,
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where the variable a contains, in a convenient way, the variables 7, G, and =, ie., a =
(n, 8,7). Notice that it is paramount to adopt the descriptor representation (5.2) in order
to preserve the affine property of the mass matrix M, consequently, allowing the mass of

the system to be incorporated into the optimization problem.

Remark 5.2.1 To apply our methodology we do not need explicitly to assume the second-
order representation. Any descriptor system which is affine in the parameters can be used.
We use the second-order representation since we are mainly concerned with mechanical

systems and structures.

5.2.1 The integrated structure and control problem

For simplicity of presentation, we first present the result for the full state feedback
case, with the control gain given by u(t) = Kx(t). Later, in Section 5.5 and Section 5.6,
we present the derivation for the static output and dynamic feedback case, which does not

require much more sophistication. The output vector for performance evaluation is

2(t) = Cua(t). (5.3)

We first present Theorem 5.2.2 which characterizes the control problem for the struc-
ture and control design, with a stochastic interpretation; later, we show its equivalence
to the standard Hy problem. The exogenous disturbance w(t) applied to the system
is assumed to be a stochastic white noise process with intensity W = W7T > 0, ie.,
Elw(t)w(r)T] = W(t — 7). Our performance criteria is to minimize the variance of the
control u(t) applied to the system, while the output z(¢) is bounded in the sense

lim E[z(t)z(t)T] < Q, (5.4)

t—o0

for some given positive definite matrix 2.

Theorem 5.2.2 Assume that the disturbance w(t) is a stochastic white noise process with
intensity W = WT > 0. Define F = KP. Let Q be a given positive definite matriz, and

consider the descriptor system given in (5.2). Then the following statements are equivalent:

(i) There exists structure parameter «, and a stabilizing state feedback gain u(t) = Kx(t)
such that
lim E[z(t)z(t)T] < Q

t—o0
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and
lim E[u(t) u(t)] < 7.

t—o0

(ii) There exists matrices of compatible dimensions P = PT >0, U=U">0, and F,

and parameter «, such that the following inequalities are satisfied

A(a)PE(a) + E(a)PA(a)T + B FE(a) + E(a)FTBT  B,(a)

0, 5.5

By(a)T —Ww1 (55)
U F

Tr{U} <, >0, C.PCT < Q. 5.6

{U} <~ 5Top (5.6)

(iii) For some constant matriz Z, there exists matrices of compatible dimensions Q = QT >

0, U=U">0, and K, and parameter o, such that the following LMI are satisfied

() By(a) A(a)+ BuK E(a)
By(a)T —w-t 0 0
<0, (5.7)
AT +KTBT 0 -Q 0
I E(a)T 0 0 —Q |
U K Q C,
Tr{U} <7, KT O > 0, or Q] > 0. (5.8)

where (x) refers to the term

(—A(a) + B,K — E(a))ZT — Z(A(a) + B K — E(a))T +2QZ"

We present the proof of this theorem in Section 5.4.1, after the necessary tools pro-

vided by the convexifying algorithm have been introduced.

If the matrices A and E do not depend on the structure parameter «, then the
constraint (5.5) in item (i7) is an LMI, hence a convex set, in U, P, and F. In other words,
if the structure is known, the problem reduces to a standard convex state feedback control
problem. If the matrices A and E depend on «, then the product A(a)PE(a) + B, FE(«)
is nonlinear in the decision variables o, F', and P. In this case, it is hard to find a solution.
Even for the pure structural passive design case, where the control gain K is given, the

problem is still nonconvex.

Note that independently of the control parameter K, the product of the system matrix
A(a) and the “Lyapunov” matrix P is always present in (5.5). When the mass matrix

M is fixed (matrix E does not depend on the parameter «), the procedure adopted in
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Grigoriadis and Skelton (1998) and Grigoriadis and Wu (1997) is to iterate between two
convex subproblems: first, for fixed structure parameter « solve for the Lyapunov matrix
P in (5.5); second, for fixed matrix P solve for the parameter of the structure « in (5.5).
This strategy in practice converges slowly to a solution, although there are no guarantee

for a local minimum.

The algorithm we propose in this chapter also iterates between two subproblems, but
in a more elaborate way. Before iterating, we apply some convexifying potential functions
(see Definition 5.3.7) to the nonconvex constraint in order to generate the conditions in
item (i7i). Notice that, for a constant matrix Z, these conditions are simultaneously affine
in the variables @, U, K and a. In this sense the joint structure/control problem has
been “convexified.” Therefore, there will be no need to fix the Lyapunov matrix P in
the redesign step (instead, the fixed matrix will be the added potential matrix Z). The

convexifying potential method and the algorithm will be detailed in the next Section.

Remark 5.2.3 The relation between the control problem presented in Theorem 5.2.2 and
the Hy control control problem is stated in the next lemma. See Boyd et al. (1994); Skelton
et al. (1998) for a proof.

Lemma 5.2.4 (Hs Control Problem) Assume that the disturbance w belongs to space

Lo. Then the Ho norm of the closed loop transfer function
H,.(s) == C.[sI — E(a) ' Ay(a)]E(a) "' By(a)

where Ay(a) := A(a) + By, K, is bounded by \/Tr {Q}, i.e, ||Hy-(8)|]3 < Tr{Q} if and only
if the constraints (5.5-5.6) and (5.7-5.8) in Theorem 5.2.2 are feasible for v — co.

5.3 The Theory Behind the Convexifying Algorithm

This section describes the convexifying algorithm, which is a practical tool for solving
control problems with structure imposed on the controller. It was shown in de Oliveira
et al. (2000) that many standard control problems such as Hy and Hy, problems with
some imposed structure in the controller can be formulated as an LMI problem having
an extra nonconvex constraint. While most algorithms in the literature are aimed at the
feasibility problem, this new algorithm enable us to pursue the improvement of solutions

for suboptimal control optimization problems that are available.
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We shall now introduce some notation and definitions which will be used throughout
this section. The main reference for the optimality condition presented in this section is
Luenberger (1969) and Maurer and Zowe (1979). In their setup, they have consider quite
general topological spaces (Banach spaces). However, since our setup has an Euclidean
structure, we present the theorems in their original setting, and later, we specialize them
to our finite dimensional case. For vector valued functions, see Canon et al. (1966) and
Mangasarian (1994). The topology and the definitions of derivatives we shall need are
precisely described in Section 4.2.3 from Chapter 4. Thus, we do not repeat them here. In

this topology, the inner product of two matrices A and B is
(A,B) = Tr {AB"},

and the norm induced by this inner product is || X || = \/Tr {X X7T}. The notation W* stand
for the dual space of W (the space of all bounded linear operators on W). The composition

of two functions f1(f2)(z) is also denoted by f1(y) o fa(x).

Definition 5.3.1 (Positive cone) Let K be a closed convex cone in a real Banach' space
W with vertex at the origin, which is also pointed and proper (K ({—K} = {0}). For
x,y € W, we write x > y (with respect to K) if x —y € K. The cone K defining this
ordering is called the positive cone in W. The dual (or polar) cone of K, which we
denoted by K°, is defined as

Ke:={leW :4k)>0 foral keKk}.

Evidently, if W is taken to be S", the cone K induces the natural ordering on the
set of positive semidefinite matrices, i.e, for matrices X and Y in S™, we write X <Y if
Y - X € 8%, and we write X <Y if Y — X lies in S" ,, the set of positive definite matrices

(with analogous definition for > and >).

Definition 5.3.2 (Regular point) Let V and W be real Banach spaces. Let K be a pos-
itive cone satisfying Definition 5.3.1. Let G(x) be a mapping from V to W. Assume the
Fréchet derivative of G(x), denoted by G'(x), exists at T € V. Then T is said to be a reg-
ular point with respect to the constraint G(z) < 0 if G(Z) < 0 and there is a 6, € V such
that

G(z) + G'(z)d, < 0.

' A Banach space is a complete normed space (Reed and Simon (2000)).
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This condition implies the assumption used in Maurer and Zowe (1979):
0€int {G(z) + G (z)0, +k:6x €V, ke K},

where int denotes the topological interior.

This regularity condition essentially eliminates the possibility of the constraint bound-
ary forming a cusp at a point. It also exclude the possibility of incorporating equality

constraints by reducing the cone to a point or by including a constraint and its negative.

The next Theorem 5.3.3 provides the first-order necessary optimality conditions for
the minimization problem stated in (P). This theorem is presented in Luenberger (1969)

[9.4, Theorem 1] and Maurer and Zowe (1979) [3, Theorem 3.2].

Theorem 5.3.3 (Kuhn-Tucker theorem) LetV and W be real Banach spaces. Let K be
a positive cone in W which has a nonempty interior. Let f(z):V — R and G(z) : V —- W

be Fréchet differentiable. Suppose x* is a solution of
min f(x) subject to G(xz) <0 (P)

and that x* is a regular point with respect to the constraint G(x) < 0. Then, there is a

linear functional ¢ € K° such that

fl@®) + Lo G'(a") =

0
(5.9)
LoG(x*) =0

Remark 5.3.4 In this section we take ¥V C RP*9 and W to be the space of all symmetric
matrices S™ with K the usual cone of positive semidefinite matrices S'y. For this particular

case, using the Riesz representation Theorem?, the above condition (5.9) reduces to

fi@®) + (G ("), 9) = 0
(G(z7),¢) =0,

(5.10)
with ¢ a self-adjoint positive semidefinite matriz, i.e., ¥ € S'}.
The next Theorem 5.3.5, from Maurer and Zowe (1979) [5, Theorem 5.2], gives a

second-order sufficient condition for a local minimum of the minimization problem stated

above in (P), when the spaces V and W are assumed to be of finite dimension.

2See footnote on page 100.
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Theorem 5.3.5 (Second-order sufficient condition) Let P denote the set of feasible
points for the minimization problem (P). Let z* € P. Let the following set

Ko ={k—XG("): AeR, keK}

be closed and suppose L(x) = f(x)+ £ o G(x) is a Lagrangian for (P) at x*. Assume the
second Fréchet derivative of f"(z) and G"(x) exist at x*. If

L"(2)(82,8,) >0 forall 6, €B, &, #0
with B given by
B={0.€V:-G'(&")0, € Kg} [ {0 : f/(")5: =0},
then there are o > 0 and p > 0 such that f(x) > f(z*) + ||z — 2*||? for all {z : G(z) <0}

with ||z — z*| < p.

The interpretation for the above finite dimensional case, when f(x) : R® — R and
G(z) : R™ — R™, is that the Hessian L”(x) of the Lagrangian L(z) = f(z) + > ;- MiGi(x)

must be positive definite on the set of those nonzero directions
8z € {6z : Gi(2*)0, <0 for i € I and Gj(2*)d, =0 for i € Io}
with

11 = {Z : GZ(ZL'*) = 0, )\z = 0}, and 12 = {Z : GZ(ZL'*) = 0, )\z 75 0}.

Definition 5.3.6 (Potential matrix function) Let V C RP*9. Let the matriz function
H(z,£):V xV — S"™ has a Fréchet derivative H'(x,£) in z defined for all x,& € V. Then

H(z,§) is called a potential matrix function if the following conditions are satisfied:

i) the matriz H(x,§) is positive semidefinite for all z,§ € V;
ii) for all x,§ €V satisfying ||z —&|| < 9, there exists € > 0 such that H(z,§) < el|lx —&||;

iii) for all x,& €V satisfying ||x —&|| < 9§, there exists € > 0 such that H'(z,§) < e||lz—&|.

We are especially interested in potential functions with the following property.

3The set T = {0, €V : —=G'(2*)6, € Kg} is called the linearizing cone of P at x*.
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Definition 5.3.7 (Convexifying function) Let V C RP*?. A potential matriz function
H(z,§):V xV — S" defined for all z,§ €V is said to be a convexifying function if, for
a given & € V, the function H(x,§) added to the nonconvexr matrixz function G(x):V — S™
makes the expression

G(z) + H(z,€)

a convex matriz function in x for all x € V.

We will be looking for potentials that are able to “convexify” a given nonconvex matrix
function G(z) : V € RP*? — §". However, there might exist many candidates for such
convexifying functions. Independently of a particular choice of the convexifying function,
we state a simple algorithm to find suboptimal solutions to the nonconvex optimization
problem

I;leigf(w), Q:={zxeV:G(x) <0}. (5.11)

Without loss of generality, we can assume f(z) to be linear. We also assume that G(x) is

a nonconvex matrix function and that the set 2 is compact and has a nonempty interior.

Algorithm 5.3.8 Let € > 0, 2° € Q and a convezifying potential matriz function H(z, &) :
Y — S™ be given:

1. For k=0,1,2,..., solve the convex optimization problem
a2 = arg m})n fz), Q:= {a: €V:G(x)+ H(zx,z") < 0} . (5.12)
relly

The above convex problem is significantly simpler than (5.11), and we assume that its

solution can be obtained by some available convex programming technique.

We now present some properties of the above Algorithm 5.3.8. Assume that for each k
the set Q has a nonempty interior. At every iteration k, we have Qj, C €, since H (z, %) > 0
for all x € Q. implies
G(z) < G(z) + H(z,z*) <0

Thus = € Qy, implies € Q. In particular, this holds for the solution z**1 of the convex

k+1

subproblem. Moreover, the solution x is a feasible starting point for the next iteration,

k—l—l)

since G(z < 0 and consequently

e Q= {a: eV:G(x) + H(x, 2" < 0} :

1 A precise definition of convex matriz function is found in Section 3.2.4 from Chapter 3, where theoretical
and numerical tools for checking convezity of matrixz function are also provided.
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This proves that when z° € , Algorithm 5.3.8 generates a sequence of feasible solutions.
Furthermore, as z* and 2**! belong to Q, we have from (5.12) that f(z¥!) < f(2*). Thus,
the sequence {f(z¥)} is monotonically decreasing. Since the set Q is bounded, the linear
function f(z) is bounded from below, and consequently the sequence {f(z*)} converges (to

a point which we denote by f*).

Assuming at each iteration k, that the suboptimal value z*t! from the convex sub-
problem (5.12) is a regular point, then from the Kuhn-Tucker condition (5.10), there exists

a positive semidefinite symmetric matrix 51 > 0 such that
F@ ) + (G @) + H (@M h), ) =0

k+1 k+1 kY ook+1y (5:13)
(G(x" )+ H(z",2%),¢" ) =0

Since the range of {2*} lies in the compact set €, then some subsequence {z%} converges

kj-i-l _

to a point in €, analogously, ||z z¥i|| — 0 as k — oo. Assume this subsequence is

such that f(z%) — f*. Then, from the definition of the potential matrix function given in
(5.3.6), we have

1H (2%, 2%)| — 0 and [[H'(2"* 2" — 0.

Consequently, at the limit, (5.13) equals (5.10), which is the generalized Kuhn-Tucker con-
dition for the original nonconvex problem. If a solution x* satisfies the conditions in Theo-

rem 5.3.5, then z* is a minimum of the original nonconvex problem.

Remark 5.3.9 In practice, the algorithm needs to stop in a finite number of iterations.

This can be ensured by enforcing the stopping criteria
£ (@) = faM)] < e (5.14)

Using this criteria, one can no longer guarantee the existence of a convergent subsequence.
However, this does not exclude the possibility of a solution be attained in a finite number of

iterations, i.e., at some iteration k, the solution x*t1 of the convex subproblem may satisfies
1F/ (@) + (@ (@), ) < 6 (5.15)
(G ("), )] < 6

for some 1 > 0. Since, there exists a x**' for k large enough such that (5.15) holds, a

possible stopping criteria is to impose (5.14) and (5.15) with € << §.

Remark 5.3.10 The presentation in this section has considered uniquely functions of a
single variable x. However, the extension to the multivariate case where the functions are

defined on a tuple x = {x1,...,x,.} is immediate.
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5.4 Applying the Convexifying Theory

In the integrated design problem stated herein, we do not impose constraints on the
control gain matrix, although the control law could be subject to arbitrary affine structural
constraints, enabling one to solve complex joint structure/control design problems. How-
ever, it is possible to show that the free structural parameters create the equivalence of
a decentralized control problem where the “control” gain matrix is diagonal. In order to

elaborate more on this point define

041]
A g 5 ]:[ — I I ] 3
OZZ'I
[ Ay ] [ B | [/ ]
A = , B, = , E =
Az Bwi Ez

Then the matrices A(«), By (), and E(«a) can be written as

A(a) = A(] + IAA
By (a) = Buo + IAB,,
E(a) = Ey + IAE

and the system equation (5.2) as
(Eo +IAE): = (Ap +IAA)z + B, Kz + (Byo + IAB, )w
which after some manipulation gives:
Epi = (Ap + ByK)x + Ia + Byow
with

up = Ayy y1 = Ex
up = Ay y2 = Az

uz = Ays y3 = Byw
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and @ given by 4 = ug + ugz — u

If y; were a set of available measurements, and A were a diagonal control gain multi-
plying the measurements y;, then the structure design problem has the same mathematical
structure as a problem where the “control” signal u; depends only on the ith “measurement”
signal y;. In control jargon, this is called “decentralized” control. In general the imposition
of structure in the control gain matrix is called a “decentralized control problem,” and the
mathematics needed to solve this problem are the same (find diagonal A) as the structural

design problem posed herein.

In order to apply the convexifying idea to the integrated structure and control design,
we shall define the nonconvex function G(x) we are interested in. From the set of conditions
(77) given in Theorem 5.2.2 we have that the constraint with nonlinear terms is (5.5).

Completing the squares, this inequality can be manipulated into

(*)  Bu(a)
By, (a)T —w-1

Ag(a, K)PE(a) + E(0)PAy(a, K)T' Byl(a)

< 0.
By(a)T —-w-t

with the term (x) given by
() = Ag(a, K)PAg(a, K)T + E(a)PE()T — (Ay(e, K) — E()) P (Ag(o, K) — E(a))”

and Ay(o, K) = A(a) + ByK. Using Schur complements®, the above inequality can be

equivalently written as

[ (Aa(a, K) — B(a) P(Aa(a, K) — E(a))”T By(a) Aa(a,K) E(a)]
B By ()T -w-t 0 0
G(z) = N 0 P 0 < 0.
E(a)T 0 0 -Q
i ~ (5.16)

where Q = P~ and z := (P, a, K).
We can now define a convexifying function H(x,n) that makes G(z)+ H(x,n) matrix
convex in z. For this purpose, let 1 := (P, &, K), the matrix Z(n) be
2(77) = (Acl(a7k) - E(a)) P,
and the function H(x,n) be given by

(
H(z,n) = (Z(z) — Z(n))(Z(z) — Z(n))"

(5.17)
— (Aa(, K) — E(a) — Z()P~")P(Aua(a, K) - B(a) — Z() P~

®The matrix II = {(I) F} is negative definite (II < 0) if and only if A < 0 and ® — TA™'T'T < 0. The

A
matrix ® — TATT7 is called a Schur complement of matrix II.
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The above convexifying function H (z,n) satisfies all the assumptions given in Defini-
tion 5.3.6. It satisfies the first assumption i), since H(z,n) is positive semidefinite for all
x,n. It is also immediate to see that H(x,n) — 0 whenever x — n), satisfying in this way as-
sumption 7). Noting that H(x,n) is affine in z, its first directional derivative DH (z,7)[0]
in the direction &, has the form (Z(z) — Z(n))Z(0,)" + Z(6.)(Z(x) — Z(n))T. Consequently,
whenever x — 7, one obtain that DH(x,n)[0,] — 0 for all 6, (similarly, H'(x,n) — 0).

Thus H(z,n) also satisfies condition ).

Adding the convexifying function H(x,n) just defined in (5.17) to the first block of the

nonconvex matrix function G(x) given in (5.16), we obtain the following matrix inequality

(*) By(a) A(e) + ByK  E(a)
By (a)” ~wl 0 o,
A(@)T +KTBT 0 -Q 0
E(a)T 0 0 —Q

with the term (*) given by
~(A(a) + BuK — B(a))Z(n)" — Z(n)(A(@) + BuK — E(a))" +Z(n)QZ(n)"

Which is the inequality (5.7) given in Theorem 5.2.2. In this form, the Lyapunov matrix
P = Q7! and the system matrices A(a) and E(a) no longer appear as products. Instead,
these products have been replaced by products with Z(7), which has been introduced with
the convexifying function. Notice that 7 is kept constant and equal to n = 2* in the convex

subproblems to be solved of the form (5.12).

Considering as the objective function to be minimized an upper bound on the covari-
ance of the control energy, that is, f = v > E[u(t)Tu(t)], the ideas explained so far are

summarized in the algorithm below. The feasible set G for this problem is given by

G :={(v,o, K,Q,U) : satisfying the set of inequalities (5.7)-(5.8)}.

Convexifying Algorithm for Structural Control — CASC

Let f = min~.
Set the nominal values for «ag, Ag, and Eg.
Compute Ky and Py by finding a feasible solution to
the convex conditions given in item (i) of Theorem 5.2.2.

Set € to some prescribed tolerance and k = 0.
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Repeat
Set ZF « (AK (aF) — E(a®))PF.
For fixed Z = Z*, solve f* = min~y
subject to (v, a, K,Q,U) € closure(G).
Denote the solution (o, K*,Q*,U™).
Set (aFt1, Kh+1 phtl) (a*,K*,Q*_l).
k—k+1.
Until ||f* — f*1| < e

It is possible to add an extra step to the above algorithm: before setting Z* «—
(A% (ak) — E(ak))P*, we update P* by solving the LMI (5.7-5.8) with a = o*. In our

experiments, this extra step sometimes provides a faster convergence of the CASC algorithm.

5.4.1 Proof of Theorem 5.2.2

This section provides the technical details needed for the proof of Theorem 5.2.2.

Proof. The discussion in the previous section can be used to show the equivalence
between conditions (i) and (ii¢) given in Theorem 5.2.2. If the constraints in (i7) have
a feasible solution 7 := (P, E,Fﬁ_l), then G(T) < 0. Hence the constraints in (i)
also have a feasible solution for some Z(z), since H(Z,T) = 0 from the definition of the
convexifying function. Conversely, if the constraints (iii) have a feasible solution Z, 77, then
G(Z)+H (z,7) < 0. Since H(T,7) > 0 by assumption, we have that G(T) < G(T)+H (Z,7) <

0, and consequently the constraints in (i7) are also feasible.

The equivalence between (i) and (i) in Theorem 5.2.2 is provided by the following
argument. Since, by assumption, the mass matrix M («) is positive definite for all a of
interest, the matrix E(«) is invertible. Hence, for the state feedback law given by u(t) = Kz,

the closed loop descriptor system

E(a) ¢ = (A(a) + ByK)x + By(a)w,

E(a) & = Aa(a)z + By(a)w.

can be equivalently written in standard state space form as

i = E(a) Y (Ag(a)z + Byla)w),

i = Ay(a)r + By (a)w.
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For the above stable state space system it is a standard result (Skelton et al. (1998))
that the conditions in item (i) of Theorem 5.2.2 hold if, and only if

Elu®)Tu(t)] = Tr {KPKT} <~ and Elz(t)z(t)T] = C.PCT < Q,

where the symmetric positive definite matrix P is a feasible solution to the Lyapunov

inequality

A()P + PAy ()T + By (a)WB,(a)T <o0.
This matrix P is an upper bound to the closed loop controllability Grammian. Applying
a congruence transformation (which preserves the inertia of the inequality) by multiplying
on the left and on the right side by the symmetric matrix F(«), we obtain the equivalent

inequality
Ay(a)PE(a) + E(@)PAy(a)” + By(a)W By (a)? < 0.
Using a Schur complement, it is possible to show that the above inequality is equivalent to

Ag(@)PE(a) + E(a)PAg()T  By(a)

Bo(a) e < 0. (5.18)

Noting that Ay (a) = A(a) + B, K and F = K P, inequality (5.18) becomes inequality (5.5)

given in (i7). To show (5.6) we introduce the auxiliary symmetric variable U such that
U>KPK"=FpP'F"

then v > Tr{U} > Tr {K PK T}. Hence, using a Schur complement, this inequality is
equivalent to

U F
FT p

Tr{U} <7, > 0.

This completes the proof. [

5.5 Static Output Feedback

This section extends the result provided by Theorem 5.2.2 to the static output feed-
back case without noise measurements. Let us define the available noise free measurements

y(t) for feedback by y(t) = Cyx(t). Thus, the control law is now given by u = KCyx.
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Theorem 5.5.1 Assume that the disturbance w(t) is a stochastic white noise process with
intensity W = WT > 0. Let Q be a given positive definite matriz, and consider the descrip-

tor system given in (5.2). Then the following statements are equivalent:

(i) There exists structure parameter o, and a stabilizing static output feedback gain u(t) =
KCyx(t) such that
lim £[z(t)z(t)1] < Q

t—o0

and
lim E[u(t) u(t)] < 7.

t—o0
(ii) For some constant matriz Z, there exists matrices of compatible dimensions QQ = QT >

0, U=UT >0, and K, and parameter «, such that the following LMI are satisfied

(*) By(a) (A(e) + B.KCy) E(a)
Buy(a)T e 0 0| _,
(A(a) + B,KC,)T 0 —-Q 0 ’
E(a)T 0 0 -Q |
€@ C > 0, Tr{U} < 7, v KRG, > 0.

cT Q CTET  Q

where (x) refers to the term

(*) = —(A(a) + BLKC, — B(a))ZT — Z(A(a) + B,KC, — E(a))T +2QZ"

Proof. The proof is quite straight, and follow from the proof of Theorem 5.2.2 by replacing
the state feedback gain K by the static output feedback gain KC,,. [

5.6 Full-order Dynamic Output Feedback

This section now extends the result to the full-order dynamic feedback case. Assume
that the disturbances w(t) and v(t) are uncorrelated stochastic white noise process with
intensity W = W71 > 0 and V = VT > 0 respectively. Let the controlled output for
performance evaluation be z(t) = C,z, and the measurements available for feedback be

given by y(t) = Cyx + v. Then, the system takes the form:
E(a) & = A(a)x + Byu + By(a)w

z=C,x

v=cut (o 1) (1),

(5.19)
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Where the controller, instead of a constant gain, is now a strictly proper (D, = 0) dynamic

feedback law given by

U= Cete (5.20)
Te = Acxe + Bey.

Theorem 5.6.1 below characterize the integrate structure and control design problem

for the dynamic output feedback case.

Theorem 5.6.1 Assume that the disturbances w(t) and v(t) are uncorrelated stochastic
white noise process with intensity W = W1 > 0 and V. = VT > 0 respectively. Define
V= CgV_le. Let the controller be given by (5.20). Let Q be a given positive definite
matriz, and consider the descriptor system given in (5.19). Then the following statements

are equivalent:

(i) There exists structure parameter «, and a dynamic output feedback controller such
that

lim E[z(t)z(t)T] < Q

t—o0

and

lim E[u(t)Tu(t)] < 7.

t—o0

(i) There exists matrices of compatible dimensions P = PT >0, X=XT>0, and F,

and parameter «, such that the following inequalities are satisfied

A(@PE(e) + B(2)PA(@)" + B.FE(@) + BQ@F'B] Bu(@)] oo
Bw(a)T —w-1 .
XE() ' A(a) + A(a)TE(@) ' X =V XE(a)™!' By(a) <0 (5.22)
Buw(a)TE(a)"'X -w! |
U F 0
Q> c.pcT, FT P I|>0, T{U}<n. (5.23)
0 I X

(iii) For some constant matrices Z, Z1, Zo, Z3, and Z4, there exists matrices of compatible

dimensions Q = QT > 0, X = XT > 0, and K, and parameter «, such that the
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following LMI are satisfied:

(x1) By(a) A(a)+ B,K E(«)
By(a)T —w-1
() 0 " <o (5.24)
A(@)T +KTBT 0 —Q 0
E(a)” 0 0 -Q
(¥2)  By(a) A(a) E(a) Z9V
By(a)T —Ww=t 0 0 0
Ala)T 0 -X 0 0|<0 (5.25)
E(a)T 0 0 —-05X 0
| vzT 0 0 0 —X|
it G >0 v K >0 T {U} <~, (5.26)
) ) r b *
cr Q@ KT Q+27,X77 - Qz7 - 2,Q !

where (x1) refers to the term
(x1) = —(A(a) + By K — E(a))ZT — Z(A(o) + B K — E(a))T +2QZ7
and (x2) refers to the term

(+2) = Z1XZ] - Z1(A(a) — BE(a))! — (A(a) — B(a))Z{ +Z5VZ3
+Z3XZLY — 75(25V — E(a)T - (Z2V — E(a))Z].

In this case, one such dynamic controller is given by

Ac=E(a) 'B,C. + [X'E(a) " A(a) + (B(a) " A(a) — B.Cy)P
+E(a) "' By(a)WBy(a)"E(a) ] (P — X 1)

B.=X"'clv!

C.,=FP-Xx"1H!

D.=0

(5.27)

with P=Q " and F = KP.

5.6.1 Proof of Theorem 5.6.1

The equivalence between condition (i) and (i) in Theorem 5.6.1, along the formula
for the controller given by (5.27), is a standard result which is provided in (Skelton et al.

(1998)). So, we should only demonstrate the equivalence between condition (ii) and (4i1).
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Let us start by showing the equivalence between (5.21) and (5.24). By defining K = FP~L,

the matrix inequality (5.21) becomes

(A(a) + B,K)PE(a) + E(a)P(A(a)T + KTBT) B,(a)
By(a)T -w-t

This expression is exactly the same as the MI given in (5.5) for the full state feedback case.
Thus, by applying the same convexifying function H(z,n) given in (5.17), we obtain LMI
(5.24).

Let us proceed by showing that MI (5.22) is equivalent to LMI (5.25). Applying Schur

complements, the MI (5.22) can be equivalently written as:
XE(a) ' Ala) + A(@)TE(a) ™' X =V + XE(a) !By (a)WB,(a)TE(a) "1 X < 0.
Multiplying both sides of the above equation by Y = X !, we obtain
E(a)'A(Q)Y +YA()TE(a)™ = YVY + E(a) !By (a)WBy(a)'E(a)™! < 0.
Multiplying by E(«) gives
A(Q)YE(a) + E(a)Y A(a)T — E(a)YVY E(a) 4+ By(a)W By (a)? < 0.
And finally, by Schur complement, we have

A(Q)YE(a) + E(a)Y A(a)T — E(a)YVYE(a) By(a)

Bu()” 1| <O (5.28)

However, the first entry in this matrix inequality, the expression
A(Q)YE(a) + E(a)Y A(a)T — E(a)YVY E(a)

is not convex and thus need to be convexified. To simplify the derivations, we split this

expression in two terms
0 := A(a)YE(a) + E(a)Y A(a)T and I''=—-FE(a)YVYE(«a),

so that we can convexify each one of these terms independently.

In order to determine a suitable potential function, we need to express the term © in
a more convenient way by completing its square. After completing its square, the term ©

becomes

0 = —(A(a) — E(a))Y (A(a) — E(a)T + A(@)Y A(a)” + E(a)Y E(a).
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Substituting this formula back into the matrix inequality (5.28), and applying Schur com-

plements, we obtain

By(a) —W=L 0 0

<0 (5.29)
Aa)T 0 -X 0
E@T 0 0 -X

where the term (x) is given by
(¥) = —(A(a) — E())Y (A(a) — E(a))" — E(a)YVY E(a),

and X = Y~!'. This MI is evidently equivalent to the MI given in (5.28), and thus the

problem now resumes to convexify the following expression
—(A(a) — E(a))Y (A(a) — E(a))T — E(a)YVY E(a).
To simplify subsequents derivations, we split again this expression as

0 := —(A(a) — E())Y (A(a) — E(a)T and I':=—-E(o)YVYE(a).

5.6.2 Convexifying the term ©

We need to provide a potential function for the nonconvex term
0 = —(A(a) - B())Y (A(e) = E(a)".

In the derivations to be presented, we have suppressed the dependence of Z(n) and H (z,n)
on z and 7. Let us define Z; = (A(a) — E(«))Y, and take the potential function H; to be

H; = (A(a) — E(a) — Z,Y Y)Y (A(a) — E(a) — Z, Y HT.
Or equivalently

H; = (A(a) — E(0))Y (A(a) — E(a))T + 2,y 12T
—Z1(A(a) — E(a))" — (A(e) — E(a))Z7 .

Adding the term H; to the MI given in (5.29), we obtain

(*)  Bu(a) A(e) E(a)
By(@)t —w=t 0 0
Ala)T 0 -X 0
o)t 0 0 —-X

<0, (5.30)
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where the term (k) is given by
(+) = ~B(@)Y VY E(a) + Z:XZT — Z1(A(a) - F(a))T — (A(a) — B(a))ZF

with Y = X~!. The term © has now been convexified, however, the above MI (5.30) is still
not convex, since it contains the term I' = —FE(a)YVY E(«a), which was not accounted in

the above manipulations.

5.6.3 Convexifying the term I

Now, we show how to convexify the term I'. For this specific term, we will have to
apply two consecutive potential functions. Let us define the first potential function Ho for

the term I' as

Hy = (E(a) + ZoY DY VY (E(a) + 2,y HT

Defining Z, = —E(a)Y, this expression can be equivalently written as
Hy = E(a)YVY E(a) + ZoVZE + Z,VY E() + E(a)YVZE

Adding this potential function Hy to the MI (5.30), we obtain

By(a)t —w=1 0 0

<0 (5.31)
A(a)T 0 -X 0
E(a)T 0 0 -X

where the term (k) is given by

(¥) = Z1XZ{ - Zi(A(a) — E(a))" — (Ala) — E(a))Z] + Z5VZ]
+ZyVY E(a) + E(Q)YVZE

Due to the term ZyVY E(a) + E(a)YVZT, this MI (5.31) is still not convex. Thus,
we should define a suitable potential function for this term. However, we first manipulate

this expression by completing its square:

Z,VY E(a) + E(a)YVZ] =
—(ZyV — E(a))Y (ZoV — E())T + Z,9YVZT + E(Q)Y E(a)T.
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Substituting this expression into the MI (5.31), we obtain

(x)  Bu(a) Ale) E(a)

By()t —w=t 0 0

<0
Aa)T 0 -X 0
E(a)T 0 0 -X

with the term (x) given by

(¥) = Z1XZ] = Zi(A(a) — B())" = (A(@) = B(a))Z] +Z2VZ]
—(ZoV — E(Q))Y (ZV — E(a))T + ZoVYVZE + E(a)Y E(a)”.

Finally, by applying Schur complements, this inequality can be further simplified to

(x)  Bu(a) A(a) E(a) ZyV]
By(a)T W= 0 0 0
Aa)T 0 -X 0 0| <0 (5.32)
E(a)T 0 0 —05X 0
vz¥ 0 0 0 —X|

(¥) = Z1XZ{ — Zi(A(a) — E())" — (A(a) — E(a))Z{
+ Z9VZE — (Z5V — E(0))Y (Z5V — E(a))T.

This MI (5.32) is naturally identical to the MI (5.31), since we have only manipulated
the nonconvex term by completing its square. In this way, the nonconvex term to be

convexified is now given by
—(Z3V — E(a))Y (Z2V — E(a)T.
A possible potential function Hg for this expression is given by
H3 = (Z5V — E(a) — Z3Y Y)Y (Z,V — E(a) — Z3Y 1T,
Or equivalently

Hjz = (ZoV — E(a))Y (Z9V — E(a)T + Z3Y7'ZL — Z3(22V — E(a))”
— (Z5V — E(a))Z}

with Z3 = (ZQV — E(Oé))Y
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To obtain the final expression, we must add this potential Hs to the MI (5.32). By
doing so, we obtain the following LMI:

()  Bu(a) A(a) E(a) ZyV]
By(a) -W=1 0 0 0
Aa)T 0 -X 0| <0
E(a)T” 0 0 —05X 0

vz¥ 0 0 0 —X]

(¥) = Z1XZ{ — Zi(A(a) — E(a))" = (A(a) — B(a))Z] + Z2VZ] + Z3XZ5
— Z3(Z5V — E(a))T — (Z5V — E(a))ZE.
Which is exactly the LMI given in (5.25). The final convexifying function is thus given by
H2 —+ Hg.

The only part missing now, is to show the equivalence between (5.23) and (5.26).
Since Q@ = P~! and K = FP~! = FQ, the inequality (5.23) can be manipulate as

U KP 0

U KP
PKT P 0|>0 < > 0.
PKT p-Xx-!
0 0 X

Which, by applying the following congruence transformation

I 0 U KP I 0

>0

0 P'||PKT P-X"1||0 P!

gives
U K
> 0. (5.33)
KT Q-QXx7'Q

The above expression QX 1@ is not convex, but can be convexified with the following

convexifying function:
Hy=(QX ™' = Z)X(QX ™~ Z0)" = QX 'Q + ZuXZ] — QZ] — Z4Q.

Where Z; = QX~!'. Now, by adding the potential Hy to the above MI (5.33), we obtain
the LMI given in (5.26):

U K

> 0.
KT Q+7,Xx7F - Q77 — 2,Q

This complete the proof of Theorem 5.6.1.
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5.7 Numerical Results

5.7.1 The CASC algorithm wersus the two-step redesign approach

We present an experiment which compares the behavior of the CASC algorithm with

the TSRED algorithm (the two-step redesign approach).

Algorithm 5.7.1 (The TSRED algorithm) Let o, Q, E, W, and B, be given.

1. For fized o, evaluate A(a) and By(a). Then, design a controller K = FP~! by
solving the LMI problem (5.5)-(5.6) in Theorem 5.2.2 for F', P, and U.

2. For fired Lyapunov matrixz P, redesign the structure parameter o by solving the LMI
problem (5.5)-(5.6) for o, F, and U.

3. Until convergence, go back to 1.

Note that the mass matrix F in this approach is not allowed to be redesigned. This is not

the case for the CASC algorithm, where matrix F can also be affine in a.

The dynamical system for this example is a three-degree-of-freedom mass-spring sys-
tem described in Figure 5.1. This class of model can represent many engineering systems.
In the experiment to be presented, we did not use realistic data, since the main point is a
comparative exposition of our method. However, in the next section, we provide a fairly

realistic application of the CASC algorithm to the design of a civil engineering structure.

’ 4#
k1 ko

W W]
mi ma m3
- F— ———F—
d1 d2

Figure 5.1: A 3-DOF mass-spring system

In this model, m1, mso, and mg are the mass of each one of the car. Their nominal
values are taken to be mq = 4, mg = 2, and m3 = 10, The nominal value of the stiffness
of the spring elements connecting those cars are k1 = 1 and k9 = 1. The nominal value for
the damping coefficient are d; = 0.01 and ds = 0.01. The controller, which we denote by u,

is applied to the mass msy. The states are the displacement and velocity of each mass m;,
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Table 5.1: Bound on the performance

mass Ea? Ei?
mi 50 250
ma 150 250

ms 150 500

relative to a fix referential. Thus x; represents the displacement of m; and z; its velocity.

The disturbance is a unitary white noise applied to each one of the states.

The problem we are interested is the simultaneous design of the controller u and
the parameters k; and dy. We minimize the variance of the controller v imposing that
the variance of the displacement and of the velocity of each mass are bounded by some

prescribed value. These performance bounds are presented in Table 5.1.

Since we minimize only two parameters ki and dy, the levelcurve for this example can
be easily described by a plot. By a brute force procedure, we found the optimal values for
the parameters to be kj = 0.475 and d] = 1.010. For these values, the required control
energy is given by ||u||3 = 0.118. We solve the simultaneous structure and control problem
using the TSRED algorithm and the CASC algorithm for four different initial conditions,
given by (dy, k1) = {(1,1),(6,0.5),(10,1.5),(1,2)}.

Figure 5.2 presents the results corresponding to TSRED algorithm. After 1000 itera-
tions this approach did not converge to the optimal solution k] and d7, for any of the initial

guess.

Figure 5.2: Solution path for the TSRED algorithm
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On the other hand, the CASC algorithm converged in less than 150 iterations for all

the above initial guess. The levelcurve and the solution path are presented in Figure 5.3.

Figure 5.3: Solution path for the CASC algorithm

5.7.2 Isolating a civil engineering structure against earthquakes

To illustrate the proposed methodology for solving the integrated control and struc-
ture optimization problem in the LMI framework, we choose the problem of isolating a civil
engineering structure against earthquakes. This will not be a comprehensive presentation
on how to solve this specific structure problem, but rather on providing efficient tools for

this purpose.

The field of controlling vibrations of structures against earthquakes has attracted the
interest of many researchers. The references Kose et al. (1998); Ramalho et al. (2000);
Spencer Jr. et al. (1998) provide a concise explanation of the structural problem, and a
benchmark comparison of various structural control algorithms applied in an evaluation

model obtained from experimental data.

The model of the system in consideration is shown in Figure 5.4. This is a three-
degree-of-freedom version of the same structure used in Ramalho et al. (2000). The nominal
values for this system are given in Table 5.2. The control inputs u; are independent forces
applied to each floor. Hence, for the model (5.2), B, = I, the matrix B,, is given by
B, = (mq,ma, mg)T, and the disturbance vector w is assumed to be a white noise process
with intensity W = 16 [m?/s*], which represents the earthquake acceleration of the ground

motion Z, in Figure 5.4.
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Figure 5.4: 3-DOF model

Table 5.2: Nominal Structural Parameters

Floor Stiffness Damping
Masses Coefficients Coefficients
[Kg] [kN/m] [kN-s/m]
my = 5897 k1 = 33732 dy =67
mg = H897 ko = 29093 dy = 58
mg = 5897 ks = 28621 ds =57

The dynamics of the above system is described by Eq. (5.2) with the mass matrix
M given by M = diag(mi,mga,m3), and the stiffness matrix S and the damping matrix D
given by:

k14 ko —ko 0 dy + do —ds 0
S = —ko ko + ks —ks|, D —da dy +d3 —d3
0 —k3 ks 0 —ds ds

The states are the displacement and the velocity of each floor relative to the ground, i.e.:

¢; represents the displacement of the mass m;, and ¢; its velocity.

We are interested in the simultaneous design of the parameters of the structure and
the controller, using the control implementation stated in Theorem 5.2.2. We seek designs

which limit the variance of the inter-story drift z; = q1, z;41 = ¢;+1 — i, ¢ = 1,2, and their
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velocities z;+3 = 2;. Thus the output C, is given by

1 00 0 0 0
-1 00 0 0
0 -1 1 0 0 0
C. =
0 01 0 0
0 0 0 -1 1 0
(0 0 0 0 -1 1

We seek to bound the output variances such that &€ z? < 0.0002 [m] and € 2 < 0.3 [m/s],
for i = 1,2,3. Thus the diagonal of the output covariance matrix C, PCT of the closed loop
system should be bounded by €, that is CiPC;T < ;, with the bound Q given by

0= (2 x 1072 x 1074,2 x 10~,03,0.3,0.3) .

In our notation, C! means the ith row of the matrix C,. Note that C;PC;T < Q; is a

convex constraint.

For all runs the stopping criteria was the relative error on the control energy between
two successive iterations (&[(uF+1)Tur 1] — £[(uF)Tuk])/ E[(uF)Tu] is less than 5 x 10~ for

ten consecutive times.

We assume that the lower and the upper bounds on all the parameters are 0.5 and
2.0 of the nominal values in Table 5.2. For brevity, we will call the standard deviation of
the control y/&[ulu] the “control effort.”

Example 5.7.1 [k2, d2] In this first example, the parameters to be redesigned are the spring
stiffness ko and the damping coefficient do. We found by an exhaustive search the global
optimum for the integrated structure and control design problem. These optimal values are
ko = 26699 [kN/m] and dy = 116 [kN-s/m]|, which gives the global minimal control effort
VETu] = v/3276393 [kN] required to achieve the design output performance €.

Now, we simulate our CASC algorithm. First, an initial controller K using the nom-
inal parameters in Table 5.2 is determined, by solving the LMIs (5.5-5.6) in Theorem 5.2.2

(which for fixed « it is a convex problem). The initial controller evaluated in this way is

—176699 —319360 —8245 —11994 —9657 —5625
Ko = | 203413 —134380 —189180 —9614 —16822 —16588] . (5.34)
33250 47538  —186040 —5598 —16624 —27045
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For this initial controller, the control effort is \/E[ulu] = v/4408517 [kN]. Note that if the
designer is not allowed to change the parameters of the structure, then the initial controller
Ky provides the best required performance using the least control effort, which is much

higher than the globally optimal effort given by \/E[ulu] = v/3276393 [kN].

We proceed with the algorithm CASC (integrated design) generating the results in
Figure 5.5. After 26 iterations the algorithm converged to the solution k5 = 26751 [kN/m)],
d5 =116 [kN-s/m]|, and the control gain

—-160292.2 —148749.9  -702.4  —-9389.4 —7226.0 —5614.1
K* = | 187423.4 —175483.0 —149112.4 —7176.1 —14506.8 —15039.6 |,
93662.9 —77905.2 —134451.6 —5640.8 —15032.6 —22546.2

which provides a control effort of \/E[ulu] = /3276453 [kN].
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Figure 5.5: Example 1 (kq, d2): Integrated design using CASC

For this controller K*, the achieved output performance, the diagonal of the matrix
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C.PCT, is

0.00019999806470
0.00019999608202
0.00006581424510
0.29217688567246
0.23757322272961
0.14359776862926

This shows that the constraints € 27, £ 23, and £ 2% are active (Table 5.4).

Example 5.7.2 (kq, da, mo) We start this example with the same initial controller K, but

a 9
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Figure 5.6: Example 2 (ko, d2, mo): Integrated design using CASC

we add the additional parameter mo to be optimized. The results from the integrated design
is presented in Figure 5.6. After 201 iterations, the algorithm converged to the solution:

mj = 2948 [Kg], k5 = 23897 [kN/m], and d5 = 116 [kN-s/m], with the control law given by

190499.5 —187499.3 —1254.6 —25891.8 —5650.8  4386.9
K* = |574319.0 —135201.6 —179646.8 —11181.2 —6101.4 —8618.9
447891.3 —21021.9 —163367.5  4487.7 —4548.0 —20177.4
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This gain provides a control effort of \/E[ulu] = v/1323584 [kN].

For this control gain K* and parameters a*, the achieved output performance, the

diagonal of the matrix C,PCYT | is

0.00017774233782
0.00019999687426
0.00008083386592
0.29999795054617
0.26623945460839
0.14227944011144

For this case the binding constraints are £ 23, and € 3.

Example 5.7.3 (k1, k2, ks, d1, da2, d3, m1, ma, mg) In this example, we follow the same
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Figure 5.7: Example 3 (ki, k2, k3, d1, da, d3, m1, ma, ms): Integrated design using
CASC

steps as in the previous Example 2, but now all the parameters of the structure are op-

timized: m1, ma, ms, k1, ko, k3, d1, ds, and d3. The same initial controller K given in
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(5.34) is also used. After 75 iterations, the CASC algorithm gives the solution E[u”u] =0
(see figure 5.7). Thus no active control is needed to achieve the prescribed performance,
and the design is completely passive. The parameters are mj = 3264 [Kg], mb = 3899 [Kg],
m3 = 4498 [Kg], kt = 34120 [kN/m], ki = 27923 [kN/m], ki = 24473 [kN/m|, d} = 133
[kN-s/m], d5 = 116 [kN-s/m], and dj = 114 [kN-s/m].

In this case, the achieved output performance, the diagonal of the matrix C, PCT, is

0.00018566840635
0.00019924123968
0.00009712073257
0.29980689683670
0.29985557567524
0.16787420951997

Table 5.3 summarizes our findings. Using an integrated approach, no control effort is
required to achieve € z2 < 0.0002 [m?] and £ 22 < 0.3 [m?/s?], i = 1,2,3. With feedback
control fixed at the nominal parameters (Kp) the control effort needed is 1/4408517 [kN].

Table 5.3: Control energy [kN]? for performance guarantee Q: € z? < 0.0002 [m?]
and £ 2, < 0.3 [m?/s?],i=1,2,3

Control Energy [kN]?

Parameters Integrated Active only

Example 1: ko, da V3276453 V4408517
Example 2: ks, do, mo v 1323584 4408517
Example 3: all parameters 0 /4408517

For each of the previous three designs, the elements of the diagonal of the output

covariance matrix are shown in Table 5.4.

Example 5.7.4 (k1, ko, ks, d1, do, d3, m1, ma, ms). This example employs all the free
parameters, but we change €} by scaling by a factor u, that is Qu, in order to find the
performance bound Q that represents the best performance that is achievable with only
passive design. The active control energy £[u’u] as a function of the scaling factor p is
shown in Figure 5.8. Thus p = 0.64, i.e., Q = 0.64Q represents the lowest bound on the

output covariance for which the design is still completely passive.
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Table 5.4: Achieved output performance (diagonal entries of C,PCT)

€2 [m] &£z [m]  Ez5[m] £z [m/s] £z [m/s] £z m/s
Ex.1  0.00020  0.00020  0.00007  0.29218 0.23757 0.14360
Ex.2  0.00018  0.00020  0.00008  0.30000 0.26624 0.14228
Ex.3 000019  0.0020  0.0010  0.29981 0.29986 0.16787
Bound  0.00020  0.00020  0.00020  0.30000 0.30000 0.30000

0.2 028 0.36 0.44 0.52 0.6 068 0.76 0.84 0.92 1

I

Active control energy &[u”u] [kN]?

Figure 5.8: Changing the performance bound pf2

For this bound €2, the CASC algorithm converged after 264 iterations to the passive
(Ko = 0 and E[ulu] = 0) solution : m} = 2948 [Kg], m3 = 2948 [Kg], m} = 2948 [Kg],
ki = 37044 [kN/m)], k5 = 28155 [kN/m], k% = 16814 [kN/m], d = 134 [kN-s/m], d} = 116
[kN-s/m], and dj = 114 [kN-s/m]. For this system, the achieved output performance is
given in Table 5.5 below.

Table 5.5: Achieved output performance (diagonal entries of C,PCT)

Ezim] &2 [m]  Ez5[m| £z [m/s] £z [m/s] £z m/s
Ex.4  0.00008  0.0009  0.00008  0.19200 0.19200 0.19200
Bound ~ 0.00013  0.00013  0.00013  0.19200 0.19200 0.19200

Example 5.7.5 (k1, ko, ks, di, da2, d3, m1, ma, ms3). Now, we imposed a tighter upper
bound, and obtain an active control law. We choose u to be 0.4, thus Q = 0.49, yield-
ing performance 2.5 times better than the examples which used the performance criterion

C.PCT < Q, for earthquakes intensity W = 16. Note that the performance C,PCT sim-
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ply scales with W. So the design we now discuss can also be interpreted as delivering the
same performance bound as € in the presence earthquakes intensity W = 2.5(16) = 40.
For this bound, the CASC algorithm converged after 142 iterations to the active solution :
mi = 2948 [Kg], m3 = 2948 [Kg|, m% = 2948 [Kg|, k] = 67343 [kN/m], k5 = 46289 [kN/m],
ki = 28354 [kN/m], di = 134 [kN-s/m], d5 = 116 [kN-s/m], d5 = 114 [kN-s/m], with the

control law given by

307824.1 —390158.3  80694.4  —64017.3  3997.3 3588.3
K* = |827567.6 —216198.7 —125413.8 3072.2 —47713.6  3965.2
190682.3  165905.7 —122324.2  4226.7 3628.9  —42525.5

This gain provides a control effort of \/Eufu] = /1536541 [kN]. The achieved output

performance is given in Table 5.6 below.

Table 5.6: Achieved output performance (diagonal entries of C,PCT)

€2 [m]  E25[m] £z [m] &£z [m/s]  £28[m/s] £z m/s]
Ex.5 000002  0.00002  0.00002  0.08999 008997  0.08997
Bound ~ 0.00006  0.00006  0.00006  0.09000  0.09000  0.09000

Example 5.7.6 Now we simulate the passive system from Example 4 (denoted by CASC-
Passive) and the active system from Example 5 (denoted by CASC-Active) obtained by
the CASC design, and the nominal system, when subjected to El Centro earthquake taken
from Spencer Jr. et al. (1998) (not white noise). The results for the displacements of each
floor are presented in Figure 5.9 on page 209, and the respective velocities in Figure 5.10
on page 210. In these figures, solid line (-) stand for the CASC-Passive system, dashed line
(--) stand for the nominal system, and dotted line (-) stand for the CASC-Active system.
These results show the superior performance of the passive system designed via the CASC
algorithm over the nominal system (comparing only the passive systems). The active system
shows a superior performance over the passive one. This was expected since we imposed a

tighter output covariance upper bound.
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Figure 5.9: Response of the nominal system (--), the CASC-Passive (-), and the
CASC-Active (), due to El Centro earthquake: displacements
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Figure 5.10: Response of the nominal system (--), the CASC-Passive (-), and the
CASC-Active (+), due to El Centro earthquake: velocities




Chapter 6

Conclusion

This thesis provides tools which can solve a large class of optimization problems over
matrix inequalities. This includes, for instance, systems and control problems, or any other
type of engineering problem that can be posed as matrix inequalities. These tools possess
similar advantages as the LMI framework, but without its disadvantages. Moreover, in
order to use the method, no knowledge of LMIs or no knowledge of how to manipulate Mls
to be expressed as LMIs is required. The method has two components: 1) a numerical
algorithm that solves a large class of matrix optimization problems; 2) a symbolic convexity

checker.

The symbolic convexity checker guarantees that the solution obtained from the nu-
merical solver is indeed a global minimum inside a specific region. The implementation of
the NCSDP solver is based on a barrier method. Other methods such primal-dual methods,
could have been used. This solver has been shown to possess comparable performance to
professional LMI solvers when the dimensions of the matrices involved are large (above

30 x 30).

In this thesis, a theory of noncommutative functions which results in an algorithm for
determining where matrix inequalities are convex is developed. Of independent interest, is a
theory of noncommutative quadratic functions and the resulting algorithm which calculates
the region where these functions are matrix positive. Furthermore, an LDU algorithm for
matrices with noncommutative entries and conditions guaranteeing that the decomposition

is successful is also provided.

This thesis has also demonstrated the benefits of simultaneously designing the struc-

ture and the controller with an application to civil structures. This opens the doors to the
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use of control methods to design structures, even when no control is intended. Since the
control methods allow bounds to be placed on the dynamic response, this should be a wel-
comed improvement in structure design. The algorithm is proposed in the LMI framework,
for which very efficient interior point methods are available. The design allows for changes
in any parameters that appear affinely in the mass, the damping, and the stiffness matrices.
The nonconvex simultaneous structure and control design problem is solved by a sequence
of convex subproblems with the help of potential convexifying functions. The performance
criteria used in the design is a bound on the output covariance of the closed loop system,
but the methodology can incorporate many other convex criteria. This thesis improved the
techniques available in the literature in the sense that: the methodology is completely in
the LMI framework, having no need to solve a constrained quadratic optimization problem;
the technique allows parameters in the mass matrix to be optimized; and the proposed

algorithm does not require the Lyapunov matrix to be fixed in the structure design step.



Appendix A

Computer Algorithm for

Representing the Quadratic

— —

Q(Z)[H] with Mq(Z) and V(Z)[H]

- —

In our approach, we are given a noncommutative function Q(Z)[H], which is quadratic
and hereditary in H but usually not quadratic in Z, and we need to express this function as

—  — —

V(Z)[H)T Mgo(Z) V(E)[ﬁ] That means we have to construct the border vector V(E)[I—i]

- —

and the coefficient matrix Mg. This representation of Q(Z)[H] may not be unique.

This section describes a simplified version of the algorithm used. The algorithm is
based on a simple pattern match, that is illustrated here for the case were H := {Hq, Ho}.
It can be easily expanded for the more general case where H has k entries. The algorithm

explained here does not assume H necessarily symmetric. For the symmetric case, just let

— —T

H = H and the steps are the same.

1. Expand the quadratic function in Hy and Ho.
2. In that case, there are four types of quadratic terms involving the H; :
*H;‘F*Hl*, *H;‘F*Hg*, *Hg*Hl*, and *Hg*Hg*.
The pattern matching symbol * means any expression that does not contain H;.

3. We work on each one of these quadratic terms *H] * H j* individually. Let i = j = 1.

Then find all pattern of the form xH lT x H1x. Before the pattern matching is processed,
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it is important that all the terms of the expression to be found are collected. That

means, if there is an expression like
T T
Li" H{ ByH\Li +---+ L} H{ B, HiL;

m

then collect all of the B; in Ay 1 = Z B;. Follows this procedure, then at the end we
i=1

may have a sum of terms like:

T T T
Li" HY Ay Hy Ly + Ly HY A1 pHy Lo+ -+ + Lj,” HY Ay, o, H1L},

Where the A;; for i, = 1,...,¢; collect all the terms that match the expression
L}TH 1T x H 1L}. This step was illustrated in the example above, where all the terms

that match the expression L%TH I« Hi L} are collected in the coefficient A ;.

. The same procedure applies for the terms *H{ * Hox, *HJ % Hy*, and *HI * Hox.

. Once the finding of all the patterns is finished, the A; s are the entries of the coefficient

—  —

matrix Mg, and the HZL; are the entries of the border vector V(Z)[H].



Appendix B

A Formula for the Hessian for the

Uni and Multivariate Cases

B.1 A Formula for the Hessian Term H(dx) for the Univariate

Case

This section computes the formulas for the Hessian term H(Jy ), which is obtained

from the second-order approximation of the auxiliary potential function
#(X) = —logdet F(X).

We abbreviate F(X)~! by just F~!. The second directional derivative of the potential
function ¢(X), (see (4.35)), is given by

k: 2
D?¢(X)[6x,6x] = Tr { (F—l sym {Z Aiasz}> }
=1
w1
—Tr{ Flsym ZMjéxNjcSXTj
j=1
w2
—Trq Flsym{ > M;ox" N;joxT;
j:l+w1
w3
—Tr F_l sSym Z MjéxNjéxTTj
j=1+U)2

To proceed with the derivation, let us partition D?¢(X)[6x,dx] in four terms, Hy(dx),

Ho(dx), H3(dx), and Hy(dx), so that we can apply the directional derivative in each one of
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the terms separately:

H4(5x):—TI' F_lsym Z Mj(ngj(SXTTj

For this derivation, we have omitted the fraction 1/2 that multiplies the Hessian. At the
end, we just need to multiply the final result by 1/2.

B.1.1 The Term H;

Expanding the first term H;(dx) we obtain
Hi(dx) =

k k k k
Tr{F—l > ASxBiFT'Y AjoxBj+ F'Y  AisxBiFT Y BT6YAT

i=1 j=1 i=1 j=1
+F1 Z BIsT ATp~1 Z A;oxB; + F7! Z BIsT ATt Z BT5XAT}
=1 7j=1
We should now apply the directional derivative of the above term as a function of d x along

the direction dy. Doing so, we have

v]=

1(0x)]

1ZA5VBF 1ZA SxBj+ F~ 1ZA SxB;F~ 1ZA5VB

=1 7=1 7=1 =1

)0
{ 1ZA5VBF 1ZBT5XAT+F 1ZA SxB;F~ 1ZBT5$AT
i=1 7j=1 7=1 =1

1ZBT6TATF 1ZA oxB;+ F~ 1ZBT5TATF 1ZA Sv B;
=1 7j=1 7j=1 i=1

+Tr{ F71 Z Bl gL AT p—1 Z B 6% AT + F~! Z B 6% AJF™! Z BIsl AT

=1 7j=1 7j=1 i=1
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Finally, using the cyclic property of the trace operator we can collect on dy and 65, obtaining

k
DHy(0x)[0v] =2Tr{ by |y BiF™! ZA SxB; | F714;

i=1

k
+ Y BiF! ZBTéxAT) FlA;
=1

k k
+2Tr (Y ATF! ZAjaxBj
1=1

1BT
k

k
+ > ATF! ZBTéxAT FBT | of

This expression is equivalently written as
DHy(6x)[0v] = Tr {SvH; (6x)" + Hy(6x)67 } (B.1)

with

k k
Hy(6x)=2) ATF'| Y Aj6xB; | F'B}

i=1

k k
+2) ATP~' | Y BI6xAT | 1B
i=1 j=1

B.1.2 The Term H,

Expanding the second term Hy(dx ) we obtain

w1 w1
Ho(0x) = =T F7H | Y MjoxNjox Ty + > T ok NF ok M)
j=1 j=1

Applying the directional derivative of the above term as a function of § x along the direction

dy gives

w1 w1
DHy(8x)[0v] = —Tr ¢ F=1> " Moy NjoxTy + F~1 > M;ox N;oyT;
j=1 j=1

w1 w1
—Trq FY Tl oy "N ox "M + P T ox TN 6y T M)
j=1 j=1
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Collecting the above expression on dy and 65, we obtain

w1 w1
DHy(6x)[0v] = —=Tr ¢ oy | D N;ox T F My + > T;F~ Mjox N
j=1 j=1

w1 w1
E T T T p—1T E T p—1T T A7 T T
j=1 i=1

This expression is equivalently written as
DHa(6x)[0v] = Tr {3y Ha(dx)" + Ha(dx)0% } (B.2)

with

w1 w1
Ha(dx) =—> NFsxkMIF'T] +Y MIF'T]6iNT
j=1 j=1

B.1.3 The Term Hs

Expanding the second term H3(dx) we obtain

w2 w2
Ha(0x) = —Trd F7H [ > Msx"NjoxTy+ > T ox"NfoxM]
j:1+w1 j:1+w1

Applying the directional derivative of the above term as a function of § x along the direction

Oy gives

w2 w2
DH3(0x)[0y] = —Te{ F~1 Y Moy " Niox Ty + F~1 Y Miox" Ny T,
j:1+w1 j:1+w1

w2 w2
-1 § : T¢ TarT T -1 § : T TarT T
—Tr< F Tj (5\/ Nj 5)(Mj + F Tj 6X Nj 5\/Mj
j:1+w1 j:1+w1

Collecting the above expression on dy and 5%';, we obtain

w2 w2
DH3(0x)[0v] = =T by | > TF 'MskN;+ > M F'T[6XN]
j:l+w1 j:l+w1

w2 w2
—Trq | Y. NiSxT,F'Mj+ Y NJoxM]F'T] | 6
Jj=14w1 Jj=14w1

This expression is equivalently written as

DHg(0x)[6v] = Tr {syHs(6x)" + Hs(dx)d{ } (B.3)
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with s s
Hg(éx):— Z Nj(SX:ij'F_le-l- Z NjT(SxM]TF_lT]T
J=1l+w1 Jj=1+wn

B.1.4 The Term Hy

Expanding the second term Hy(dx) we obtain

w3 w3
Hi(0x) =—Ted FH [ Y MioxNox"T;+ > T)oxN[ox" M}
j=1+U)2 j:1+w2

Applying the directional derivative of the above term as a function of § x along the direction

Oy gives

w3 w3
DH4(5)()[5\/] = _—Tr{ F! Z MjéijéxTTj + F1 Z Mj(ngjfsvTTj
j=1+U)2 j=1+U)2

w3 w3
—Tro PN mFsyNFoxT Ml + FY Y T o NT oy T M
Jj=14w2 Jj=14w2

Collecting the above expression on dy and 5%5, we obtain

w3 w3
DH4(6x)[oy] = —Tr Qo | > NoXTyF "M+ > NjsxM/F'T]
Jj=14w2 Jj=14w2

w3 w2
—Trq | Y TiF 'MioxNj+ > MIF'T/sxN] | o7
Jj=14w2 Jj=14w2

This expression is equivalently written as
DHy(5x)[6v] = Tr {6vHs(0x)" + Hy(dx)o } (B.4)

with
w3 w2
Hy(dx) = Y T F'MjoxN;j+ Y MFT]oxN;

j=1+U)2 j=1+U)2

B.1.5 The Final Term H(dy)

The final term for the Hessian map H(dx ), which is obtained from the second direc-
tional derivative of the potential function, D2¢(X)[dx,dx], is now readily available from

the expressions given in (B.1)—(B.4). Thus, we have

4
D (%D%(X)[éx, 6X]> [6v] = % > DH;(6x)[6v] = Tr {6y H(5x)" + H(dx )47, }
i=1
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with
=
H(0x) =5 2151@'(5)()
Thus, the term H(dx) is naturally given by
k k k k
H(ox) => ATF 'Y AjoxB; | F'Bf +Y ATF~' | Y Bl 6% AT | F'Bf
i=1 j=1 i=1 j=1

1w1 TST A gT (p—17T T p—17T T AT
=5 2 N MI FTT + M P OR N
j=1

1 & -1 T T =17
—5 > NiOxTiFT'M;+ Nfox M F'T
j:l+w1
1 &
—5 2. TFT'MjxN;+ M F7'T ox N
j=1+U)2

as stated in Lemma 4.3.3.

B.2 A Formula for the Hessian Term H;,(dx,) for the Multi-

variate Case

This section presents the derivation of the formulas for the Hessian map Hy(dx,)
for the multivariate case. It is important to emphasize that the formulas in this section
assumes that dx, # dx,, since the particular case where dx, = dx, = dx was considered in

the previous section for the univariate case.

The second directional derivative of the potential function, as presented in (4.74), is

given by

D?O(X)[dx,,0x.] =

m k(i) k(i,t)
Tr Z F'sym Z Ay%ox,By” Flsym Z A;’tcSXt Bf?’t
i=1 (=1

n=1
m w1 (4,ts) wa(1,ts)
_1 '7t '7t '7t '7t T '7t '7t
_Tr{ZFZ. Sym{ > MPRex, NP, T+ Y Mk NPk, T
i=1 =1 L=1+w1(i,ts)

w3 (4,ts) w4 (i,ts)
b MNP  eY Mz’“&Nz’“&Té’f}}
L=1+w2(i,ts) L=14w3(i,ts)
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To proceed with the derivation, let us partition D? ©(X)[dx,,dx.] in five terms, Hy, Ha,

Hs, Hy, and Hs, so that we can apply the directional derivative in each one of the terms

separately:
m k(is) k(ist)
Hy =Tr ZFZ-_I sym Z Az’séstz’s Fi_1 sym Z A;’tcSXth?’t
i=1 =1 n=1
m w1 (3,ts)
Hy=—Trq Y F'sym Z Mé’tséxtNg’tséxsTg’tS}}
i=1

L=1+w1(i,ts)

w3 (4,ts)

> waeei ||

L=1+w2(i,ts)

wg zts
H; = —Tr { ZFi_l sym{ Z MZ t35 Né’tséxsTg’ts}}

m wa (1,t8)
Hs; = —Tr { FZ-_1 sym { Z Mé’tsé)T(tNg’tségp(STg’ts}}

L=1+w3(i,ts)

For this derivation, we have omitted the fraction 1/2 that multiplies the Hessian. At the
end, we just need to multiply the final result by 1/2.

B.2.1 The Term H,

Expanding the first term H; we obtain

m k(i,s) k(i,t)

H, = Tr{z FrU N AP ox By FTN Y Aoy, B
i=1 =1 n=1

m k(i,s) k(i,t)

+2Fi—12A286 st 12 thTég;t(Azt)
i= =1 n=1
m k(i,s) ' ' k(it) ] )

+ Z Fz 1 Bz,S)Tég;s (A?S)TFi_l Z A:],t(sxt B%’t
i=1 (=1 n=1

k(i,s) k(i,t)

+ZF121 st T5T Azs TF 12 thT(SXt(Azt) }
i=1 =1 n=1
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We should now apply the directional derivative of the above term as a function of ¢ x, along

the direction dy,. Doing so, we have

k(i,s) k(i,t)
DHy (6x,)[6v;] Tr{ZF > APk, B FTN Y Aoy, B

/=1 n=1
k(i,s) ' ' k(i,t)
+ Z FH Y AP B FT Y (B el (AT
(=1 n=1
k(i,s) k(i,t)
~ ZF > (B 6% (AP ETN Y Aoy, B
(=1 n=1
k(i,s) k(i,t)
+ ZF > (B VO (A S (B0 o A
/=1 n=1

Finally, using the cyclic property of the trace operator we can collect on Jy, and 5‘7/;’ ob-

taining

m k(i,s) k(i,t)
D00l = Te{ v | 30 3 Y- (Bytr o B

i=1 ¢=1 7=1
B (BT, (4 )|
+ [Z (AR F Ay o x, By FH(BENT
(AT E (B, (4 B ) |of )
This expression is equivalently written as

DHy (6x,)[6v;] = Tr {dv, Hi (dx,)" + Hy (0x, )67, } (B.5)

with
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B.2.2 The Term H,

Expanding the second term Hs we obtain

m wi (4,t8)
Hy = — Tr ZFi_l Z Mei,ts(SXtNZi,tséXSTei,ts
i =1
w1 (4,ts)
B (T TN T ()
(=1

Applying the directional derivative of the above term as a function of § x, along the direction

dy;, gives
w1 (3,ts) ' ' '
DH2(5X,5) 5Vt ZF Z Mé’tsévth’ts(SXSTZ’ts
/=1
w1 (4,ts)
+ Z zts T(S TNztS)Té T(M’ltS)
=1

Collecting the above expression on dy; and 5‘2, we obtain

m w1 (i,ts)
DH2(5Xt)[5Vt]:—TI‘ 5\/,5 Z Z Ng’tséxsTZ’tsFi_lMé’ts
i=1 (=1

)

i=1 (=

w1 (4,ts)

Mzts TF (Tz tS)TaT (Nz tS)T 5%/’;
1

This expression is equivalently written as
DHy(8x,)[6v;] = Tr {6y, Ha(6x,)" + Ha(dx, )07, } (B.6)

with

m w1 (i,ts)

6XS Z Z Z ts TF (Tg,tS)T(Sg;S (Ng,tS)T

i=1 =1
B.2.3 The Term Hj;

Expanding the second term Hsz we obtain

m wa (4,ts)
IR I SRV
i=1 {=1+w1 (i,ts)
wa(4,ts) ' . .
bY@ T e 0 )|

L=1+w1(i,ts)
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Applying the directional derivative of the above term as a function of dx, along the direction

Oy, gives

m wa(3,ts)
DHy(dx,)[ov,] = —Tr [Z F < Yo MRy TNy e T
{=1+w1(i,ts)

wa(4,ts)
+ Z (Tg,tS)TéXST(Ng,tS)Téw (Mg’tS)T>:|
L=1+w1(i,ts)
Collecting the above expression on dy, and 5%[/;, we obtain

wa (,ts)

DHs(6x,) (6] ——Tf{5w SN (LTS (N
i=1 ¢=1+w1 (i,ts)

wa(i,ts)
Z Z Nzts(s thsF 1Mzts 5 }
i=1 f=1+w1 (i,ts)

This expression is equivalently written as
DH3(0x,)[0v;] = Tr {6y, H3(0x,)" + Hz(dx,)1, } (B.7)

with

w2 zts

1,ts 1,ts —1 7 si,ts
Hs(5x,) = Ej S NPox T E M
i=1 f=1+w1 (i,ts)

B.2.4 The Term H,

Expanding the second term H4 we obtain

w3 (4,ts)

m
H4 = — Tr{z F;:_l < Z MéytS(SXt Ng,tS(SXSTTZ’i,tS
=1 (=1+ws(i,ts)

w3 (4,ts)

+ Z (Téi,tS)T(SXS (Nzi,tS)T(SXtT(MZi,tS)T) }

L=14w2(i,ts)
Applying the directional derivative of the above term as a function of dx, along the direction

Oy, gives

m w3 (4,ts)
DH4<6XJ[5VJ:—T&{ZE‘1( S My Ny T
] L=14w2 (3,ts)
w3 (4,ts) ' ' '
DY <T;’“>Taxs<N§’“>TavtT<Mz’“>T)}

L=1+w2(i,ts)
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Collecting the above expression on dy;, and 53/;, we obtain

w3 zts

DHy(6x,)[0v;] = —Tr ¢ dy; Z > NUSR TN E T My
i=1 {=1+w2(i,ts)

w3 (3,ts)

Ty Z Z (MZ tS)TF (TZ tS)T6 (NZ,tS)T 5%/—;

i=1 {=1+w2(i,ts)

This expression is equivalently written as
DHy(8x,)[6v;] = Tr {6, Ha(6x,)" + Ha(0x,)07; } (B.8)

with

m w3 (4,ts)
Hi(ox,) = (M) R (T o, (V)T
1=1 f=1+w2(i,ts)

B.2.5 The Term Hj;

Expanding the second term Hs we obtain

wy(3,t8)

m
Hs = — Tr{z F;1< S MR TNy ex, T
i=1

{=1+w3(,ts)
w4 (i,ts)
D SN D NS
L=14w3(i,ts)
Applying the directional derivative of the above term as a function of J x, along the direction

dy, gives

wy(3,t8)

DH5<5xt>[5v;]:—Tr{ZF;1< S MEs, TNy T
i (=1+w3(i,ts)

wa (4,t8)
bY@ on ) |

L=1+w3(i,ts)
Collecting the above expression on dy, and 5‘7/;7 we obtain

w4 7 ts
DHs(8x,)[6v,] = — Tr < 6, Z Z (Mg’ts)TFi_l(Tg’tS)T(sxs (Ng,tS)T
i=1 f=1+w3(i,ts)
m w4 (i,ts)
a3 S e e
i=1 =1+w3(i,ts)
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This expression is equivalently written as
DHs(0x,)[0v;] = Tr {6y, Hs(5x,)T + Hs(3x,)or, }

with

m wyq (i,ts)
Hs(0x,) =Y. > NWok 1,0 F mp®
1=1 ¢=1+w3(i,ts)

B.2.6 The Final Term H,,(dy,)

The final term for the Hessian map H;s(dx,), which is obtained from the second

directional derivative of the potential function, D? ©(X)[dx,,dx.], is now readily available

from the expressions given in (B.5)—(B.9). Thus, we have

D(%Dz@()_(:)[fsxtﬁxs]) 6v.] = ZDH (6x,)[6v)

= Tr {5\/}Hts 5Xs) + Hts(éXs)é%l/;}

with
1 5
Hts(aXs) = 5 Z;HZ(CSXS)

Thus, the term Hy,(dx,) is naturally given by

k(i,s)

=

m (ivt)
1
Hts(éXs) — 5 E

i=1 ¢=1 n=1
m (iv ) i7t)

m
> (M"Y BT ok, (N )T
i=1 (=1

1 m wa(3,ts) ' ' '

. Z Z Ng,tséXS TZ’tSFi_le’ts

2 i=1 {=1+w1 (i,ts)

w3 (4,ts)

ol
Ms

7

1 =1+w2(i,ts)

wa(3,ts)

i,ts ¢T rt,ts —1 4 ri,ts
NZ 5X5TZ Fi MZ

ol

i=1 {=1+4w3(i,ts)

as stated in Proposition 4.5.1.

<(A%t>Tﬂ—1Azi’86sté’SE—1(B%’”T>

(a5 F iy ok (a )

Z (Mz tS)TF (Tz tS)T(S (NZ’tS)T



Appendix C

Matlab Codes for the Riccati

inequality

This appendix provides a copy of the Matlab codes used to solve the Riccati feasibility
problem and the Riccati trace minimization problem presented in Section 4.4.4 of Chap-
ter 4. These two codes are very simple and are mainly intended to illustrate the proposed
methodology. The major code NCSDP implemented by the author to solve constrained
optimization problems over matrix functions is not provided, since it would take excessively

many pages.

C.1 Code: Riccati Feasibility Problem

This section provides a copy of the code used to solve the following Riccati feasibility

problem:

find o = min « subject to

AX + XAT —XRX+Q+al >0

The constraint X > 0 is added by setting the Option(2).

function [X,Alpha,GammaSet] = RicFeaspCode(A,R,Q,Options)
% function [X,Alpha,GammaSet] = RicFeaspCode(A,R,Q,Options)
%

% Based on the method of centers
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h

% Find Alpha and X such that

/)

% AX+XA’ -X*R*X+(Q + AlphaxI > O

h

% Input:

% A, R, Q system matrices.

% OPTIONS optional: five-entry vector of control parameters.
yA OPTIONS(1): value of centralization parameter

b THETA in (0,1). (Default=0.3)

% OPTIONS(2): when nonzero, enforce the constraint X > 0
h (Default=0)

% OPTIONS(3): when zero, code stops as soon as

yA Alpha < 0. (Default=0)

% OPTIONS(4): Termination tolerance on objective.

h (Default=1e-3)

yA OPTIONS(5): Termination tolerance on the inner loop.
yA (Default=1e-6)

/)

% Output:

% X corresponding minimizer.

% Alpha value of Alpha upon termination.

/)

% Author: Juan Camino
% Date : 05/10/2003

if nargin<3 | nargin>4 ,

error (’usage: [X,Alpha]=RicFeaspCode(4,R,Q, [options])’);
elseif nargin==3,

Options=zeros(1,5);
else

if “isnumeric(Options) | length(Options)~=5,

error (’OPTIONS must be a five-entry vector’);
end

end

% DEFAULTS parameters

Ipin(1) = 0.3; % Value of THETA
Ipin(2) = 0; % No Constraint on X
Ipin(3) = 0; % TARGET



Ipin(4)
Ipin(5)

1E-3; % stopping criteria for the objective.

1E-6; % stopping criteria for the inner loop.

if Options(1)~=0, Ipin(1)=0Options(1); end
if Options(2)~=0, Ipin(2)=0ptions(2); end
if Options(3)~=0, Ipin(3)=0ptions(3); end
if Options(4)~=0, Ipin(4)=0ptions(4); end
if Options(5)~=0, Ipin(5)=0ptions(5); end

n=size(Q,1);

X = eye(n);

Alpha = norm(A*X+X*A’-X*R*xX+Q)+1;

Gamma= Alpha+1;

k=1;

Gamma01d=0; GammaSet=[Gamma];

neg = 1;

while neg & norm(Gamma-GammaO0ld)>Ipin(4) & k < 200
GammaOld=Gamma;
Gamma=(1-Ipin(1))*Alpha+Ipin(1)*Gamma;
fprintf (’FeaspCode: Iteration = %2i, Gamma = %7.7f\n’,k,Gamma) ;
[X,Alpha,H,g] = Newton(A,R,Q,X,Alpha,Gamma,Ipin(2),Ipin(5));
if “Ipin(3), neg = (Gamma > 0); end
GammaSet=[GammaSet ; Gamma] ;
k=k+1;

end

fclose(’all’);

return

function [X,Alpha,H,g] = Newton(A,R,Q,X,Alpha,Gamma,flag,tol)
% Apply Modified Newton Methods to compute the analytic center

n=size (X);

Xset=[];Alphaset=[];

fprintf (*-----------""""" \n’);
stri=strcat(’ k, lgl, T, S, Alpha,’,...

’ IXI, 1H, uH\n’) ;
str2=strcat(’ %2i, %3.1E, %2.1E, %2.1f, % 7.7E,’,...
> % 7T.TE, %2.1E, %2.1E\n’);
g = 1; Tau=1;
k = 0;
fprintf(strl);
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while Tau>tol & k < 50

[dX,dAlpha,H,g] = NCdirection(A,R,Q,X,Alpha,Gamma,flag);
Tau = sqrt(g’/H*g) ;

Sigma = ( Tau > 1/4 ) * 1/(1+Tau) + ( Tau <= 1/4 ) * 1.0;
X=X+Sigma*dX;

Alpha=Alpha+Sigma*dAlpha;

Xset{k+1}=X;

Alphaset=[Alphaset; Alphal;

k=k+1;

mi=min(eig(H)); ma=max(eig(H));

fprintf (str2,k,norm(g) ,Tau,Sigma,Alpha,norm(X) ,mi,ma);
end
fprintf (’-------------—--—-——— \n’);

return

function [dX,dAlpha,H,g]=NCdirection(A,R,Q,X,Alpha,Gamna,flag)

% Return: Hessian H; Gradient g; update directions dX and dAlpha
% A’s, B’s, and QQ’s from NCAlg/Mathematica

size(X,1);

n
I = eye(n);

invF1=inv (A*xX+X*A’-X*#R*X+Q+Alpha*I); invF1=(invF1+invF1’)/2;
invF2=1/(Gamma-Alpha)*I;

A11{1}=invF1* (A-X*R) ;

B11{1}=invF1x (A-X*R) ;

A11{2}=invF1;

B11{2}=(A-X*R) >*invF1* (A-X*R); B11{2}=(B11{2}+B11{2}°)/2;
A11{3}=invF1;

B11{3}=R;

A11{4}=inv(X); % the constraint X > 0

B11{4}=inv(X);

A12{1}=invF1;

B12{1}=invF1x (A-X*R) ;

A21{1}=invF1*(A-X*R) ;

B21{1}=invF1;

A22{1}=invF1;

B22{1}=invF1;

A22{2}=invF2;

B22{2}=invF2;

% Hessian Matrix

Hi1 = 0;
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N=3;
if flag, N=4; end
for i = 1:N;
Hi1 = H11 + kron(B11{i}’,A11{i})+kron(A11{i},B11{i}’);
end

H21 = vec(B21{1}xA21{1}+A21{1}’*B21{1}’);

H22 = trace(A22{1}*B22{1}+A22{2}*B22{2});

H = [H11, H21’; H21, H22];

% Gradient

QQ{1}=invF1*(A-X*R) + (invF1x(A-X*R))’;

if flag,

QQ{1}=QQ{1}+inv(X); % the constraint X > 0
end

QQ{2}=invF1-invF2;

% Gradient vector

g = [vec(QQ{1}) ; trace(QQ{2})];

% Solves the linear system H.v = g

v = H\g;

dX = reshape(v(1:n72),n,n);

dX (dX+dX’)/2;

dAlpha = v(n~2+1);

return

function [x] = vec(X)
x = X(:);

return
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C.2 Code: Riccati Trace Minimization Problem

This section provides a copy of the code used to solve the following Riccati trace

minimization Problem:

find X* = argmin Tr { X'}, such that
AX + XAT - XRX+Q >0

The constraint X > 0 is added by setting Options(2).

function [X,GammaSet] = RicTraceCode(A,R,Q,Options)
% function [X,GammaSet] = RicTraceCode(A,R,Q,Options)

)

% Based on the method of centers

b

% Minimize Trace(X) subject to

/)

yA AX+XA’-X*R*¥X+Q > 0

h

% Input:

% A, R, Q system matrices.

% OPTIONS optional: five-entry vector of control parameters.
yA OPTIONS(1): value of centralization parameter

yA THETA in (0,1). (Default=0.3)

% OPTIONS(2): when nonzero, enforce the constraint X > 0
yA (Default=0)

yA OPTIONS(3): not used.

yA OPTIONS(4): Termination tolerance on objective.

yA (Default=1e-3)

% OPTIONS(5): Termination tolerance on the inner loop.
b (Default=1e-6)

b

% Output:

% X corresponding minimizer.

h

% Author: Juan Camino
% Date : 05/10/2003

if nargin<3 | nargin>4 ,
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error (’usage: [X]=RicTraceCode(A,R,Q, [options])’);
elseif nargin==3,
Options=zeros(1,5);
else
if “isnumeric(Options) | length(Options)~=5,
error (’OPTIONS must be a five-entry vector’);
end

end

% DEFAULTS parameters

Ipin(1) = 0.3; % Value of THETA

Ipin(2) = 0; % No Constraint on X

Ipin(3) = 0; % Not used

Ipin(4) = 1E-3; % Stopping criteria for the objective.
Ipin(5) = 1E-6; % Stopping criteria for the inner loop.

if Options(1)~=0, Ipin(1)=0Options(1); end
if Options(2)~=0, Ipin(2)=0ptions(2); end
if Options(3)~=0, Options(3)=0; end

if Options(4)~=0, Ipin(4)=0Options(4); end
if Options(5)~=0, Ipin(5)=0ptions(5); end

n=size(Q,1);
% Call to the feasibility solver
disp(’Feasibility Phase’);
[X,Alpha] = RicFeaspCode(A,R,Q,Options);
if Alpha > O,

error(’Problem seems to be infeasible’);
end

disp(’Minimization Phase’);

Gamma = trace(X)+.1;

k=1;

Gamma01d=0; GammaSet=[Gamma];

while norm(Gamma-GammaOld)>Ipin(4) & k < 400
Gamma0ld=Gamma;
Gamma=(1-Ipin(1))*trace(X)+Ipin(1)*Gamma;
fprintf (’Iteration = %2i, Gamma = %7.7f\n’,k,Gamma);
[X,H,g] = Newton(A,R,Q,X,Gamma,Ipin(2),Ipin(5));
k=k+1;
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GammaSet=[GammaSet ; Gamma] ;
end
fclose(’all’);

return

function [X,H,g] = Newton(A,R,Q,X,Gamma,flag,tol)
% Apply modified Newton’s method to compute the analytic center
n=size(X);
Xset=[];
fprintf (P——---—--—— \n’);
stri=strcat(’ Kk, lgl, T, S, Trace(X),’,...
) 1H, ul\n’) ;
str2=strcat(’ %2i, %3.2E, %2.1E, %2.2f, % 7.7f,°,...
> %2.2E, %2.2E\n’);

g = 1; Tau=1;
k = 0;
fprintf(strl);
while Tau>tol & k < 50

[dX,H,g] = NCdirection(A,R,Q,X,Gamma,flag);

Tau = sqrt(g’/H*g) ;

Sigma = ( Tau > 1/4 ) * 1/(1+Tau) + ( Tau <= 1/4 ) * 1.0;
X=X+Sigmax*dX;

Xset{k+1}=X;

k=k+1;

mi=min(eig(H)); ma=max(eig(H));
fprintf(str2,k,norm(g),Tau,Signa,trace(X) ,mi,ma);
end
fprintf(’----------------—-— \n’);

return

function [dX,H,g]=NCdirection(A,R,Q,X,Gamma,flag)
% Return: Hessian H; Gradient g; update directions dX

size(X,1);

n
I eye(n);

invF1=inv (A*X+X*A’-X*R*X+Q) ; invF1=(invF1+invF1’)/2;
invF2=1/(Gamma-trace (X)) *I;

A11{1}=invF1* (A-X*R) ;

B11{1}=invF1*(A-X*R);

A11{2}=invF1;

B11{2}=(A-X*R) >*invF1* (A-X*R) ; B11{2}=(B11{2}+B11{2}’)/2;
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A11{3}=invF1;

B11{3}=R;

A11{4}=inv(X); % the constraint X > O
B11{4}=inv(X);

% Hessian Matrix

Hi1l = O;
N=3; if flag, N=4; end
for i = 1:N;
H11 = H11 + kron(B11{i}’,A11{i})+kron(A11{i},B11{i}’);

end
% Add the Cost Function
H = H11 + 1/(Gamma-trace (X)) 2xvec(I)*vec(I)’;
% Gradient
QQ{1}=invF1* (A-X*R) + (invF1*x(A-X*R))’ - invF2;
if flag,
QQ{1}=QQ{1}+inv(X); % the constraint X > 0
end
% Gradient vector
g = vec(QQ{1});
% Solves the linear system H.v = g
v = H\g;
dX = reshape(v(1:n"2),n,n);
dX = (dX+dX’)/2;

return

function [x] = vec(X)
x = X(:);

return



Appendix D

Collection of Experiments Used to
Check the Code

This chapter presents a collection of minimization problems used to check the imple-
mentation of the proposed methodology. Most of the problems here presented are convex

and convertible to LMI. So that, their solutions were easily verified by others SDP codes.

D.1 List of Successful Convex Experiments

The NCSDP solver run successfully all the convex experiments we have tried, for
a variety of different dimensions. The set of feasibility problems used to check the code

basically has the form:

min o subject to

F(Xl,...,Xr)+aI>0, Gi(Xl,...,Xr)>0

We have also run an inner product version of all the feasibilities problems presented. In
this test, the constraints remained the same, but the cost function was the trace of one of

the unknowns. Thus, we do not repeat them here.
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D.1.1 Symmetric variables

Example D.1.1

min a subject to
X

ol —BTXB>0
AX 4+ XAT —R4+XQ:1X <0
X > Qo

Example D.1.2

min « subject to
X, T

al =T >0
AX + XAT + Q1 —XRX+T >0

Example D.1.3

min « subject to
XY

of —(BIXB, + BIYB;) >0

AX 4+ XTAT _ R+ XQX +AY +YAT +YQY <0

Example D.1.4

min « subject to
XY, Z,K

ol —(X+Y+Z+K)>0
X-v1t>o0
Y -ZX'Z>0
X+Z-Y-K>0
X >0, Y >0, Z >0, K>0
X <Q, 7 <Q, Y <@
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Example D.1.5

min _ « subject to
X1,X2,X3,X4

al — (X1 +Xo+X5+Xy) >0
~X2+Q>0
~X2+Q>0
~X24+Q>0
~X2+Q>0

Example D.1.6

min o subject to
X,T

)

al =T >0
Q-X2—X'4T>0
X >0, Q-—-X>0

D.1.2 Not symmetric variables

Example D.1.7

min « subject to
X,FU

al —U >0
AX + XAT + BF+ FTB+ FTRF+Q <0
U-FX'F>0
X>0  cxct<q

Example D.1.8

min « subject to
X\Y,Z

ol —(X+Y +BTZT + ZB) >0
X-vY1>0
Y -BTZT'X"'ZB>0
ZB+BTZT - X >0
I1-27Z7 >0
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D.2 Nonconvex Experiments

In this thesis, we have focused on convex problems solely, since we have made no
effort in providing a reliable implementation of a nonconvex code based on the proposed
methodology. However, with a simple modification of our convex code, basically by imple-
menting a rudimentary line search and a “strategy” for dealing with indefinite Hessian, we

were able to successfully run a few nonconvex examples.

D.3 List of “Successful” Nonconvex Experiments

We have tested the solver for a variety of matrix sizes. The solver was able to reached
an optimal solution within an accuracy of at least 10~* on the objective value, for most
of the dimensions and initial conditions. In this sense we say the solver runs successfully.
However, for some initial conditions, the solver fails to attain a solution. Basically, in the
ongoing implementation, the nonconvex code stops whenever the algorithm is not able to

compute a feasible direction.

D.3.1 Symmetric variables

Example D.3.1 Let A ¢ R™", XY, M,N € S", Re S} ,and Q; € S" fori =1,...,4.
Let us define the following Riccati in X

Ric(X) := AX + XAT - XR'X + M
and the following polynomial in X
Poly(X) 1= (X = Q1)(X — Q2)(X — Q3)(X — Q1) + N
The optimization problem is

min « subject to
XY

al > X, Y < Ric(X), and Y > Poly(X)

First experiment

The data are taken to be scalars: Q1 =1, Q2 =4, Q3 = 10, Q4 = 15, N = 100, A = 120,
R = 0.0625, M = 100. The initial feasible guess is X = 12.5 and Y = 0. The feasibility



240

-250

=500

Figure D.1: Feasibility region and solution path

region together with the solution path (dotted line) is shown in Figure D.1. The optimal
point was found to be X* = 0.6609 and Y* = 251.6233.

Second experiment

Now, we change the values for A = 100 and M = —100. All the other values remains the
same. The result is presented in Figure D.2. For this experiment, if we take the initial guess
to be X = 4.5 and Y = 400, the optimal solution is X* = 1.0296 and Y* = 88.9659. On
the other hand, if we take the initial guess to be X = 11 and Y = 0, the optimal solution
is X* = 8.2965 and Y* = 457.987.

@ e 6 8 1o([[[[ik 14

-200
-400

-600

Figure D.2: Feasibility region and solution path

Third experiment

We also run the above nonconvex optimization problem for a variety of matrices of different

size with the data generated randomly. Whenever we had a initial feasible guess, the code
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run successfully. For example, let n = 3 and the date be given by

0.1600 0.1000 0.1500 2800 5100 7900
Q1= ]0.1000 0.2200 0.2200 | , M = 15100 16000 19000
0.1500 0.2200 0.2400 7900 19000 27000

with Q2:Q3:Q4:Q1 andN:—M, and

0.3600 0.0900 0.4500 0.8300 0.6500 0.0940
A=10.3900 0.4900 0.0340 |, R = [0.6500 0.9300 0.0300
0.7500 0.6900 0.7200 0.0940 0.0300 0.0160

The initial guess is Y = 0 and X given by

1.2000 0.2500 0.3700
X =10.2500 1.5000 0.8300
0.3700 0.8300 1.7000

For these values, the optimal solution, found after 85 iterations, is given by

—4.3306 —1.2405 —2.2693 —0.0571 —0.1135 —0.3483
X* = -1.2405 —4.5240 —1.8789 and Y*=|-01135 —0.1808 —0.5147

—2.2693 —1.8789 —5.1755 —0.3483 —0.5147 —1.3106
The maximum eigenvalue of X* is o™ = —2.3876.

Example D.3.2 All the dimensions we have tried for this problem provided the optimal

solution X* = 1.

XH:%?T « subject to
al - X >0
X*-1>0

X —-05I>0

Example D.3.3 Powell’s Function, Powell (1964). In the scalar case, the typical testing
point is (Xy, X2, X3,X4) = (3,—1,0,1). The unknowns X; € S" for i = 1,...,4. The
optimal solution is X =0, fori =1,...,4.
min _ « subject to
X1,X2,X3,X4

ol — (X1 +10X5)% 4+ 5(X3 — X4)? + (X3 — 2X3)* + (10X; — X)) >0
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We have test the solver for the dimensions n = 1,...,7. For this dimension the solver
reached the optimal solution X* = 0 with the initial guesses, which were randomly gener-
ated, as (Matlab notation):

X4 =randn(n); X4 = X4+ X4/,

X1 =randn(n); X1 = X1+ X1’;

X2 =randn(n); X2 = X2+ X2';

X3 =randn(n); X3 = X3+ X3';
(n);

For a few initial condition, the solver failed.

Example D.3.4 Rosenbrock’s Function - Banana valley, Rosenbrock (1960).

min « subject to
X1,X2

ol — (100(Xs — X2)2+ (I — X1)?) >0

For the scalar case, the typical testing point is (Xi,X2) = (—1.2,1). The solver was
successful for the scalar case, and we also test it for the range of dimensions n = 1,...,9

with the initial guess been randomly generated as (Matlab notation):

X =2xrandn(n); X = (X x X')/n;
Y =2xrandn(n);Y = (Y xY')/n;

All the test provided the optimal solution X* = I.

D.3.2 Not symmetric variables

Example D.3.5 We generalize the Rosenbrock’s Function such that Y € S, X € RP*?,
AeR"P and B € R?*",

min o subject to

XY

ol — (100(Y — BTXTXB)? 4+ (I — BPXTAT)(I — AXB)) >0

The solver converged to a solution for a large variety of dimensions (for matrices of size less
than 10 x 10), and initial guesses generated randomly. Although for some initial guess, the

solver failed.

Example D.3.6 For this example X and T are square matrices. The solver reached the

optimal values for many different size and initial guess. It also failed for some initial
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conditions.

min a subject to
X, T

al =T >0
2 — X3 - X3 4T>0
X >0, 2] — X >0

When successful the optimal solution X* = I and T = 0 is found.
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