ES927 – Controle de Sistemas Robóticos Controle Não Linear

Camino, J. F.

DPM / Faculdade de Engenharia Mecânica UNICAMP, Campinas, SP, 13083-860, Brasil Camino@fem.unicamp.br

Campinas, 11 de março de 2016

Nota ao leitor

- Este material é baseado principalmente nas referências:
 - J.-J. E. Slotine, Applied Nonlinear Control, Prentice Hall, 1991.
 - H. K. Khalil, Nonlinear Systems, Prentice Hall, 2nd ed., 1996.
 - M. W. Spong, S. Hutchinson and M. Vidyasagar, Robot Modeling and Control, John Wiley & Sons, 2006

Sistemas não lineares Introdução

Vários problemas em engenharia são descritos por equações diferenciais não lineares:

$$y^{(n)}(t) = g(t, y(t), \dot{y}(t), y^{(2)}(t), \dots, y^{(n-1)}(t), u(t))$$
 onde $\dot{y}(t) = \frac{\mathrm{d}y(t)}{\mathrm{d}t}$ e $y^{(n)}(t) = \frac{\mathrm{d}^n y(t)}{\mathrm{d}t^n}$.

• Por exemplo, a equação de Duffing é usada para modelar alguns osciladores:

$$\ddot{y} + \delta \dot{y} + \alpha y + \beta y^3 = \gamma \cos(\omega t + \phi)$$

Fazendo-se a seguinte escolha de estado $x_1 = y$ e $x_2 = \dot{y}$, tem-se

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -\delta x_2 - \alpha x_1 - \beta x_1^3 + \gamma \cos(\omega t + \phi)$$

• Considere a seguinte equação de Van der Pol dada por

$$\ddot{y} - \mu \left(1 - y^2\right) \dot{y} + y = 0$$

Fazendo-se a seguinte escolha de estado $x_1 = y$ e $x_2 = \dot{y}$, tem-se

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = \mu(1 - x_1^2)x_2 - x_1$$

Sistemas não lineares Introdução

Serão considerados sistemas que podem ser descrito na forma de estado abaixo:

$$\dot{x}_1 = f_1(t, x_1, \dots, x_n, u_1, \dots, u_p)$$

$$\vdots$$

$$\dot{x}_n = f_n(t, x_1, \dots, x_n, u_1, \dots, u_p)$$

Este sistema pode ser convenientemente reescrito na forma vetorial:

$$\dot{x} = f(t, x, u), \quad t \in R, \quad x \in R^n, \quad u \in R^p, \quad f \in R^n$$

onde x é o estado e u a entrada de controle.

• Pode-se ainda associar a este sistema um vetor de saída

$$y = h(t, x, u)$$

• A análise que será apresentada para sistema não lineares, considera que o sistema não contem explicitamente o termo forçado u, ou seja, a dinâmica é dada por

$$\dot{x} = f(t, x)$$

• Note que no sistema acima, a entrada u não é necessariamente nula, ela pode ser uma função do tempo t e do estado x, ou seja, u(t,x).

Sistemas não lineares Introdução

 Se o sistema não depender explicitamente da variável independente (do tempo t), ele é denominado de sistema autônomo:

$$\dot{x} = f(x)$$

• Um exemplo de sistema autônomo é o atrator de Rössler dado por

$$\begin{split} \dot{x}&=-y-z\\ \dot{y}&=x+\sigma y\\ \dot{z}&=\rho+z(x-\beta),\qquad \text{com }\sigma\text{, }\rho\text{ e }\beta\text{ constantes} \end{split}$$

 Por outro lado, se o sistema depender explicitamente do tempo t, ele é denominado de não autônomo, ou variante no tempo:

$$\dot{x} = f(t, x)$$

• Um exemplo de um sistema não autônomo é a equação de Mathieus dada por

$$\ddot{x} + (\lambda - 2\alpha\cos(2t))x = 0$$

• Outros exemplos de sistemas não autônomos são: $\dot{x}=\sin(t)$ e $\dot{x}=-\sqrt{tx^6}$.

Sistemas não lineares autônomos Ponto de equilíbrio

Considere o seguinte sistema autônomo

$$\dot{x} = f(x)$$

- Ponto de equilíbrio. O ponto \bar{x} é um ponto de equilíbrio se o sistema, sempre que começar em \bar{x} , permanecer em \bar{x} por todo tempo futuro.
- Os pontos de equilíbrio satisfazem

$$0 = f(\bar{x})$$

- Para o sistema linear $\dot{x}=Ax$, o ponto de equilíbrio \bar{x} deve satisfazer $A\bar{x}=0$. Assim:
 - **1** Todos os pontos no espaço nulo de A, ou seja, $\bar{x} \in \mathcal{N}(A)$, são pontos de equilíbrio;
 - ② Se $|A| \neq 0$, então $\bar{x} = A^{-1}0 = 0$ é um ponto equilíbrio isolado (único);
 - ullet Vale ressaltar que se |A|=0, então existe um contínuo de equilíbrio, ou seja, infinitos pontos não isolados.

Basta notar que se x_1 e x_2 pertencem ao espaço nulo de A, então a combinação linear $\alpha x_1 + \beta x_2$ também pertencerá.

- Por outro lado, o sistema $\dot{x}=c$, com $c\neq 0$, não possui pontos de equilíbrio.
- Já o sistema $\dot{x}=\sin(x)$ possui múltiplos pontos de equilíbrio isolados dados por $x=k\pi$ com $k=0,\pm 1,\pm 2,\pm 3,\ldots$

Sistema não lineares autônomos

Fenômenos tipicamente não lineares: Múltiplos pontos de equilíbrio isolados

- Múltiplos pontos de equilíbrio isolados. Sistemas não lineares podem ter múltiplos pintos de equilíbrios isolados.
- Considere o pêndulo simples amortecido, cuja equação dinâmica é dada por

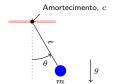
$$m\ell^2\ddot{\theta} + c\dot{\theta} + mg\ell\sin(\theta) = 0$$

ou na forma de estado, com $x_1=\theta$ e $x_2=\dot{\theta}$, dada por

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -\frac{g}{\ell}\sin(x_1) - \frac{c}{m\ell^2}x_2$$

com c[N m s/rad], m[Kg], $\ell[m]$, $g[m/s^2]$.



• Os pontos de equilíbrio são obtidos da equação

$$0 = x_2$$

$$0 = -\frac{g}{\ell}\sin(x_1) - \frac{c}{m\ell^2}x_2$$

que tem como solução $x_2=0$ e $x_1=n\pi$, com $n=0,\pm 1,\pm 2,\ldots$

- Fisicamente, o pêndulo possui 2 pontos de equilíbrio $\bar{x}=(0,0)$ e $\bar{x}=(\pi,0)$.
- Esses equilíbrios possuem propriedades totalmente diferentes de estabilidade.

Sistemas não lineares autônomos

Fenômenos tipicamente não lineares: Tempo de escape finito

- Tempo de escape finito. O estado de um sistema não linear pode tender a infinito num intervalo de tempo finito, o que não ocorre no caso linear.
- Por exemplo, considere o seguinte sistema

$$\dot{x} = x^2, \quad x(0) = x_0 > 0$$

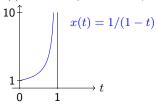
• Sua solução pode ser determinada integrando-se o sistema como segue

$$\int_{x_0}^x \frac{dx}{x^2} = \int_0^t dt$$

cuja solução é dada por

$$x(t) = \frac{x_0}{1 - x_0 t}, \quad 0 \le t < t_f = \frac{1}{x_0}$$

• O gráfico abaixo apresenta x(t). Perceba que esta solução só existe para $t<1/x_0$.



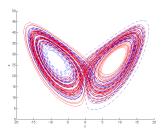
Sistemas não lineares autônomos

Fenômenos tipicamente não lineares: Caos

- <u>Caos</u>. São sistemas dinâmicos que possuem uma dependência crítica em relação às condições iniciais (também conhecido como efeito borboleta).
- Um exemplo popular de um sistema caótico é o atrator de Lorenz descrito pela seguinte equação autônoma:

$$\begin{split} \dot{x}&=\sigma(y-x)\\ \dot{y}&=x(\rho-z)-y\\ \dot{z}&=xy-\beta z,\qquad\text{com }\sigma\text{, }\rho\text{ e }\beta\text{ constantes} \end{split}$$

• A figura abaixo apresenta o gráfico de duas trajetórias iniciadas com uma diferença da ordem de apenas 10^{-4} na coordenada x.

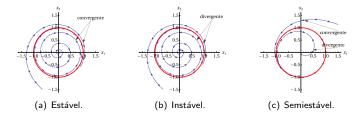


Atrator de Lorenz com $\sigma=10$, $\rho=28$ e $\beta=8/3$.

Sistemas não lineares autônomos

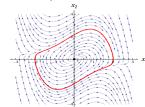
Fenômenos tipicamente não lineares: Ciclo limite

- Ciclo limite é uma curva fechada e isolada no plano de fase.
 - Fechada: indica a natureza periódica da solução.
 - Isolada: trajetórias vizinhas convergem ou divergem do ciclo limite.



ullet Ciclo limite (estável) para a equação de Van der Pol com $\mu=1$:

$$\frac{d^2x}{dt^2} - \mu(1 - x^2)\frac{dx}{dt} + x = 0$$



• É possível mostrar que o sistema abaixo possui um ciclo limite estável:

$$\dot{x}_1 = x_2 - x_1(x_1^2 + x_2^2 - 1)$$
$$\dot{x}_2 = -x_1 - x_2(x_1^2 + x_2^2 - 1)$$

• Usando a seguinte coordenada polar

$$r = (x_1^2 + x_2^2)^{1/2}, \qquad \theta = \tan^{-1}(x_2/x_1)$$

o sistema pode ser reescrito como

$$\frac{\mathrm{d}r}{\mathrm{d}t} = -r(r^2 - 1), \qquad \frac{\mathrm{d}\theta}{\mathrm{d}t} = -1$$

- A estabilidade deste sistema pode agora ser analisada de forma simples. Basta considerar as seguintes condições:
 - ullet Se o estado iniciar no circulo unitário (r=1), a equação passa a ser

$$\dot{r}(t) = 0$$

Portanto, a trajetória se moverá ao longo do circulo no sentido horário.

- Se 0 < r < 1, então $\dot{r} > 0$ e o estado tenderá ao circulo unitário a partir do seu interior. • Se r > 1, então $\dot{r} < 0$ e o estado tenderá ao circulo unitário a partir do seu exterior.

Camino, J. F. (DPM/FEM/UNICAMP)

Teorema (Bendixson). Considere o sistema autônomo de segunda ordem

$$\dot{x}_1 = \frac{\mathrm{d}x_1}{\mathrm{d}t} = f_1(x_1, x_2)$$

$$\dot{x}_2 = \frac{\mathrm{d}x_2}{\mathrm{d}t} = f_2(x_1, x_2)$$

onde $f_1(x_1, x_2)$ e $f_2(x_1, x_2)$ possuem derivadas parciais contínuas. Então, não pode existir ciclos limites numa região do plano de fase onde

$$\frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2}$$

não é identicamente zero e não muda de sinal.

• A prova é simples. Eliminando o tempo da equação diferencial, tem-se

$$\frac{\mathrm{d}x_2}{\mathrm{d}x_1} = \frac{f_2(x_1, x_2)}{f_1(x_1, x_2)} \to f_2\mathrm{d}x_1 - f_1\mathrm{d}x_2 = 0$$

Esta relação é satisfeita para qualquer trajetória do sistema incluindo o ciclo limite.

Portanto, ao longo de uma curva fechada do ciclo limite, tem-se

$$\oint_L \left(f_2 \mathrm{d} x_1 - f_1 \mathrm{d} x_2 \right) = 0$$

Usando o teorema de Green, tem-se

$$\oint_{L} (f_2 dx_1 - f_1 dx_2) = \iint_{A} \left(\frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} \right) = 0$$

onde A é a região fechada limitada pela curva L.

Portanto, se não houver mudança de sinal, isto implica que

$$\frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} = 0$$

concluindo assim a prova.

• Como exemplo de aplicação, considere o sistema

$$\dot{x}_1 = g(x_2) + 4x_1x_2^2$$

$$\dot{x}_2 = h(x_1) + 4x_1^2x_2$$

com q e h funções continuamente diferenciáveis. Como

$$\frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} = 4(x_1^2 + x_2^2)$$

é sempre estritamente positivo, exceto na origem, o sistema não possui ciclos limites em nenhum lugar do plano de fase.

Sistemas não lineares autônomos de segunda ordem Plano de fase

Considere o seguinte sistema autônomo de segunda ordem

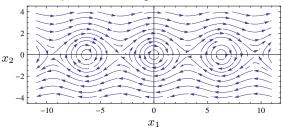
$$\dot{x}_1 = f_1(x_1, x_2)
\dot{x}_2 = f_2(x_1, x_2)$$

- O gráfico de x_1 versus x_2 é denominado de retrato de fase (plano de fase).
- Por exemplo, para a equação do pêndulo com $g/\ell=1$ e c=0, tem-se

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -\sin(x_1)$$

cujo retrato de fase está apresentado na figura abaixo.



Sistemas lineares autônomos de segunda ordem Análise qualitativa do ponto de equilíbrio

Seja o sistema linear de segunda ordem

$$\dot{x}=Ax, \quad x(0)=x_0$$
 cuja solução é $x(t)=e^{At}x_0$

$$\dot{x} = Ax \quad \rightarrow \quad \dot{x} = SJS^{-1}x \quad \rightarrow \quad x(t) = Se^{Jt}S^{-1}x_0$$

• Usando a transformação de similaridade $z = S^{-1}x$, obtemos

$$\dot{z} = Jz \quad \rightarrow \quad z(t) = e^{Jt}z_0, \quad z_0 = S^{-1}x_0$$

- ullet Dependendo dos autovalores da matriz A, a forma real de Jordan poderá ser
 - Autovalores reais distintos:

$$J = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

2 Autovalores reais múltiplos:

$$J = \begin{bmatrix} \lambda & k \\ 0 & \lambda \end{bmatrix}, \quad \text{com } k = 0 \text{ ou } k = 1$$

3 Autovalores complexos $\lambda_{1,2} = \alpha \pm i\beta$, com $i = \sqrt{-1}$:

$$J = \begin{bmatrix} \alpha & -\beta \\ \beta & \alpha \end{bmatrix}$$

Análise qualitativa de sistemas lineares de segunda ordem Caso 1: autovalores reais distintos e não nulos $\lambda_1 \neq \lambda_2$

- Caso 1: autovalores reais distintos e não nulos $\lambda_1 \neq \lambda_2$, ou seja, $J = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$.
- Considere o sistema abaixo com $0 \neq \lambda_1 \neq \lambda_2 \neq 0$.

$$\dot{z}_1 = \lambda_1 z_1$$
 $\dot{z}_2 = \lambda_2 z_2, \qquad z(0) = (z_{10}, z_{20})$

cuja solução é dada por

$$z_1(t) = z_{10}e^{\lambda_1 t}$$
$$z_2(t) = z_{20}e^{\lambda_2 t}$$

ullet Eliminando o tempo t da equação acima, chegamos a

$$z_2 = cz_1^{\lambda_2/\lambda_1}, \qquad c = \frac{z_{20}}{(z_{10})^{\lambda_2/\lambda_1}}$$

- ullet O plano de fase é dado pela família de curvas desta equação para diferentes z_{10} e z_{20} .
- Claramente a forma do plano de fase dependerá do sinal de λ_1 e λ_2 .

Análise qualitativa de sistemas lineares de segunda ordem Caso 1. Subcaso A: $\lambda_2 < \lambda_1 < 0$

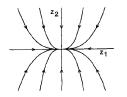
- Considere o subcaso $\lambda_2 < \lambda_1 < 0$, onde λ_2 é denominado de autovalor (autovetor) rápido enquanto que λ_1 é o autovalor (autovetor) lento.
- ullet A curva tangente $rac{\mathrm{d}z_2}{\mathrm{d}z_1}$ é dada por

$$\frac{\mathrm{d}z_2}{\mathrm{d}z_1} = c \frac{\lambda_2}{\lambda_1} z_1^{\lambda_2/\lambda_1 - 1}$$

• Note que $\lambda_2/\lambda_1 - 1 > 0$. Portanto

$$|z_1| o 0$$
 implica $\dfrac{\mathrm{d} z_2}{\mathrm{d} z_1} o 0$ $|z_1| o \infty$ implica $\dfrac{\mathrm{d} z_2}{\mathrm{d} z_1} o \infty$

ullet O Plano de fase deste sistema na coordenada modal z está apresentado abaixo.



Nó ou ponto nodal estável

Análise qualitativa de sistemas lineares de segunda ordem Caso 1. Subcaso A: $\lambda_2 < \lambda_1 < 0$

- ullet É possível apresentar o plano de fase na coordenada original (x_1,x_2) .
- Perceba que a solução é dada por

$$x(t) = c_1 e^{\lambda_1 t} s_1 + c_2 e^{\lambda_2 t} s_2$$

onde s_1 e s_2 são os autovetores da transformação de similaridade S.

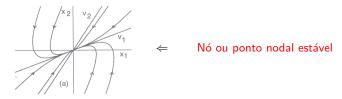
ullet Para t pequeno, a trajetória move-se paralela ao autovetor rápido s_2 , ou seja

$$x(t) \approx c_1 s_1 + c_2 e^{\lambda_2 t} s_2$$

ullet Para t grande, a trajetória move-se ao longo do autovetor lento s_1 , ou seja

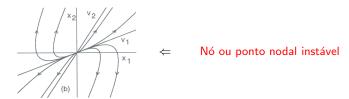
$$x(t) \approx c_1 e^{\lambda_1 t} s_1$$

ullet O Plano de fase deste sistema na coordenada original x está apresentado abaixo.



Análise qualitativa de sistemas lineares de segunda ordem Caso 1. Subcaso B: $0<\lambda_1<\lambda_2$

- Considere agora o subcaso $0 < \lambda_1 < \lambda_2$.
- O retrato de fase é análogo ao caso anterior, porém instável.
- ullet O Plano de fase deste sistema na coordenada original x está apresentado abaixo.



Análise qualitativa de sistemas lineares de segunda ordem Caso 1. Subcaso C: $\lambda_2 < 0 < \lambda_1$

- Considere agora o subcaso $\lambda_2 < 0 < \lambda_1$.
- Para este caso, o autovalor (autovetor) instável λ_1 e o autovalor (autovetor) estável λ_2 implicam que

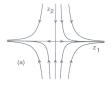
$$e^{\lambda_1 t} \to \infty$$
 e $e^{\lambda_2 t} \to 0$

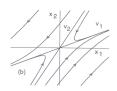
• Note que a equação da trajetória

$$z_2 = c z_1^{\lambda_2/\lambda_1}$$

conterá um expoente negativo λ_2/λ_1 .

- As trajetórias terão uma forma hiperbólica. Serão tangentes ao eixo z_1 com $|z_1| \to \infty$ e serão tangentes ao eixo z_2 com $|z_1| \to 0$.
- O equilíbrio é denominado de ponto de sela. O plano de fase está apresentado abaixo.





Análise qualitativa de sistemas lineares de segunda ordem Caso 2. Autovalores complexos

- Considere que os autovalores são complexos: $\lambda_{1,2} = \alpha \pm i\beta$, com $i = \sqrt{-1}$.
- ullet A mudança de coordenada $z=S^{-1}x$ transforma o sistema na forma

$$\dot{z}_1 = \alpha z_1 - \beta z_2$$
$$\dot{z}_2 = \beta z_1 + \alpha z_2$$

• Usando as seguintes coordenadas polares

$$z_1 = r \cos \theta, \qquad z_2 = r \sin \theta$$

temos

$$\dot{r} = \alpha r \qquad \Rightarrow \quad r(t) = e^{\alpha t} r_0$$

$$\dot{\theta} = \beta \qquad \Rightarrow \qquad \theta(t) = \theta_0 + \beta t$$

• Os possíveis planos de fase estão apresentados abaixo.

• Tipo de equilíbrio: (a) é um foco estável, (b) é um foco instável e (c) é um centro.

Análise qualitativa de sistemas lineares de segunda ordem Caso 3. Múltiplos autovalores não nulos

- Considere que os autovalores são $\lambda_1 = \lambda_2 = \lambda \neq 0$.
- Neste caso, o ponto de equilíbrio é denominado nó impróprio (degenerado).
- A forma de Jordan neste caso

$$J = \begin{bmatrix} \lambda & k \\ 0 & \lambda \end{bmatrix}, \quad \text{com } k = 0 \text{ ou } k = 1$$

• A mudança de coordenada coloca o sistema na forma

$$\dot{z}_1 = \lambda z_1 + k z_2$$

$$\dot{z}_2 = \lambda z_2$$

A solução é dada por

$$z_2 = e^{\lambda t} z_{20}$$

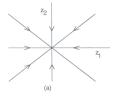
 $z_1 = e^{\lambda t} [z_{10} + kt z_{20}]$

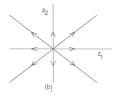
• Eliminando o tempo t, obtemos a seguinte equação para a trajetória

$$z_1 = z_2 \left[\frac{z_{10}}{z_{20}} + \frac{k}{\lambda} \ln \left(\frac{z_2}{z_{20}} \right) \right]$$

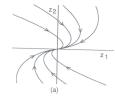
Análise qualitativa de sistemas lineares de segunda ordem Caso 3. Múltiplos autovalores não nulos

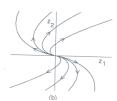
- Os possíveis planos de fase estão apresentados abaixo.
 - **1** Para k = 0: a) estável $\lambda < 0$ e b) instável $\lambda > 0$.





② Para k=1: a) estável $\lambda < 0$ e b) instável $\lambda > 0$.





Análise qualitativa de sistemas lineares de segunda ordem Caso 4. Um ou ambos os autovalores são nulos

- ullet Observe que qualquer vetor no espaço nulo da matriz A é um ponto de equilíbrio.
- A forma de Jordan pode ter uma das duas formas abaixo:

$$J = \begin{pmatrix} 0 & 0 \\ 0 & \lambda \end{pmatrix}, \qquad J = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

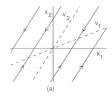
• Caso a forma de Jordan seja dada por

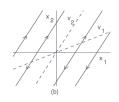
$$J = \begin{pmatrix} 0 & 0 \\ 0 & \lambda \end{pmatrix}$$

obtemos

$$\dot{z}_1 = 0 \qquad \Rightarrow \qquad z_1(t) = z_{10}
\dot{z}_2 = \lambda z_2 \qquad \Rightarrow \qquad z_2(t) = e^{\lambda t} z_{20}$$

• O Plano de fase está apresentado abaixo: a) Estável $\lambda < 0$ e b) Instável $\lambda > 0$.





Análise qualitativa de sistemas lineares de segunda ordem Caso 4. Um ou ambos os autovalores são nulos

Caso a forma de Jordan seja dada por

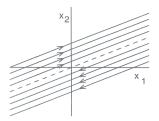
$$J = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

obtemos

$$\dot{z}_1 = z_2(t) \Rightarrow z_1(t) = z_{10} + z_{20}t$$

 $\dot{z}_2 = 0 \Rightarrow z_2(t) = z_{20}$

• O Plano de fase está apresentado abaixo.



- A linha tracejada corresponde ao subespaço de equilíbrio.
- ullet Caso a matriz A seja nula, A=0, então qualquer ponto é um ponto de equilíbrio.

Sistemas não lineares Análise qualitativa

• Plano de fase de um sistema massa-mola:

$$\ddot{x} + x = 0$$
 \rightarrow $x(t) = x_0 \cos(t)$
 $\dot{x}(t) = -x_0 \sin(t)$

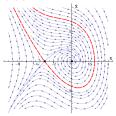
Eliminando t, temos $x^2 + \dot{x}^2 = x_0^2$

• Plano de fase de um sistema não linear de segunda ordem:

$$\ddot{x} + 0.6\dot{x} + 3x + x^2 = 0$$

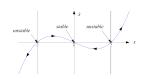
Pontos de equilíbrios $\bar{x} = (x, \dot{x})$ são:

- foco estável em $\bar{x} = (0,0)$;
- ponto de sela em $\bar{x} = (-3, 0)$.



• Plano de fase de um sistema de primeira ordem:

$$\dot{x}+4x-x^3=0$$
 Os pontos de equilíbrios são
$$\begin{cases} \bar{x}=-2\\ \bar{x}=0\\ \bar{x}=2 \end{cases}$$



Considere o seguinte sistema autônomo de segunda ordem

$$\dot{x}_1 = f_1(x_1, x_2)
\dot{x}_2 = f_2(x_1, x_2)$$

• Teorema (Poincaré). Se existir um ciclo limite no sistema acima, então

$$N = S + 1$$

onde:

- \bullet N é o número de nós, centros e focus contidos no ciclo limite;
- ullet S é o número de pontos de sela contidos no ciclo limite.
- Teorema (Poincaré Bendixson). Se a trajetória do sistema acima permanecer dentro de uma região finita Ω , então uma das seguintes condições é verdadeira:
 - a trajetória converge para um ponto de equilíbrio;
 - a trajetória converge para um ciclo limite;
 - a trajetória é ela própria um ciclo limite.

Sistemas não lineares Método da Linearização

- O método da linearização é baseado no fato de que os autovalores de uma matriz dependem continuamente dos seus elementos.
- O método consiste em linearizar um sistema não linear na vizinhança do ponto de equilíbrio e estudar o comportamento do respectivo sistema linear.
- Método:
 - **1** Suponha que $\bar{x} = (0,0)$ seja um ponto de equilíbrio, ou seja, $f(\bar{x}) = 0$;
 - \bigcirc Calcule a matriz Jacobiana A, onde

$$a_{ij} = \frac{\partial f_i}{\partial x_j} \big|_{x = \bar{x}}$$

A série de Taylor fornece:

$$\dot{x}(t) = f(\bar{x}) + A(x - \bar{x}) + O(x - \bar{x})^2$$

Assim, negligenciando os termos de ordem maior, obtemos a seguinte aproximação:

$$\dot{y} = Ay$$

- O método produz resultados válidos, exceto em alguns casos particulares.
- Espera-se que o plano de fase do sistema linear seja similar ao do sistema não linear numa vizinhanca da origem \bar{x} .

Sistemas não lineares Método da Linearização

• Se f(x) é analítica numa vizinhança do ponto de equilíbrio, então:

Linearizado	Não linear
Nó estável $\lambda_1 \neq \lambda_2$	Nó estável
Nó instável $\lambda_1 eq \lambda_2$	Nó instável
Foco estável	Foco estável
Foco instável	Foco instável
Ponto de sela	Ponto de sela

- Assim, observa-se que nós, focos e selas são estruturalmente estáveis.
- No entanto, podem ocorrer os seguintes casos críticos:
 - $\bullet \ \, \mathsf{Centro} \ J = \begin{bmatrix} \epsilon & -\beta \\ \beta & \epsilon \end{bmatrix}.$

Qualquer pertubação pode gerar: $\left\{ \begin{array}{ccc} \epsilon < 0 & \to & \text{foco estável} \\ \epsilon > 0 & \to & \text{foco instável} \end{array} \right.$

Sistemas não lineares Método da Linearização

• Exemplo. Considere o sistema

$$\dot{x}_1 = -x_1 - \frac{x_2}{\ln\sqrt{x_1^2 + x_2^2}} := f_1(x_1, x_2)$$

$$\dot{x}_2 = -x_2 + \frac{x_1}{\ln\sqrt{x_1^2 + x_2^2}} := f_2(x_1, x_2)$$

- O ponto de equilíbrio é na origem $\bar{x} = (0,0)$.
- Definindo $g(x_1,x_2)=(x_1^2+x_2^2)\left(\ln\sqrt{x_1^2+x_2^2}\right)^2$, a linearização fornece

$$\frac{\partial f_1}{\partial x_1} = -1 + \frac{x_1 x_2}{g(x_1, x_2)}, \qquad \frac{\partial f_1}{\partial x_2} = -\frac{1}{\ln \sqrt{x_1^2 + x_2^2}} + \frac{x_2^2}{g(x_1, x_2)}$$

$$\frac{\partial f_2}{\partial x_1} = \frac{1}{\ln \sqrt{x_1^2 + x_2^2}} - \frac{x_1^2}{g(x_1, x_2)}, \qquad \frac{\partial f_2}{\partial x_2} = -1 - \frac{x_1 x_2}{g(x_1, x_2)}$$

O Jacobiano é dado por

$$A = \begin{bmatrix} -1 + \gamma & \epsilon_1 \\ -\epsilon_2 & -1 - \gamma \end{bmatrix} \text{ onde } \gamma, \epsilon_i \to 0 \text{ com } (x_1, x_2) \to 0^+ \ \Rightarrow \ A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

• Portanto o equilíbrio do sistema linear é um nó estável. No entanto, o retrato de fase do sistema não linear (acima) na vizinhança de (0,0) se assemelha a um foco estável.

- Como os sistemas não lineares possuem comportamentos complexos, é necessário um conceito mais refinado de estabilidade.
- A seguinte notação será utilizada ao longo do texto:
 - \bullet Uma região S é a união de um conjunto conecto aberto com algum, nenhum, ou todos os seus pontos de fronteira.
 - A região esférica (uma bola aberta) de raio R definida por ||x|| < R é denotada por B_R .
 - A esfera (o contorno) de raio R definida por ||x|| = R é denotada por S_R .
 - A vizinhança- ϵ de x_0 é a região aberta $N(x_0, \epsilon) = \{x \in \mathbb{R}^n \mid ||x x_0|| < \epsilon\}.$
- Definição: O equilíbrio x=0 é dito
 - **1** estável, se para qualquer $\epsilon > 0$ existir $\delta > 0$ tal que

$$||x(0)|| < \delta \quad \Rightarrow \quad ||x(t)|| < \epsilon$$

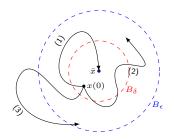
- instável, se não for estável;
- lacktriangle assintoticamente estável, se for estável e se δ puder ser escolhido tal que

$$||x(0)|| < \delta \quad \Rightarrow \quad \lim_{t \to \infty} ||x(t)|| = 0$$

- Nesta definição a constante δ pode depender de ϵ , ou seja, $\delta = \delta(\epsilon)$.
- Usando uma outra simbologia, tem-se para a estabilidade:

$$\forall \epsilon > 0, \exists \delta > 0; \quad x(0) \in B_{\delta} \Rightarrow x(t) \in B_{\epsilon}, \quad \forall t \ge 0$$

• Note que o equilíbrio é instável, se existir pelo menos uma bola B_ϵ , tal que para qualquer $\delta>0$ (não importa quão pequeno seja), é sempre possível para uma trajetória iniciada em B_δ , eventualmente deixar a bola B_ϵ .



- Sistema (1): equilíbrio assintoticamente estável.
- Sistema (2): equilíbrio estável.
- Sistema (3): equilíbrio instável

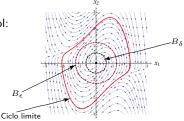
- É importante salientar que existe diferença entre estabilidade e a noção intuitiva da trajetória do sistema divergir para o infinito.
- Estes conceitos s\u00e3o id\u00e9nticos para sistemas lineares, j\u00e1 que polos inst\u00e1veis implicam crescimento exponencial de algum estado do sistema.
- O conjunto de todas as possíveis condições iniciais que convergem para o mesmo equilíbrio é chamado bacia de atração.

• Por exemplo, considere a equação de Van der Pol:

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -x_1 + (1 - x_1^2)x_2$$

cujo equilíbrio é na orgiem: x=0.

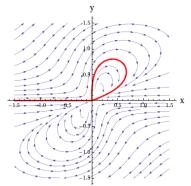


- Analisando o retrato de fase do sistema, percebe-se que qualquer trajetória iniciada em $x \neq 0$ converge para o ciclo limite estável (em vermelho).
- Isto implica que é possível escolher ϵ de forma que a bola B_ϵ esteja completamente no interior do ciclo limite. Assim, uma trajetória $x \neq 0$ iniciada em qualquer bola $B_\delta < B_\epsilon$ (suficientemente próxima da origem) irá deixar a bola B_ϵ . Portanto, a origem é instável.
- Perceba que embora a trajetória permaneça próxima da origem, em certo senso, ela não pode ficar arbitrariamente próxima da origem. Esta é a diferença fundamental entre estabilidade e instabilidade.

- Convergência para a origem não necessariamente implica estabilidade!
- Por exemplo, considere o sistema de Vinograd dado por

$$\dot{x} = \frac{x^2(y-x) + y^5}{(x^2 + y^2)\left[1 + (x^2 + y^2)^2\right]}, \qquad \dot{y} = \frac{y^2(y-2x)}{(x^2 + y^2)\left[1 + (x^2 + y^2)^2\right]}$$

ullet O plano de fase, na vizinhança do equilíbrio x=y=0, está apresentado abaixo.



• Embora a origem seja atrativa, ela não é estável.

• Definição: O equilíbrio x=0 é exponencialmente estável se existirem $\alpha>0$ e $\lambda>0$ tais que

$$||x(t)|| \le \alpha ||x(0)|| e^{-\lambda t}, \quad \forall \ t > 0$$

para $x(0) \in B_{\delta}$ (uma bola qualquer centrada na origem).

• Por exemplo, o seguinte sistema

$$\dot{x} = -(1 + (\sin x)^2) x$$
, $x(0) = x_0$

é exponencialmente estável e converge para x=0 com um decaimento $\lambda=1$.

• Para ver isto, basta calcular a resposta:

$$x(t) = x_0 e^{-\int_0^t [1 + (\sin x(\tau))^2] d\tau}$$

Portanto

$$x(t) \le |x_0|e^{-t}$$

 Perceba que estabilidade exponencial implica estabilidade assintótica, mas o contrário não é verdadeiro. Por exemplo, a solução da seguinte equação

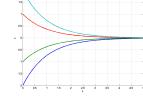
$$\dot{x} = -x^2, \qquad x(0) = 1$$

é x(t) = 1/(1+t), que é sempre mais lenta que qualquer exponencial.

- Se a estabilidade (assintótica) valer para qualquer condição inicial, então o sistema é globalmente (assintoticamente) estável.
- Por exemplo, considere o sistema de primeira ordem

$$\dot{x} = -x + x^2, \quad x(0) = x_0$$

cujos pontos de equilíbrio são x=0 e x=1.



Sua linearização produz o sistema

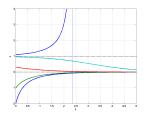
$$\dot{x} = -x \quad \Leftrightarrow \quad x(t) = x_0 e^{-t}, \ t \ge 0$$

que é globalmente exponencialmente estável.

• Por outro lado, integrando a equação não linear, tem-se

$$x(t) = \frac{x_0 e^{-t}}{(1 - x_0) + x_0 e^{-t}}$$

Claramente a origem não é globalmente estável.



 A idéia por trás do método direto de Lyapunov é uma extensão de uma observação física fundamental:

Se a energia total de um sistema físico é continuamente dissipada, então o sistema deve eventualmente se acomodar num ponto de equilíbrio.

• Por exemplo, considere um sistema mecânico cuja equação de movimento é dada por

$$m\ddot{x} + b\dot{x}|\dot{x}| + k_0x + k_1x^3 = 0$$

onde o termo $b\dot{x}|\dot{x}|$ representa o amortecimento (uma dissipação) não linear e o termo $k_0x+k_1x^3$ representa uma rigidez de mola não linear.

A energia total desse sistema é a soma das energias cinética e potencial, dada por

$$V(x, \dot{x}) = \frac{1}{2}m\dot{x}^2 + \int_0^x (k_0x + k_1x^3) dx$$
$$= \frac{1}{2}m\dot{x}^2 + \frac{1}{2}k_0x^2 + \frac{1}{4}k_1x^4$$

- Perceba que:
 - **1** Energia zero corresponde ao ponto de equilíbrio do sistema $(x = 0, \dot{x} = 0)$.
 - Estabilidade assintótica implica que a energia total do sistema converge para zero.
 - Instabilidade está relacionada com o aumento da energia do sistema.

- Isto leva a crer que as propriedades de estabilidade do sistema podem ser caracterizadas pela variação da energia do sistema.
- A variação da energia ao longo da trajetória é obtida diferenciando-se V(x):

$$\dot{V}(x) = m\dot{x}\ddot{x} + (k_0x + k_1x^3)\dot{x}$$

$$= \dot{x}(-b\dot{x}|\dot{x}|)$$

$$= -b|\dot{x}|^3$$

$$< 0, \quad \forall \ \dot{x} \neq 0$$

- Esta equação indica que a energia do sistema é dissipada pelo amortecedor até que a massa esteja em repouso, ou seja, $\dot{x}=0$.
- Fisicamente, é fácil perceber que a massa entrará em repouso apenas no ponto de equilíbrio $(x=\dot{x}=0)$ já que, em qualquer outra posição $x\neq 0$, a massa estará sujeita à força da mola.
- Uma das propriedades que garantem essa conclusão sobre a estabilidade do sistema é o fato da função de Lyapunov V(x) ser positiva definida.

- Uma função escalar V(x) é denominada localmente positiva definida se V(0)=0 e, dentro de uma bola B_r , V(x)>0 para todo $x\neq 0$.
- Se V(0)=0 e a propriedade acima valer para todo $x\in R^n$, ou seja, $r\to\infty$, então V(x) é denominada globalmente positiva definida.
- Por exemplo, a função utilizada no problema anterior, dada por

$$V(x) = \frac{1}{2}m\dot{x}^2 + \int_0^x (k_0x + k_1x^3) \,dx$$

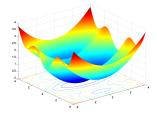
é globalmente positiva definida.

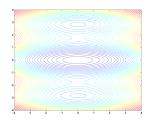
Por outro lado, a função

$$V(x) = \frac{1}{2}m\ell^2\dot{\theta}^2 + m\ell g(1-\cos\theta)$$

que representa a energia do pêndulo é apenas localmente positiva definida.

• A figura apresenta a função positiva definida $V(x)=\frac{1}{10}(x_1^2+x_2^2)+\sin^2(x_2)$:





- ullet De forma análoga, V(x) é dita negativa definida se -V(x) for positiva definida.
- A função V(x) é positiva semidefinida se V(0)=0 e $V(x)\geq 0$.
- De forma similar defini-se uma função negativa semidefinida.
- A função V(x) representa implicitamente uma função do tempo t, já que x(t) é o estado do sistema autônomo $\dot{x}(t)=f(x(t))$.
- ullet Assumindo-se que V(x) é diferenciável, então

$$\dot{V}(x) = \frac{\mathrm{d}V(x)}{\mathrm{d}t} = \frac{\partial V(x)}{\partial x}\dot{x} = \frac{\partial V(x)}{\partial x}f(x)$$

Teorema de Lyapunov

Seja x=0 um ponto de equilíbrio de $\dot{x}=f(x)$ e $D\in R^n$ um domínio contendo x=0. Seja $V:D\to R$ uma função continuamente diferenciável tal que

$$V(0) = 0$$
 e $V(x) > 0$, $\forall x \in D - \{0\}$

então:

- se $\dot{V}(x) \leq 0$ em D, o equilíbrio x = 0 é estável.
- 2 se $\dot{V}(x) < 0$ em D, o equilíbrio x = 0 é assintoticamente estável.
- Observe que esta definição é local, já que o domínio D pode ser limitado.
- Como exemplo de aplicação, considere a equação de movimento do pêndulo com amortecimento dada por

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -\frac{g}{\ell} \sin x_1 - \frac{c}{m\ell^2} x_2$$

onde $x_1 = \theta$ e $x_2 = \dot{\theta}$.

 Como função de Lyapunov candidata, uma escolha óbvia é a energia total do pêndulo dada por

$$V(x) = \frac{g}{\ell}(1 - \cos x_1) + \frac{1}{2}x_2^2$$

• Esta função é claramente positiva definida (localmente), no domínio

$$D = \{(x_1, x_2) \mid -2\pi < x_1 < 2\pi \quad \text{e} \quad x_2 \in R\}$$

ullet A derivada da função V(x) é dada por

$$\dot{V}(x) = \frac{g}{\ell}\sin(x_1)\dot{x}_1 + x_2\dot{x}_2 = -\frac{c}{m\ell^2}x_2^2$$

Portanto

$$\dot{V}(x) \le 0, \quad \forall \ x \in D$$

- \bullet Assim, foi possível provar que o equilíbrio x=0 do pêndulo amortecido é estável.
- No entanto, n\u00e3o foi poss\u00edvel provar (usando esta fun\u00e7\u00e3o de Lyapunov) que a origem \u00e9
 assintoticamente est\u00e1vel!

- \bullet Uma escolha diferente para V(x), poderia resultar num $\dot{V}(x)$ negativa definida.
- Por simplicidade, considere o pêndulo anterior com $g/\ell=1$ e $c/(m\ell^2)=1$ e a seguinte função de Lyapunov candidata

$$V(x) = \frac{1}{4}x^{T} \begin{bmatrix} 1 & 1\\ 1 & 2 \end{bmatrix} x + (1 - \cos x_{1})$$

• A derivada de V(x), após algumas simplificações, é dada por

$$\dot{V}(x) = -\frac{1}{2}x_1\sin(x_1) - \frac{1}{2}x_2^2$$

- Percebendo que $x_1\sin(x_1)>0$ para todo $0<|x_1|<\pi$, conclui-se que V(x) é positiva definida e $\dot{V}(x)$ é negativa definida no domínio $D=\{x\in R^2\mid |x_1|<\pi\}$, assegurando assim estabilidade assintótica.
- Considere a seguinte equação $\dot{x}=ax^3$, com a<0. Escolhendo a função de Lyapunov como sendo $V(x)=\frac{1}{2}x^2$, tem-se

$$\dot{V}(x) = ax^4 < 0, \quad \forall \ x \in R - \{0\}$$

• Portanto, conclui-se que o sistema é assintoticamente estável.

- É importante enfatizar que para se obter estabilidade global, não é suficiente apenas fazer $D=R^n$ no teorema de Lyapunov.
- Para se concluir estabilidade global, é preciso condições extras sobre a função de Lyapunov. Por exemplo, considere o seguinte sistema

$$\dot{x}_1 = -\frac{6x_1}{(1+x_1^2)^2} + 2x_2,$$
 $\dot{x}_2 = -\frac{2(x_1+x_2)}{(1+x_1^2)^2}$

 \bullet Para este sistema, considere a seguinte função de Lyapunov V(x) candidata

$$V(x) = \frac{x_1^2}{1 + x_1^2} + x_2^2 > 0, \quad \forall \ x \neq 0$$

• A derivada de V(x) é dada por

$$\dot{V}(x) = -\frac{12x_1^2}{(1+x_1^2)^4} - \frac{4x_2^2}{(1+x_1^2)^2} < 0, \quad \forall x \in \mathbb{R}^2 - \{0\}$$

- ullet Portanto, a origem x=0 é assintoticamente estável,
- No entanto, o resultado não é global, como pode ser observado pelo retrato de fase.

• Analisando as curvas de níveis de V(x), dada por

$$V(x) = \frac{x_1^2}{1 + x_1^2} + x_2^2$$

percebe-se que as curvas V(x) = c para c > 1 são abertas.

• A figura abaixo apresenta as curvas de níveis de V(x).

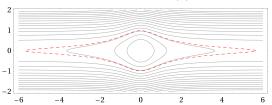


Figura: Curvas de níveis para V(x). O contorno em vermelho representa V(x)=0,97.

• Para assegurar que o teorema também seja válido globalmente é necessário que

$$||x|| \to \infty \quad \Rightarrow \quad ||V(x)|| \to \infty$$

ou seja, que V(x) seja radialmente ilimitada.

Sistemas não lineares autônomos

Teorema de Barbashin-Krasovskii

Teorema de Barbashin-Krasovskii

Seja x=0 um ponto de equilíbrio de $\dot{x}=f(x).$ Seja $V:R^n\to R$ uma função continuamente diferenciável tal que

$$\begin{split} V(0) &= 0 \quad \text{e} \quad V(x) > 0, \quad \forall \ x \neq 0 \\ \|x\| &\to \infty \quad \Rightarrow \quad V(x) \to \infty \\ \dot{V}(x) &< 0, \quad \forall \ x \neq 0 \end{split}$$

então o equilíbrio x=0 é globalmente assintoticamente estável.

• Como exemplo de aplicação, considere o seguinte sistema

$$\dot{x} + c(x) = 0$$

com c(x) una função contínua tal que $x c(x) > 0, \forall x \neq 0$. Por exemplo:

Sistemas não lineares autônomos

Teorema de Barbashin-Krasovskii

Considere a seguinte função de Lyapunov candidata

$$V(x) = \frac{1}{2}x^2$$

então

$$\dot{V} = x\dot{x} = -xc(x)$$

• Como xc(x) > 0, para todo $x \neq 0$, tem-se

$$\dot{V}(x) < 0, \quad \forall \ x \neq 0$$

- Portanto, todas as condições do teorema de Barbashin-Krasovskii estão satisfeitas e assim conclui-se que a origem é globalmente assintoticamente estável.
- Desta forma:
 - ① $\dot{x} = \sin^2 x x$ é globalmente assintoticamente estável na origem já que $\forall \ x \neq 0$, $\sin^2 x < |\sin x| < |x|$.
 - $\dot{\mathbf{g}}$ $\dot{x}=-x^3$ também é globalmente assintoticamente estável. Perceba que a linearização na origem é inconclusiva, no entanto o sistema não linear tem uma característica forte de estabilidade.

Sistemas não lineares autônomos Teorema da Instabilidade

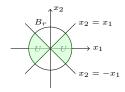
Teorema de Chetaev

Seja x=0 um ponto de equilíbrio de $\dot x=f(x)$. Seja $V:D\to R$ continuamente diferenciável tal que V(0)=0 e $V(x_0)>0$ para algum x_0 arbitrariamente próximo da origem x=0. Defina

$$B_r = \{x \in \mathbb{R}^n \mid ||x|| \le r\} \subset D \quad \text{e} \quad U = \{x \in B_r \mid V(x) > 0\}$$

Suponha que $\dot{V}(x) > 0$ em U, então x = 0 é instável.

- O conjunto U é não vazio. Seu contorno é dado pela superfície V(x)=0 e a esfera $\|x\|=r$. Como V(0)=0, a origem x=0 pertence ao contorno de U dentro de B_r .
- Por exemplo, a figura abaixo apresenta o conjunto U para $V(x) = \frac{1}{2}(x_1^2 x_2^2)$.



• Perceba que o conjunto U pode ser construído sempre que V(0)=0 e $V(x_0)>0$ para algum x_0 arbitrariamente próximo da origem.

Sistemas não lineares autônomos

Teorema da Instabilidade

Como exemplo de aplicação, considere o sistema

$$\dot{x}_1 = x_1 + g_1(x)$$

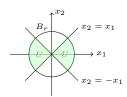
 $\dot{x}_2 = -x_2 + g_2(x)$

com g_i satisfazendo $|g_i(x)| \leq k||x||_2^2$ numa vizinhança D da origem.

- Esta desigualdade implica que $g_i(0) = 0$. Portanto a origem é um ponto de equilíbrio.
- Considere a função

$$V(x) = \frac{1}{2}(x_1^2 - x_2^2)$$

 \bullet Por exemplo, a figura abaixo apresenta o conjunto U para $V(x)=\frac{1}{2}(x_1^2-x_2^2).$



• Na linha $x_2 = 0$, V(x) > 0 em pontos arbitrariamente próximos da origem.

Sistemas não lineares autônomos Teorema da Instabilidade

• A derivada de V(x) é dada por

$$\dot{V}(x) = x_1^2 + x_2^2 + x_1 g_1(x) - x_2 g_2(x)$$

ullet Note que a magnitude do termo $x_1g_1(x)-x_2g_2(x)$ satisfaz a seguinte desigualdade

$$|x_1g_1(x) - x_2g_2(x)| \le \sum_{i=1}^2 |x_i||g_i(x)| \le 2k||x||_2^3$$

Portanto.

$$\dot{V}(x) \ge ||x||_2^2 - 2k||x||_2^3 = ||x||_2^2(1 - 2k||x||_2)$$

- Escolhendo r tal que $B_r\subset D$ e $r<\frac{1}{2k}$, todas as condições do teorema de Chetaev estão satisfeitas.
- Portanto a origem é instável.

Sistemas não lineares autônomos

Teorema da Instabilidade

- Teorema da Instabilidade de Lyapunov
 - **1** Seja x = 0 um ponto de equilíbrio de $\dot{x} = f(x)$.
 - ② Seja $V:D\to R$ continuamente diferenciável tal que V(0)=0 e $V(x_0)>0$ para algum x_0 arbitrariamente próximo da origem x=0.
 - **3** Seja Ω uma vizinhança- ϵ em torno da origem, ou seja, $\Omega = \{x \in D \mid ||x|| < \epsilon\}$.

Suponha que $\dot{V}(x) > 0$ em Ω , então x = 0 é instável.

- A prova deste teorema é uma aplicação direta do teorema de Chetaev com $B_r=\Omega$.
- Por exemplo, considere o seguinte sistema

$$\dot{x}_1 = -2x_2 + x_1(x_1^2 + x_2^4)$$
$$\dot{x}_2 = 2x_1 + x_2(x_1^2 + x_2^4)$$

- Seja a seguinte função $V(x) = \frac{1}{2} (x_1^2 + x_2^2)$.
- Sua derivada é dada por $\dot{V}(x) = (x_1^2 + x_2^2)(x_1^2 + x_2^4)$.
- Como V(x) e $\dot{V}(x)$ são ambas positiva definidas (em qualquer vizinhança da origem), pelo teorema acima conclui-se que a origem é instável.

Considere o exemplo do pêndulo:

$$\begin{split} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= -\frac{g}{\ell} \sin x_1 - \frac{c}{m\ell^2} x_2, \qquad \text{onde } x_1 = \theta \text{ e } x_2 = \dot{\theta} \end{split}$$

A função de Lyapunov utilizada

$$V(x) = \frac{1}{2}x_2^2 + \frac{g}{\ell}(1 - \cos x_1)$$

falhou em mostrar a estabilidade assintótica da origem já que

$$\dot{V}(x) = -\frac{c}{m\ell^2}x_2^2 \le 0$$

- Para manter $\dot{V}(x)=0$, a trajetória precisa se desenvolver em $x_2=0$.
- No entanto:

$$x_2(t) \equiv 0 \quad \Rightarrow \quad \dot{x}_2(t) \equiv 0 \quad \Rightarrow \quad \sin x_1 = 0$$

- Portanto, no domínio $-\pi < x_1 < \pi$, $\dot{V}(x) = 0$ só é possível na origem.
- A idéia central do princípio da invariância é o conceito de conjunto invariante, que é uma generalização de ponto de equilíbrio.

 \bullet Um conjunto M é invariante se toda trajetória iniciada em M, permanecer em M para qualquer instante de tempo t, ou seja

$$x(0) \in M \implies x(t) \in M, \quad \forall \ t \in R$$

ullet Um conjunto M é positivamente invariante, se

$$x(0) \in M \implies x(t) \in M, \forall t > 0$$

- Por exemplo:
 - Os pontos de equilíbrio e os cilos limites são conjuntos invariantes.
 - $oldsymbol{0}$ O conjunto das curvas de níveis para uma V positiva definida tal que

$$\Omega_c = \{ x \in R^n \mid V(x) < c \}$$

com $\dot{V}(x) \leq 0, \forall \ x \in \Omega_c$ é um conjunto positivamente invariante.

Teorema de LaSalle

Considere o sistema autônomo $\dot{x} = f(x)$.

- Suponha que o conjunto limitado e fechado $\Omega \in D$ seja positivamente invariante.
- Seja $V:D\to R$ continuamente diferenciável tal que $\dot{V}(x)\leq 0$ em Ω ;
- Seja E o conjunto de todos os pontos em Ω onde $\dot{V}(x)=0$;
- Seja M o maior conjunto invariante em E.

Então, todas as soluções originadas em Ω convergem para M com $t \to \infty$.

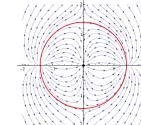
- ullet Perceba que o resultado da estabilidade assintótica pode ser visto como um caso especial onde o conjunto invariante M contém apenas a origem.
- O teorema de LaSalle generalizou o teorema de Lyapunov nas seguintes direções:

 - Pode ser usado em sistema onde o equilíbrio é um subespaço e não necessariamente um ponto isolado;
 - A função V não precisa ser positiva (semi)definida;
 - Fornece um estimador da região de atração.

• Como exemplo de estimação do domínio de atração, considere o sistema

$$\dot{x}_1 = x_1(x_1^2 + x_2^2 - 2) - 4x_1x_2^2$$

$$\dot{x}_2 = 4x_1^2x_2 + x_2(x_1^2 + x_2^2 - 2)$$



• Considere a seguinte função

$$V(x) = x_1^2 + x_2^2$$

cuja derivada fornece

$$\dot{V}(x) = 2(x_1^2 + x_2^2)(x_1^2 + x_2^2 - 2)$$

- \bullet Assim, \dot{V} é localmente negativa definida no interior da bola $B_{\sqrt{2}}.$
- A região $\Omega_c = \{x \in R^2 \mid V(x) = x_1^2 + x_2^2 \leq c\}$, com c < 2, é limitada e fechada.
- Assim, o conjunto $E=\{x\in\Omega_c\mid\dot{V}=0\}$ é exatamente a origem x=0, que é um conjunto invariante. Neste caso, $M=E=\{x=(0,0)\}.$
- Portanto, pelo teorema de LaSalle toda trajetória iniciada dentro de Ω_c convergirá para origem (fornecendo um domínio de atração).

• Exemplo de aplicação de controle adaptativo. Para o sistema

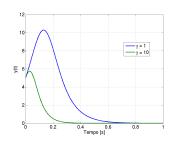
$$\dot{y} = ay + u, \qquad y(0) = y_0$$

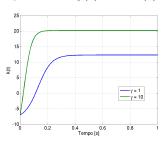
onde o valor do parâmetro a é desconhecido, determine uma lei de controle u de forma a garantir que a saída y convirja a zero.

• É possível mostrar que a seguinte lei adaptativa tem essa propriedade:

$$u = -ky$$
, $\dot{k} = \gamma y^2$, $\gamma > 0$, $k(0) = k_0$

• Os gráficos abaixo apresentam y(t) e k(t) para o sistema acima para $\gamma=1$ e $\gamma=10$. Os dados numéricos usados foram a=2 e condições iniciais y(0)=5 e k(0)=-7.





• Na forma de estado, com $x_1 = y$ e $x_2 = k$, tem-se

$$\dot{x}_1 = -(x_2 - a)x_1$$
$$\dot{x}_2 = \gamma x_1^2$$

Os pontos de equilíbrio satisfazem

$$0 = -(x_2 - a)x_1$$
$$0 = \gamma x_1^2$$

- Portanto o equilíbrio é dada por $x_1 = 0$ e x_2 qualquer, ou seja, o equilíbrio é o subespaco $\{x = (x_1, x_2) \in R^2 \mid x_1 = 0\}.$
- O objetivo é mostrar que x(t) tende a este equilíbrio, ou seja, $x_1 \to 0$.
- Para isto, considere a seguinte função V(x):

$$V(x) = \frac{1}{2}x_1^2 + \frac{1}{2\gamma}(x_2 - b)^2, \quad b > a$$

Derivando a função

$$V(x) = \frac{1}{2}x_1^2 + \frac{1}{2\gamma}(x_2 - b)^2$$

obtém-se

$$\dot{V}(x) = x_1 \dot{x}_1 + \frac{1}{\gamma} (x_2 - b) \dot{x}_2$$

$$= -(x_2 - a) x_1^2 + (x_2 - b) x_1^2$$

$$= (a - b) x_1^2 \le 0$$

ullet Como V(x) é radialmente ilimitada, o conjunto

$$\Omega_c = \{ x \in \mathbb{R}^2 \mid V(x) \le c, \quad \text{com} \quad 0 < c < \infty \}$$

é limitado, fechado e positivamente invariante.

ullet Assim, as condições do teorema de LaSalle estão satisfeitas. O conjunto E é dado por

$$E = \{ x \in \Omega_c \mid x_1 = 0 \}$$

• Como qualquer ponto de E é um ponto de equilíbrio, o conjunto E é invariante e podemos escolher M=E.

- Corolário (caso local) [Teorema de Barbashin-Krasovskii]
 - Seja x = 0 um ponto de equilíbrio.
 - ullet Seja V:D o R continuamente diferenciável e positiva definida, tal que

$$\dot{V}(x) \le 0, \qquad x \in D$$

- Seja $S = \{x \in D \mid \dot{V}(x) = 0\}.$
- \bullet suponha que nenhuma solução (além da trivial) possa permanecer em S indefinidamente.

Então, a origem x = 0 é assintoticamente estável.

• Corolário (caso global) [Teorema de Barbashin-Krasovskii]

Se no corolário anterior, $D=R^n$ e V(x) for radialmente ilimitada. Então, a origem é globalmente assintoticamente estável.

Por exemplo, considere o sistema mecânico massa-mola-amortecedor dado por

$$m\ddot{x} + b\dot{x}|\dot{x}| + k_0x + k_1x^3 = 0$$

Sua função energia é

$$V(x, \dot{x}) = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}k_0x^2 + \frac{1}{4}k_1x^4$$

cuja derivada é

$$\dot{V}(x) = -b|\dot{x}|^3 \le 0$$
 (negativa semidefinida)

- No entanto, usando o Teorema de Barbashin-Krasovskii é possível mostrar que origem é globalmente assintoticamente estável.
- Para isto, basta mostrar que nenhuma solução (além da trivial) pode permanecer indefinidamente no conjunto

$$S = \{(x, \dot{x}) \in R^2 \mid \dot{V}(x) = 0\} = \{(x, \dot{x}) \in R^2 \mid \dot{x} = 0\}$$

• Assuma que $(x, \dot{x}) \neq 0 \in S$, ou seja, $\dot{x} = 0$ e $x \neq 0$. Então

$$\ddot{x} = -\frac{k_0}{m}x - \frac{k_1}{m}x^3 \neq 0$$

o que resultará num $\dot{x} \neq 0$ e assim a trajetória eventualmente abandonará S.

Considere o sistema linear invariante no tempo

$$\dot{x} = Ax$$
 $\left\{ \begin{array}{l} \sec \det(A) \neq 0 \text{, o equilibrio \'e um ponto isolado} \\ \sec \det(A) = 0 \text{, o equilibrio \'e um subespaço} \end{array} \right.$

- A solução é dada por: $x(t) = e^{At}x_0$
- ullet Decompondo a matriz A na forma Canônica de Jordan, temos

$$P^{-1}AP = J \quad \leftrightarrow \quad A = PJP^{-1}, \qquad J = \mathsf{blocodiagonal}[J_1, \dots, J_r]$$

onde cada bloco J_i está associada com o autovalor $\lambda_i(A)$:

$$J_{i} = \begin{bmatrix} \lambda_{i} & 1 & 0 & \cdots & 0 \\ 0 & \lambda_{i} & 1 & \cdots & 0 \\ & & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \ddots & 1 \\ 0 & 0 & 0 & \cdots & \lambda_{i} \end{bmatrix}_{m_{i} \times m_{i}}$$

Neste caso

$$e^{At} = Pe^{Jt}P^{-1} = \sum_{i=1}^{r} \sum_{k=1}^{m_i} t^{k-1}e^{\lambda_i t} R_{ik}$$

Teorema.

O ponto de equilíbrio x=0 do sistema linear $\dot{x}=Ax$ é:

- Estável: se e somente se, $Re(\lambda_i) \leq 0$, e cada autovalor $Re(\lambda_i) = 0$ tiver um bloco de Jordan de ordem 1.
- Assintoticamente estável: se e somente se, $Re(\lambda_i) < 0, \forall i$.
- Por exemplo, suponha que o sistema linear seja dado por

$$\dot{x} = J_i x, \qquad x(0) = x_0$$

com a matriz J_i dada por

• Conclui-se que o primeiro sistema é estável e que o segundo sistema é instável.

• Prova da estabilidade assintótica. Defina a seguinte função de Lyapunov candidata

$$V(x) = x^T P x, \quad \text{com } P = P^T > 0$$

Então

$$\dot{V}(x) = x^T P \dot{x} + \dot{x}^T P x = x^T (PA + A^T P) x = x^T Q x, \quad \text{com } Q = PA + A^T P$$

Assim, dado um P>0, se Q<0, então pelo teorema de Lyapunov a origem x=0 é assintoticamente estável.

Teorema.

Uma matriz A é Hurwitz, se e somente se, para Q<0, existir P>0 tal que

$$PA + A^T P = Q$$

ullet Por exemplo, suponha que A e Q sejam dados por

$$A = \begin{bmatrix} -1 & 0 \\ 2 & -1 \end{bmatrix}, \qquad Q = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}$$

• Então a equação $A^TP + PA = Q$ tem como solução

$$P = \begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix} > 0 \qquad \Rightarrow \qquad \lambda_1 = 2 - \sqrt{2}, \quad \lambda_2 = 2 + \sqrt{2}$$

• Teorema.

Seja x=0 um ponto de equilíbrio do sistema não linear

$$\dot{x} = f(x)$$

onde f é uma função continuamente diferenciável numa vizinhança da origem. Seja a linearização de f(x) na origem dada por

$$A = \frac{\partial f}{\partial x}(x) \bigg|_{x=0}$$

Denote por λ_i , com $i=1,\ldots,n$, os autovalores da matriz A.

Então:

1 A origem é assintoticamente estável se

$$Re(\lambda_i) < 0$$
 para todo i

2 A origem é instável se

$$Re(\lambda_i) > 0$$
 para algum i

- É importante salientar que o teorema não é conclusivo se um dos autovalores $\operatorname{Re}(\lambda_i)=0$ e os outros $\operatorname{Re}(\lambda_i)\leq 0$. Neste caso a linearização falha.
- Por exemplo, considere o sistema abaixo

$$\dot{x} = ax^3$$

Linearizando na origem, temos

$$A = \frac{\partial f}{\partial x}(x)\Big|_{x=0} = 3ax^2\Big|_{x=0} = 0$$

- ullet Portanto, o sistema linearizado é $\dot{x}=0$ e não se pode chegar a conclusão alguma.
- Na realidade, pode-se mostrar que
 - \bullet se a < 0, o sistema é assintoticamente estável, usando $V(x) = x^4$;
 - 2 se a=0, o sistema é estável;
 - \bullet se a>0, o sistema é instável, usando Chetaev com $V(x)=x^4$.

A linearização do sistema não linear usado no problema de controle adaptativo

$$\dot{x}_1 = -(x_2 - a)x_1$$
$$\dot{x}_2 = \gamma x_1^2$$

também é inconclusiva, já que a linearização na origem fornece:

$$\dot{x}_1 = ax_1$$

$$\dot{x}_2 = 0$$

Por outro lado, a linearização do sistema

$$\dot{x}_1 = -x_1 - \frac{x_2}{\ln\sqrt{x_1^2 + x_2^2}}$$

$$\dot{x}_2 = -x_2 + \frac{x_1}{\ln\sqrt{x_1^2 + x_2^2}}$$

fornece o sistema linear

$$\dot{x}_1 = -x_1$$

$$\dot{x}_2 = -x_2$$

que é assintoticamente estável.

Sistemas não lineares autônomos

Teorema de Krasovskii

Seja x=0 um ponto de equilíbrio do sistema não linear $\dot{x}=f(x)$.

Seja A(x) a matriz Jacobiana de f(x) dada por $A(x) = \frac{\partial f}{\partial x}(x)$.

Então:

1 A origem é assintoticamente estável (AE) se num domínio Ω :

$$F(x) := A(x) + A(x)^T < 0$$

- ② Existe um $D \subset \Omega$ em que $V(x) = f(x)^T f(x)$ é uma função de Lyapunov.
- **3** A origem é globalmente AE se o domínio D for R^n e $V(x) \to \infty$ com $||x|| \to \infty$.

Demonstração

- Pode-se mostrar que F(x) < 0 implica que $f(x) \neq 0$, para $x \neq 0$ na vizinhança da origem, e que a matriz Jacobiana A(x) é inversível. Portanto, existe um domínio D em que $V(x) = f^T(x)f(x) > 0$.
- Usando o fato que $\dot{f}(x) = A(x)f(x)$, tem-se

$$\dot{V}(x) = f^T \dot{f} + \dot{f}^T f = f^T A f + f^T A^T f = f^T F f < 0, \qquad \forall \ x \in D \subset \Omega$$

já que F < 0 em Ω por hipótese.

Sistemas não lineares autônomos

Teorema de Krasovskii

Como exemplo de aplicação, considere o sistema

$$\dot{x}_1 = -6x_1 + 2x_2$$
$$\dot{x}_2 = 2x_1 - 6x_2 - 2x_2^3$$

• A matriz Jacobiana A(x) é dada por

$$A(x) = \frac{\partial f}{\partial x}(x) = \begin{bmatrix} -6 & 2\\ 2 & -6 - 6x_2^2 \end{bmatrix}$$

Assim

$$F(x) = A(x) + A(x)^{T} = \begin{bmatrix} -12 & 4\\ 4 & -12 - 12x_{2}^{2} \end{bmatrix}$$

 \bullet Pode-se mostrar que F(x) < 0 no $\Omega = R^n.$ Portanto, a função de Lyapunov dada por

$$V(x) = f(x)^{T} f(x) = (-6x_1 + 2x_2)^{2} + (2x_1 - 6x_2 - 2x_2^{3})^{2}$$

prova que a origem é assintoticamente estável (AE) em um certo domínio $D \subset \Omega$.

• O equilíbrio não é globalmente assintoticamente estável, já que D não pode ser todo o R^n . Note que para $x_1=x_2/3$ e $x_2=\pm i\sqrt{8/3}$, tem-se que $V(x_1,x_2)=0$.

Sistemas não lineares autônomos Generalização do teorema de Krasovskii

Seja x=0 um ponto de equilíbrio do sistema não linear $\dot{x}=f(x)$.

Seja A(x) a matriz Jacobiana de f(x) dada por $A(x) = \frac{\partial f}{\partial x}(x)$ Então

• A origem é assintoticamente estável (AE) se, num domínio Ω , existir $P=P^T>0$ e $Q=Q^T>0$ tais que

$$F(x) := A(x)^T P + PA(x) + Q < 0$$

- ② Uma função de Lyapunov é dada por $V(x) = f(x)^T Pf(x)$.
- **3** A origem é globalmente AE se o domínio Ω for R^n e $V(x) \to \infty$ com $||x|| \to \infty$.

Demonstração

ullet Calculando \dot{V} , tem-se

$$\dot{V} = \frac{\partial V}{\partial x} f = f^T P A(x) f + f^T P A^T(x) P f = f^T F f - f^T Q f$$

• Como F < 0 e Q > 0, o resultado segue diretamente, já que $\dot{V} < 0$.

Sistemas não lineares autônomos Método do Gradiente

- É uma ferramenta construtiva que permite calcular uma função de Lyapunov.
- Sabemos que a relação entre V(x) e seu gradiente é dada por

$$V(x) = \int_0^x g(\gamma)^T d\gamma$$

onde o gradiente é dado por

$$g(x) = \begin{bmatrix} \frac{\partial V}{\partial x_1} & \frac{\partial V}{\partial x_2} & \dots & \frac{\partial V}{\partial x_n} \end{bmatrix}^T$$

ullet Para que g(x) seja o gradiente de V(x), é necessário que o Jacobiano satisfaça

$$\frac{\partial g_i}{\partial x_i} = \frac{\partial g_j}{\partial x_i}, \quad \forall \ i, j$$

• Note que a derivada de V(x) é dada por $\dot{V}(x) = g^T(x)f(x)$.

Sistemas não lineares autônomos Método do Gradiente

- O princípio do método é assumir uma forma específica para o gradiente.
- Suponha a forma

$$g_i(x) = \sum_{j=1}^n a_{ij}(x)x_j$$

- ullet Agora é necessário determinar os a_{ij} de forma a satisfazerem as seguintes condições:
 - 1 Obedecer a simetria do Jacobiano;
 - ② Garantir que $\dot{V} < 0$ (ao menos localmente);
 - **3** Garantir que $V(x) = \int_0^x g(\alpha)^T d\alpha > 0$.
- A condição de simetria implica que a integração é independente do caminho escolhido.
- Assim, é conveniente integrar num caminho paralelo aos eixos, ou seja

$$V(x) = \int_0^{x_1} g_1(x_1, 0, \dots, 0) dx_1 + \int_0^{x_2} g_2(x_1, x_2, 0, \dots, 0) dx_2 + \dots + \int_0^{x_n} g_n(x_1, x_2, \dots, x_n) dx_n$$

Sistemas não lineares autônomos Método do Gradiente

Seja o sistema

$$\dot{x}_1 = -2x_1
\dot{x}_2 = -2x_2 + 2x_1x_2^2$$

• Vamos assumir a seguinte forma

$$g_1 = a_{11}(x)x_1 + a_{12}(x)x_2$$

$$g_2 = a_{21}(x)x_1 + a_{22}(x)x_2$$

• A condição de simetria implica que

$$\frac{\partial a_{11}}{\partial x_2}x_1+\frac{\partial a_{12}}{\partial x_2}x_2+a_{12}=a_{21}+\frac{\partial a_{21}}{\partial x_1}x_1+\frac{\partial a_{22}}{\partial x_1}x_2$$

• Uma opção é escolher $a_{12}=a_{21}=0$ e $a_{11}=a_{22}=1$ que fornece

$$g_1 = x_1$$
 e $g_2 = x_2$

• Calculando $\dot{V}(x)$, tem-se

$$\dot{V}(x) = q(x)^T \dot{x} = -2x_1^2 - 2x_2^2 (1 - x_1 x_2)$$

Sistemas não lineares autônomos Método do Gradiente

- Assim $\dot{V}(x) < 0$ no domínio $\Omega = \{x \in \mathbb{R}^2 \mid (1 x_1 x_2) > 0\}.$
- ullet A função V(x) pode ser calculada como segue

$$V(x) = \int_0^{x_1} x_1 \, dx_1 + \int_0^{x_2} x_2 \, dx_2 = \frac{1}{2} (x_1^2 + x_2^2) > 0$$

e portanto a origem é assintoticamente estável.

• Uma segunda opção para os coeficientes a_{ij} poderia ser

$$a_{11} = 1$$
, $a_{12} = x_2^2$, $a_{21} = 3x_2^2$, $a_{22} = 3$

que fornece

$$V(x) = \frac{1}{2}x_1^2 + x_1x_2^3 + \frac{3}{2}x_2^3$$

e

$$\dot{V}(x) = -2x_1^2 - 6x_2^2 - 2x_2^2(x_1x_2 - 3x_1^2x_2^2)$$

• Pode-se mostrar que V(x) é positiva definida e \dot{V} é negativa definida (já que os termos quadráticos dominam próximo da origem).

Controle de sistemas robóticos Controle proporcional-derivativo (PD)

A equação dinâmica do robô é dada por

$$M(q)\ddot{q} + C(q, \dot{q})\dot{q} + g(q) = u$$

- Desprezando o efeito da gravidade é possível projetar um controlador PD de tal forma que o sistema seja capaz de rastrear uma trajetória desejada q^d constante.
- Considere a lei de controle PD

$$u = -K_p \tilde{q} - K_D \dot{q}, \qquad K_P > 0, \quad K_D > 0$$

onde $\tilde{q}=q-q^d$ representa o erro entre o deslocamento q(t) da junta e o deslocamento desejado q^d (constante).

• Vamos mostrar estabilidade assintótica usando a seguinte função de Lyapunov

$$V(\tilde{q}, \dot{q}) = \frac{1}{2} \dot{q}^T M(q) \dot{q} + \frac{1}{2} \tilde{q}^T K_P \tilde{q}$$

- Note que $V(\tilde{q},\dot{q})$ é positiva definida.
- Derivando a função de Lyapunov, temos

$$\dot{V} = \dot{q}^T M(q) \ddot{q} + \frac{1}{2} \dot{q}^T \dot{M}(q) \dot{q} + \dot{q}^T K_P \tilde{q}$$

Controle de sistemas robóticos Controle proporcional-derivativo (PD)

ullet Substituindo $M(q)\ddot{q}$ em \dot{V} , temos

$$\dot{V} = \dot{q}^{T}(u - C(q, \dot{q})\dot{q}) + \frac{1}{2}\dot{q}^{T}\dot{M}(q)\dot{q} + \dot{q}^{T}K_{P}\tilde{q}$$
$$= \dot{q}^{T}(u + K_{P}\tilde{q}) + \frac{1}{2}\dot{q}^{T}(\dot{M}(q) - 2C(q, \dot{q}))\dot{q}$$

 \bullet Lembrando que a matriz $\dot{M}(q) - 2C(q,\dot{q})$ é antisimétrica, temos

$$\dot{V} = \dot{q}^T (u + K_P \tilde{q})$$

• Substituindo a lei de controle PD, temos

$$\dot{V} = -\dot{q}^T K_D \dot{q} \le 0, \qquad K_D > 0$$

- ullet Assim, \dot{V} é negativa semidefinida.
- A estabilidade assintótica global é assegurada pelo corolário de Barbashin-Krasovskii, já que

 - $2 \ \dot{V} \le 0 \text{ no } R^n$
 - Para o conjunto $S = \{(q, \dot{q}) \mid \dot{V} = 0\}$, nenhuma solução (além da trivial $\tilde{q} = \dot{q} = 0$) permanece em S indefinidamente.

Controle de sistemas robóticos Controle proporcional-derivativo (PD)

• Para verificar a última afirmação, suponha que uma solução $\tilde{q}\neq 0$ e $\dot{q}=0$ em S exista, então, usando a dinâmica, temos que

$$M(q)\ddot{q} + K_P\tilde{q} = 0$$
 \rightarrow $\ddot{q} = -M(q)^{-1}K_P\tilde{q}$

o que implica que $\ddot{q}\not\equiv 0$ e portanto $\dot{q}\not\equiv 0$ e a trajetória não pertencerá ao conjunto S, contrariando a hipótese.

 Caso a ação da gravidade seja levada em consideração, a derivada da função de Lyapunov fica sendo

$$\dot{V} = \dot{q}^T (u - g(q) + K_p \tilde{q})$$

e não temos como garantir convergência assintótica.

- Na prática, ocorrerá um erro estacionário no rastreamento.
- Para contornar esse problema, a lei de controle pode ser modificada como segue

$$u = -K_p \tilde{q} - K_D \dot{q} + g(q)$$

- Claramente, essa lei garantirá o erro nulo ao rastreamento.
- ullet Do ponto de vista prático, se g(q) não for conhecida, esta lei não poderá ser aplicada.

Controle de sistemas robóticos Projeto do controlador usando a dinâmica inversa

Considere a seguinte dinâmica

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = u$$

• A idéia básica é projetar uma lei de controle por realimentação não linear

$$u = f(q, \dot{q}, t)$$

tal que o sistema em malha fechada seja linear.

Uma escolha obvia é a lei

$$u = M(q)a_q + C(q, \dot{q})\dot{q} + g(q)$$

que em malha fechada resultará no seguinte integrador duplo

$$\ddot{q} = a_q$$

onde o termo a_q representa a nova entrada que deverá ser projetada.

 Note que com esta lei, o sistema original n\u00e3o linear, passou a ser um sistema linear e desacoplado.

Controle de sistemas robóticos Projeto do controlador usando a dinâmica inversa

 \bullet Como a entrada a_q deve ser selecionada para controlar um sistema linear de segunda ordem, uma escolha obvia é

$$a_q = \ddot{q}^d(t) - K_1\dot{\tilde{q}} - K_0\tilde{q}$$

onde $\tilde{q}=q-q^d$, $\dot{\tilde{q}}=\dot{q}-\dot{q}^d$, K_0 e K_1 são matrizes diagonais consistindo de ganhos de posição e de velocidade. A trajetória de referência

$$t \to (q^d(t), \dot{q}^d(t), \ddot{q}^d(t))$$

define o perfil desejado de posição, velocidade e aceleração.

• O sistema linear em malha fechada fica sendo

$$\ddot{\tilde{q}}(t) + K_1 \dot{\tilde{q}} + K_0 \tilde{q}(t) = 0$$

- Basta agora escolher K_0 e K_1 tais que este sistema seja assintoticamente estável, assim, $\tilde{q} \to 0$ e conseqüentemente $q \to q^d$.
- ullet Uma escolha simples para K_0 e K_1 é dada por

$$K_0 = \begin{bmatrix} \omega_1^2 & 0 & \cdots & 0 \\ 0 & \omega_2^2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \omega_n^2 \end{bmatrix}, \qquad K_1 = \begin{bmatrix} 2\omega_1 & 0 & \cdots & 0 \\ 0 & 2\omega_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 2\omega_n \end{bmatrix}$$

Controle de sistemas robóticos Projeto do controlador usando a dinâmica inversa

- Esta escolha resulta em um sistema em malha fechada desacoplado em que a resposta de cada junta é equivalente à resposta de um sistema linear de segunda ordem criticamente amortecido com freqüência natural ω_i .
- Note que para uma implementação prática deste controlador é necessário calcular em tempo real a matriz de inércia e os vetores de forças Coriolis, centrífugas e gravitacionais.
- A arquitetura de controle está apresentada abaixo.

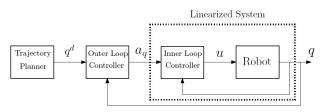


Figura: Estrutura de controle.

 Para a implementação deste sistema de controle é necessário conhecer exatamente todos os parâmetros, o que não ocorre na prática.

Controle de sistemas robóticos Controle baseado na Passividade

A equação dinâmica do robô é dada por

$$M(q)\ddot{q} + C(q, \dot{q})\dot{q} + g(q) = u$$

Escolhendo a lei de controle como

$$u = M(q)a + C(q, \dot{q})v + g(q) - Kr$$

com

$$\begin{split} v &= \dot{q}^d - \Lambda \tilde{q}, \qquad \tilde{q} = q - q^d \\ a &= \dot{v} = \ddot{q}^d - \Lambda \dot{\tilde{q}} \\ r &= \dot{q} - v = \dot{\tilde{q}} + \Lambda \tilde{q} \end{split}$$

onde K e Λ são matrizes diagonais de ganhos constantes positivos.

• O sistema em malha fechada passa a ser

$$M(q)[\ddot{q} - \ddot{q}^d + \Lambda \dot{\tilde{q}}] + C(q, \dot{q})[\dot{q} - \dot{q}^d + \Lambda \tilde{q}] + Kr = 0$$

que fornece

$$M(q)\dot{r} + C(q,\dot{q})r + Kr = 0$$

• Perceba que o sistema ainda é não linear e acoplado.

Controle de sistemas robóticos Controle baseado na Passividade

Considere a seguinte função de Lyapunov

$$V = \frac{1}{2}r^{T}M(q)r + \tilde{q}^{T}\Lambda K\tilde{q}$$

Sua derivada fornece

$$\begin{split} \dot{V} &= r^T M(q) \dot{r} + \frac{1}{2} r^T \dot{M}(q) r + 2 \tilde{q}^T \Lambda K \dot{\tilde{q}} \\ &= -r^T K r + 2 \tilde{q}^T \Lambda K \dot{\tilde{q}} + \frac{1}{2} r^T (\dot{M} - 2C) r \\ &= - (\dot{\tilde{q}} + \Lambda \tilde{q})^T K (\dot{\tilde{q}} + \Lambda \tilde{q}) + 2 \tilde{q}^T \Lambda K \dot{\tilde{q}} \\ &= - \tilde{q}^T \Lambda K \Lambda \tilde{q} - \dot{\tilde{q}}^T K \dot{\tilde{q}} \\ &= - e^T Q e \end{split}$$

com

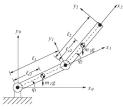
$$e = \begin{bmatrix} \tilde{q} \\ \dot{\tilde{q}} \end{bmatrix}, \qquad Q = \begin{bmatrix} \Lambda K \Lambda & 0 \\ 0 & K \end{bmatrix}$$

- ullet Portanto o equilíbrio e=0 é globalmente assintoticamente estável.
- ullet Obsv.: A matriz de ganho K não precisa ser diagonal, basta ser positiva definida.

Controle de sistemas robóticos

Propriedade da parametrização linear

- \bullet A equação dinâmica de um robô pode ser representada como o produto de uma matriz de regressores $Y(q,\dot{q},\ddot{q})$ por um vetor θ de parâmetros do sistema.
- Considere a equação de movimento do manipulador planar abaixo.



$$\begin{split} d_{11}\ddot{q}_1 + d_{12}\ddot{q}_2 + h\dot{q}_1\dot{q}_2 + h\dot{q}_2\dot{q}_1 + h\dot{q}_2^2 + g_1 &= \tau_1 \\ d_{21}\ddot{q}_1 + d_{22}\ddot{q}_2 - h\dot{q}_1^2 + g_2 &= \tau_2 \end{split}$$

$$d_{11} = m_1 l_{c1}^2 + m_2 (l_1^2 + l_{c2}^2 + 2l_1 l_{c2} \cos q_2) + I_1 + I_2$$

$$d_{12} = d_{21} = m_2 (l_{c2}^2 + l_1 l_{c2} \cos q_2) + I_2, \quad d_{22} = m_2 l_{c2}^2 + I_2$$

$$g_1 = (m_1 l_{c1} + m_2 l_1) g \cos q_1 + m_2 l_{c2} g \cos(q_1 + q_2)$$

$$g_2 = m_2 l_{c2} g \cos(q_1 + q_2), \qquad h = -m_2 l_1 l_{c2} \sin q_2$$

• Usando a propriedade da parametrização linear, temos

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = Y(q,\dot{q},\ddot{q})\theta$$

onde a matriz de regressores Y e o vetor de parâmetros θ são dados por

$$Y(q,\dot{q},\ddot{q}) = \begin{bmatrix} \ddot{q}_1 & \ddot{q}_2 & \ddot{q}_1 + \ddot{q}_2 & y_{14} & \ddot{q}_1 & \ddot{q}_1 + \ddot{q}_2 & \cos(q_1) & \cos(q_1) & \cos(q_1 + q_2) \\ 0 & 0 & \ddot{q}_1 + \ddot{q}_2 & y_{24} & \dot{q}_2 & \ddot{q}_2 & 0 & 0 & \cos(q_1 + q_2) \end{bmatrix}$$

$$\theta = \begin{bmatrix} m_1 l_{c1}^2 & m_2 l_1^2 & m_2 l_{c2}^2 & m_2 l_1 l_{c2} & I_1 & I_2 & m_1 l_{c1} g & m_2 l_1 g & m_2 l_{c2} g \end{bmatrix}$$

com

$$y_{14} = 2\cos(q_2)\ddot{q}_1 + \cos(q_2)\ddot{q}_2 - 2\sin(q_2)\dot{q}_1\dot{q}_2 - \sin(q_2)\dot{q}_2^2$$

$$y_{24} = \cos(q_2)\ddot{q}_1 + \sin(q_2)\dot{q}_1^2$$

Controle de sistemas robóticos Controle robusto baseado na Passividade

A equação dinâmica do robô é dada por

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = u$$

Como n\u00e3o conhecemos precisamente a planta, a lei de controle \u00e9 na realidade dada por

$$u(t) = \hat{M}(q)a + \hat{C}(q, \dot{q})v + \hat{g}(q) - Kr$$

onde \hat{M} , \hat{C} , \hat{g} são valores aproximados (estimados) dos valores reais de M, C, g.

Vamos definir o erro dessa estimação por

$$\tilde{M}(q) = \hat{M}(q) - M(q), \qquad \tilde{C}(q,\dot{q}) = \hat{C}(q,\dot{q}) - C(q,\dot{q}), \qquad \tilde{g}(q) = \hat{g}(q) - g(q)$$

ullet Substituindo a lei u(t) na equação do sistema, temos

$$M(q)\ddot{q} - (\tilde{M} + M)a + C(q, \dot{q})\dot{q} - (\tilde{C} + C)v + Kr = \hat{g}(q) - g(q)$$

que pode equivalentemente ser escrito como

$$M(q)\dot{r} + C(q,\dot{q})r + Kr = \tilde{M}(q)a + \tilde{C}(q,\dot{q})v + \tilde{g}(q)$$

Usando a propriedade da parametrização linear, temos

$$M(q)\dot{r} + C(q,\dot{q})r + Kr = Y(q,\dot{q},a,v)(\hat{\theta} - \theta)$$

Controle de sistemas robóticos Controle robusto baseado na Passividade

O sistema em malha fechada é agora dado por

$$M(q)\dot{r} + C(q,\dot{q})r + Kr = Y(q,\dot{q},a,v)(\hat{\theta} - \theta)$$

• Escolhendo o termo $\hat{\theta}$ como

$$\hat{\theta} = \theta_0 + \delta_\theta$$

onde θ_0 representa uma estimativa dos parâmetros nominais e δ_{θ} é um termo adicional de controle.

• O sistema é agora dado por

$$M(q)\dot{r} + C(q,\dot{q})r + Kr = Y(q,\dot{q},a,v)(\bar{\theta} + \delta_{\theta})$$

onde $\bar{\theta}=\theta_0-\theta$ é um vetor constante que representa a incerteza no sistema.

• Se essa incerteza puder ser limitada por

$$\|\bar{\theta}\| = \|\theta - \theta_0\| \le \rho$$

Então, o termo $\delta\theta$ pode ser projetado de forma que o sistema em malha fechada seja "finalmente uniformemente limitado" (Uniformly Ultimately Bounded).

Controle de sistemas robóticos

Considere a lei de controle

$$\delta_{\theta} = \begin{cases} -\rho \frac{\boldsymbol{Y}^T \boldsymbol{r}}{\|\boldsymbol{Y}^T \boldsymbol{r}\|}, & \text{se } \|\boldsymbol{Y}^T \boldsymbol{r}\| > \epsilon \\ -\frac{\rho}{\epsilon} \boldsymbol{Y}^T \boldsymbol{r}, & \text{se } \|\boldsymbol{Y}^T \boldsymbol{r}\| \leq \epsilon \end{cases}$$

Usando a função de Lyapunov

$$V = \frac{1}{2}r^T M(q)r + \tilde{q}^T \Lambda K \tilde{q}$$

pode-se mostrar que

$$\dot{V} = -e^T Q e + r^T Y (\bar{\theta} + \delta_{\theta})$$

com

$$e = \begin{bmatrix} \tilde{q} \\ \dot{\tilde{q}} \end{bmatrix}, \qquad Q = \begin{bmatrix} \Lambda K \Lambda & 0 \\ 0 & K \end{bmatrix}$$

 Teorema. Todas as trajetórias do sistema em malha fechada serão "finalmente uniformemente limitadas".

Controle de sistemas robóticos Controle robusto baseado na Passividade

ullet Prova. Usando V e \dot{V} dados anteriormente, temos que

$$\begin{split} \dot{V} &= -e^{T}Qe + r^{T}Y\left(\bar{\theta} + \delta_{\theta}\right) \\ &\leq -e^{T}Qe + r^{T}Y\left(\delta_{\theta} + \rho \frac{Y^{T}r}{\|Y^{T}r\|}\right) \\ &= -e^{T}Qe + w^{T}\left(\delta_{\theta} + \rho \frac{w}{\|w\|}\right), \qquad w = Y^{T}r \end{split}$$

• Para $||w|| > \epsilon$, temos que

$$\dot{V} \le -e^T Q e + w^T \left(-\rho \frac{Y^T r}{\|w\|} + \rho \frac{w}{\|w\|} \right) = -e^T Q e < 0$$

• Para $||w|| \le \epsilon$, o segundo termo fica sendo

$$w^{T}\left(-\frac{\rho}{\epsilon}w + \rho \frac{w}{\|w\|}\right) = -\frac{\rho}{\epsilon}\|w\|^{2} + \rho\|w\|$$

- Esta expressão atinge um valor máximo de $\epsilon \rho/4$ quando $\|w\| = \epsilon/2$.
- Assim

$$\dot{V} \le -e^T Q e + \epsilon \frac{\rho}{4} < 0$$

sempre que $e^T Q e > \epsilon \rho / 4$.

Controle de sistemas robóticos

• Usando a relação

$$\lambda_{\min}(Q)\|e\|^2 \le e^T Q e \le \lambda_{\max}(Q)\|e\|^2$$

temos que $\dot{V} < 0$ se

$$\lambda_{\min}(Q) \|e\|^2 > \epsilon \rho/4$$

ou equivalentemente se

$$||e|| > \left(\frac{\epsilon \rho}{4\lambda_{\min}(Q)}\right)^{1/2} = \delta$$

- Vamos mostrar que esse resultado implica que as trajetórias são "finalmente uniformemente limitadas" (UUB).
- Seja S_{δ} a menor curva de nível de V contendo a bola B_{δ} de raio δ . Seja B_{r} a menor bola contendo S_{δ} . Então todas as soluções do sistema são UUB com respeito a B_{r} , ou seja, todas as trajetórias irão "ao fim" entrar na bola B_{r} . De fato, todas as trajetórias irão atingir a fonteira de S_{δ} já que $\dot{V} < 0$ fora de S_{δ} .

Conceitos de estabilidade para sistemas não autônomos Definição de estabilidade

Seja o sistema

$$\dot{x} = f(x, t)$$

cujo equilíbrio é na origem, ou seja

$$f(0,t) = 0, \quad \forall \ t \ge 0$$

Por exemplo, o sistema linear variante no tempo

$$\dot{x} = A(t)x$$

tem um único equilíbrio na origem sempre que $|A(t)| \neq 0$ para algum t.

• Exemplo. O seguinte sistema tem equilíbrio na origem:

$$\dot{x} = -\frac{a(t)x}{1+x^2}$$

• Exemplo. O seguinte sistema forçado não tem ponto de equilíbrio:

$$\dot{x} = -\frac{a(t)x}{1+x^2} + b(t), \quad b(t) \neq 0$$

ullet Definição: O equilíbrio x=0 é estável se, para $\epsilon>0$, existir $\delta=\delta(\epsilon,t_0)>0$ tal que

$$||x(t_0)|| < \delta \quad \Rightarrow \quad ||x(t)|| < \epsilon$$

 \bullet Ao contrário do caso autônomo, δ pode agora depender do tempo inicial.

Conceitos de estabilidade para sistemas não autônomos Definição de estabilidade

- Definição: O equilíbrio x = 0 é assintoticamente estável se:
 - for estável;
 - ② existir $c = c(t_0) > 0$ tal que $||x(t_0)|| < c$ \Rightarrow $\lim_{t \to \infty} ||x(t)|| = 0$
- Exemplo. O sistema

$$\dot{x} = -\frac{x}{1+t}$$

cuja solução é

$$x(t) = x(t_0) \frac{1 + t_0}{1 + t}$$

é assintoticamente estável, mas não uniformemente em t_0 .

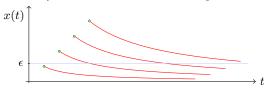


Figura: Solução x(t) (que dependente do tempo inicial t_0) com condição inicial $x(t_0) = t_0$.

• Exercício: mostre que o seguinte sistema é estável, mas não assintoticamente:

$$\dot{x} = -\frac{x}{(1+t)^2}$$

Conceitos de estabilidade para sistemas não autônomos Definicão de estabilidade

- Como visto pelas definições anteriores, as noções de estabilidade são basicamente as mesmas que as dos sistemas autônomos.
- ullet Enquanto que nos sistemas autônomos, a solução depende apenas da diferença $(t-t_0)$, no caso não autônomo, a solução depende de ambos t e t_0 .
- ullet Na prática, é desejável que o sistema tenha propriedades uniformes com relação ao tempo inicial t_0 .
- Definição: O equilíbrio x=0 é localmente uniformemente estável se δ puder ser escolhido independente do tempo t_0 , ou seja, $\delta=\delta(\epsilon)$.
- $\bullet\,$ Definição: O equilíbrio x=0 é localmente uniformemente assintoticamente estável se
 - for uniformemente estável:
 - 2 existir um c > 0 (independente de t_0) tal que

$$||x(t_0)|| < c \quad \Rightarrow \quad \lim_{t \to \infty} ||x(t)|| = 0$$

uniformemente em t_0 , ou seja, se $\forall \ \epsilon > 0$, existir $T = T(\epsilon) > 0$ tal que

$$||x(t)|| < \epsilon$$
, $\forall t > t_0 + T(\epsilon)$, $\forall ||x(t_0)|| < c$

ullet Exemplo: o sistema $\dot{x}=-x/(1+t)$ não converge uniformemente, já que a constante T depende de t_0 .

Conceitos de estabilidade para sistemas não autônomos Definição de estabilidade

• Definição: O equilíbrio x=0 é exponencialmente estável se existirem números positivos $c,~\alpha$ e λ tais que

$$||x(t)|| \le \alpha ||x(t_0)|| e^{-\lambda(t-t_0)}, \quad \forall \quad ||x(t_0)|| < c$$

• Exemplo. O sistema

$$\dot{x}(t) = -a(t)x(t)$$

tem solução

$$x(t) = x(t_0)e^{-\int_{t_0}^t a(\gamma)d\gamma}$$

Assim, o sistema será estável se

$$a(t) \geq 0, \forall t \geq t_0$$

Será assintoticamente estável se

$$\int_0^\infty a(\gamma)d\gamma \to +\infty$$

Será exponencialmente estável se existir T>0 tal que

$$\int_{t}^{t+T} a(\gamma)d\gamma \ge \lambda > 0, \forall \ t \ge t_0$$

Análise de Lyapunov para sistemas não autônomos Definições preliminares

- Definição: Uma função escalar variante no tempo V(x,t) é localmente positiva definida se:
 - V(0,t) = 0
 - $oldsymbol{2}$ existir uma função positiva definida $V_0(x)$ tal que

$$V(x,t) \ge V_0(x), \quad \forall \ t \ge 0$$

- A função será negativa definida se -V(x,t) for positiva definida. De forma análoga, definimos positiva (negativa) semidefinida e os conceitos de local e global.
- Definição: Uma função V(x,t) é dita decrescente se V(0,t)=0 e se existir uma função positiva definida $V_1(x)$ tal que

$$V(x,t) \le V_1(x), \quad \forall \ t \ge 0$$

Exemplo. Seja

$$V(x,t) = (1 + \sin^2(t))(x_1^2 + x_2^2)$$

Esta função é positiva definida já que podemos usar

$$V_0(x) = (x_1^2 + x_2^2)$$

e também é decrescente pois podemos usar

$$V_1(x) = 2(x_1^2 + x_2^2)$$

Theorem (Teorema de Lyapunov)

Considere o sistema não autônomo $\dot{x} = f(x,t)$.

Se, numa nola B_r contendo o ponto de equilíbrio x=0, existir uma função escalar V(x,t) continuamente diferenciável tal que

- V(x,t) seja positiva definida;
- $\ \, \dot{V}(x,t) = \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(x,t) \,\, \text{seja negativa semidefinida}.$

Então, o equilíbrio é estável.

Além do mais:

- **9** Se V(x,t) for decrescente, então a origem é uniformemente estável;
- **3** Se V(x,t) for decrescente e $\dot{V}(x,t)$ for negativa definida, então, a origem é uniformemente assintoticamente estável;
- **3** Se a bola B_r for o espaço completo e:
 - \bullet V(x,t) for positiva definida, decrescente e radialmente ilimitada;
 - \bullet $\dot{V}(x,t)$ for negativa definida.

Então, a origem x=0 é globalmente uniformemente assintoticamente estável.

Note a importância da condição "decrescente".

Conceitos de estabilidade para sistemas não autônomos Exemplo

• Considere o seguinte sistema mecânico

$$\ddot{x} + c(t)\dot{x} + kx = 0, \quad c(t) > 0, \quad k > 0$$

- Note que c(t) > 0 implica numa constante dissipação de energia.
- Assim, somos levado a crer que o equilíbrio x=0 é assintoticamente estável, no entanto, este não é o caso.
- Por exemplo, para $c(t)=2+e^t$ e condições iniciais $x(0)=2,\,\dot{x}(0)=-1,$ a solução é dada por

$$x(t) = 1 + e^{-t}$$

- Claramente, $x(t) \to 1$ com $t \to \infty$.
- Vamos analisar a estabilidade usando a seguinte função de Lyapunov

$$V(x,t) = \frac{(\dot{x} + \alpha x)^2}{2} + \frac{b(t)}{2}x^2$$

$$com \ 0 < \alpha < \sqrt{k} \ e \ b(t) = k - \alpha^2 + \alpha c(t).$$

Sua derivada é dada por

$$\dot{V} = (\alpha - c(t))\dot{x}^2 + \frac{\alpha}{2}(\dot{c}(t) - 2k)x^2$$

Conceitos de estabilidade para sistemas não autônomos Exemplo

A derivada da função de Lyapunov foi determinada como sendo

$$\dot{V} = (\alpha - c(t))\dot{x}^2 + \frac{\alpha}{2}(\dot{c}(t) - 2k)x^2$$

ullet Esta função será negativa definida se existirem escalares lpha e eta tais que

$$c(t) > \alpha$$
 e $\dot{c}(t) < \beta < 2k$

- Assumindo também que c(t) é limitada superiormente (garantindo que V é decrescente), asseguramos estabilidade assintótica.
- \bullet Vale salientar que a condição $c(t)<\infty$ não é necessária para estabilidade assintótica.
- Por exemplo, o sistema

$$\ddot{x} + (2 + 8t)\dot{x} + 5x = 0$$

é assintoticamente estável, no entanto c(t)=(2+8t) é ilimitada.

Análise de Lyapunov para sistemas não autônomos Teorema de Lyapunov

Seja x=0 um ponto de equilíbrio e $D\in R^n$ um domínio contendo a origem.

Seja $V:[0,\infty) \times D \to R$ uma função continuamente diferenciável tal que, para $t \geq 0$ e $x \in D$:

$$W_1(x) \le V(t, x) \le W_2(x)$$

$$\frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t, x) \le -W_3(x)$$

onde $W_1(x)$, $W_2(x)$ e $W_3(x)$ são funções contínuas positivas definidas em D.

Então a origem x = 0 é uniformemente assintoticamente estável.

Corollary

Se todas as hipóteses to teorema acima forem satisfeita globalmente ($\forall x \in R^n$) e $W_1(x)$ for radialmente ilimitada. Então, x = 0 é globalmente UAE.

Exemplo. Considere o seguinte sistema

$$\dot{x} = -(1 + g(t))x^3$$

com $g(t) \in C^0$ e $g(t) \ge 0$ para $t \ge 0$.

• Usando $V(x) = \frac{1}{2}x^2$, temos

$$\dot{V}(x) = -(1+g(t))x^4 \le -x^4, \qquad \forall \ x \in R, \quad \forall \ t \ge 0$$

• Portanto, o teorema anterior é satisfeito globalmente com

$$W_1(x) = W_2(x) = V(x)$$
 e $W_3(x) = x^4$

- Assim, concluímos que a origem é globalmente UAE.
- Exercício: Usando a função de Lyapunov

$$V(t,x) = (x_1 + x_2)^2 + (e^{-2t}x_1 - 2x_2)x_1$$

mostre que a origem do sistema abaixo é globalmente uniformemente assintoticamente estável.

$$\dot{x}_1 = -x_1 + x_2$$

$$\dot{x}_2 = -e^{-2t}x_1 - x_2$$

Exemplo. Seja

$$\dot{x} = A(t)x, \qquad A(t) \in C^0$$

• Suponha que exista $P(t) = P(t)^T > 0$ continuamente diferenciável com P(t) limitada, ou seja

$$0 < c_1 I \le P(t) \le c_2 I, \qquad \forall \ t \ge 0$$

satisfazendo, com $Q(t) = Q(t)^T \ge c_3 I > 0$ e $Q(t) \in C^0$, a equação:

$$-\dot{P}(t) = P(t)A(t) + A(t)^{T}P(t) + Q(t)$$

ullet Considere a função de Lyapunov $V(t,x)=x^TP(t)x.$ Note que

$$|c_1||x||_2^2 \le V(t,x) \le c_2||x||_2^2$$

Sua derivada é dada por

$$\dot{V}(t,x) = \dot{x}^{T} P(t) x + x^{T} \dot{P}(t) x + x^{T} P(t) \dot{x}$$

$$= x^{T} \left(\dot{P}(t) + P(t) A(t) + A(t)^{T} P(t) \right) x$$

$$= -x^{T} Q x \le -c_{3} ||x||_{2}^{2}$$

• Portanto, $\dot{V}(t,x)$ é negativa definida e pelo teorema anterior concluímos que a origem é globalmente UAE. (Pode-se mostrar que a estabilidade é exponencial.)

Análise de Lyapunov para sistemas não autônomos Teorema de Lyapunov

Seja x = 0 um ponto de equilíbrio de $\dot{x} = f(t, x)$. Seja $D = \{x \in R^n | ||x|| < r\}$.

Suponha que f(t,x) é contínua em t e diferenciável em D.

Seja $V:[0,\infty)\times D\to R$ uma função continuamente diferenciável tal que, para $t\geq 0$ e $x\in D$:

$$W_1(x) \le V(t, x) \le W_2(x)$$

$$\frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t, x) \le -W(x)$$

onde $W_1(x)$ e $W_2(x)$ são positivas definidas e W(x) é positiva semidefinida em D.

Então, a origem é uniformemente estável e todas as soluções (iniciadas suficientemente próximas da origem) são limitadas e satisfazem:

$$\lim_{t \to \infty} W(x(t)) = 0$$

Note que

- $\dot{f}(t) \rightarrow 0$ não implica que f(t) converge;
- ullet f(t)
 ightarrow a não implica que f
 ightarrow 0;
- $M \le f(t)$ e $\dot{f} \le 0$ implica $f(t) \to a$.

Lemma (Barbalat)

Se $f(t) \in C^1$ e possui um limite com $t \to \infty$, e se $\dot{f}(t)$ for uniformemente contínua, então:

$$\dot{f}(t) \to 0, \qquad t \to \infty$$

Obs.: Uma função é uniformemente contínua se sua derivada for limitada.

Lemma (Tipo Lyapunov)

Se a função V(t,x) satisfizer as seguintes condições:

- V(t,x) é limitada inferiormente;
- $\dot{V}(t,x) \leq 0$;
- $\dot{V}(t,x)$ é uniformemente contínua em t.

Então

$$\lim_{t \to \infty} \dot{V}(t, x) = 0$$

Considere o seguinte sistema

$$\dot{x}_1 = -x_1 - x_2 x_3$$

$$\dot{x}_2 = x_1 x_3$$

$$\dot{x}_3 = x_1^2$$

• Os pontos de equilíbrio (não isolados) são

$$x_1 = 0,$$
 $x_2 = \text{constante},$ $x_3 = 0$

ou

$$x_1 = 0,$$
 $x_2 = 0,$ $x_3 =$ constante

• Considere a seguinte função de Lyapunov

$$V = \frac{x_1^2}{2} + \frac{x_2^2}{2}$$

• Sua derivada é dada por

$$\dot{V} = -x_1^2 \le 0$$

- Como $\dot{V}=-x_1^2\leq 0$, então $V(t)\leq V(0)$ e portanto x_1 e x_2 são limitados.
- Integrando ambos os lados da equação diferencial, tem-se

$$x_3(t) - x_3(0) = \int_0^t x_1^2(\tau) d\tau = -\int_0^t \dot{V}(\tau) d\tau = V(0) - V(t)$$

- Portanto, x_3 também é limitada.
- ullet A derivada de \dot{V} é dada por

$$\ddot{V} = 2x_1^2 + 2x_1x_2x_3$$

que é claramente limitada.

ullet Portanto, \dot{V} é uniformemente contínua e temos que

$$\dot{V}
ightarrow 0$$
 ou seja $x_1(t)
ightarrow 0$

ullet Perceba também que $x_3(t)$ é uma função monótona não decrescente limitada por

$$x_3(0) \le x_3(t) \le x_3(0) + V(0)$$

• Portanto $x_3(t)$ converge para uma constante no intervalo acima.

Considere a seguinte planta

$$\dot{y}_p(t) = a_p y_p(t) + u(t)$$

onde u(t) é a lei de controle a ser projetada.

• Suponha que desejemos um sistema em malha fechada dado pelo seguinte modelo:

$$\dot{y}_m(t) = -y_m(t) + r(t)$$

onde r(t) é uma entrada de referência limitada.

• Se o parâmetro a_p for conhecido, então podemos usar o controle:

$$u(t) = r(t) + \theta^* y_p(t), \qquad \theta^* = -1 - a_p$$

O sistema em malha fechada fica sendo

$$\dot{y}_p(t) = a_p y_p(t) + r(t) + (-1 - a_p) y_p(t) = -y_p + r(t)$$

- ullet Se a_p não for conhecida, não poderemos implementar essa lei de controle.
- No entanto, podemos usar a seguinte lei adaptativa:

$$\dot{\theta} = (y_p - y_m)y_p, \qquad u = r + \theta y_p$$

ullet hecessário agora provar que está lei assegura que $\lim_{t o\infty}|y_m-y_p|=0.$

Defina as seguintes variáveis:

$$e = y_p - y_m, \qquad \phi = \theta - \theta^*$$

Assim, o modelo de referência passa a ser

$$\dot{y}_m = a_p y_m + r(t) + \theta^* y_m$$

A saída da planta fica sendo

$$\dot{y}_p = a_p y_p + r(t) + \theta y_p$$

• Subtraindo uma da outra, temos

$$\dot{e} = a_p e + \theta y_p - \theta^* y_m$$

$$= a_p e + \theta y_p - \theta^* y_m + \theta^* y_p - \theta^* y_p$$

$$= (a_p + \theta^*) e + (\theta - \theta^*) y_p$$

• Usando o fato que $\theta^* = -1 - a_p$, o sistema em malha fechada fica sendo

$$\dot{e} = -e + \phi w(t)$$
$$\dot{\phi} = -ew(t)$$

 $com w(t) = e + y_m(t).$

• Note que este sistema possui um ponto de equilíbrio na origem em $(e,\phi)=(0,0).$

Considere a seguinte função candidata de Lyapunov

$$V = e^2 + \phi^2$$

Então

$$\dot{V} = 2e(-e + \phi w) + 2\phi(-ew) = -2e^2 \le 0$$

• Claramente o Teorema de Lyapunov anterior é satisfeito com

$$W_1(x) = W_2(x) = e^2 + \phi^2$$
, e $W(x) = 2e^2$

• Assim, todas as soluções (iniciadas numa certa bola) são limitadas e satisfazem:

$$\lim_{t \to \infty} W(x(t)) = \lim_{t \to \infty} e^2 = 0 \qquad \Rightarrow \qquad e(t) \to 0$$

- O mesmo resultado pode ser obtido usando-se o Lemma de Barbalat (Tipo Lyapunov).
- Como $\dot{V} \leq 0$, então $V(t) \leq V(0)$ e portanto e e ϕ são limitados.
- ullet É preciso agora verificar se \dot{V} é uniformemente contínua. Derivando \dot{V} , temos

$$\ddot{V} = -4e(-e + \phi w)$$

que é limitada, pois e, ϕ e y_m (e assim w) são limitados.

ullet Portanto, \dot{V} é uniformemente contínua e temos que

$$\dot{V}
ightarrow 0$$
 ou seja $e(t)
ightarrow 0$