ES927 – Controle de Sistemas Robóticos Controle Independente de Juntas

Camino, J. F.

DPM / Faculdade de Engenharia Mecânica UNICAMP, Campinas, SP, 13083-860, Brasil camino@fem.unicamp.br

Campinas, 2 de abril de 2014

Nota ao leitor

- Este material é baseado principalmente nas referências:
 - M. W. Spong, S. Hutchinson and M. Vidyasagar, *Robot Modeling and Control*, John Wiley & Sons, 2006
 - J. J. Craig, *Introduction to Robotics: Mechanics and Control*, 3rd ed., Pearson Prentice Hall, 2005.

Estrutura básica

• A figura abaixo apresenta a estrutura mais simples de controle.

- Cada junta do manipulador é controlado de forma independente, considerando o sistema como sendo SISO.
- Os efeitos do acoplamento entre os elos são tratados como distúrbios.
- O objetivo é projetar um compensador de forma que a saída da planta siga uma entrada de referência desejada.
- O controlador também deve ser capaz de rejeitar o distúrbio.

Dinâmica do atuador

• Considere o motor CC de ímã permanente da figura abaixo.

Figura: Princípio de operação do Motor CC de ímã permanente.

• Para esse sistema, o torque do motor au_m [Nm] é dado por

$$\tau_m = K_1 \phi i_a$$

onde ϕ é o fluxo magnético [weber], i_a é a corrente na armadura [ampère] e K_1 é uma constante.

• A força contra-eletromotriz V_b [volt] é dada por

$$V_b = K_2 \phi \omega_m$$

onde ω_m é a velocidade angular do rotor [rad/sec] e K_2 é uma constante.

Dinâmica do atuador

• O torque do motor é controlado pela corrente da armadura *i*_a.

• A equação diferencial que governa o circuito acima é

$$L\frac{\mathrm{d}i_a}{\mathrm{d}t} + Ri_a = V - V_b$$

• Como o fluxo da armadura é constante, temos

$$au_m = K_m i_a, \qquad \mathbf{e} \qquad V_b = K_b \frac{\mathrm{d} \theta_m}{\mathrm{d} t}$$

Curvas de torque versus velocidade

Modelo SISO do manipulador

Modelo SISO do manipulador

 Neste modelo, J_a, J_g e J_l são respectivamente as inércias do atuador, da engrenagem e da carga. O coeficiente de amortecimento é B_m e a relação de transmissão é η = r. Definimos a inércia do motor por J_m = J_a + J_g.

A equação que governa o sistema é dada por

$$J_m \frac{\mathrm{d}^2 \theta_m}{\mathrm{d}t^2} + B_m \frac{\mathrm{d}\theta_m}{\mathrm{d}t} = \tau_m - \tau_l / \eta = K_m i_a - \tau_l / \eta$$

• Combinando as equações e aplicando Laplace, temos

$$(Ls + R)I_a(s) = V(s) - sK_b\Theta_m(s)$$
$$(J_m s^2 + B_m s)\Theta_m(s) = K_m I_a(s) - \tau_l(s)/\eta$$

• O diagrama de blocos para este sistema é

Modelo SISO do manipulador

• Assim, obtemos as seguintes funções de transferência:

$$\frac{\theta_m(s)}{V(s)} = \frac{K_m}{s[(Ls+R)(J_ms+B_m)+K_bK_m]} \\ \frac{\theta_m(s)}{\tau_l(s)} = \frac{-(Ls+R)/\eta}{s[(Ls+R)(J_ms+B_m)+K_bK_m]}$$

- O efeito do torque de carga τ_l no ângulo do motor θ_m é reduzido pela constante η, que geralmente está entre 20 a 200 (ou mais).
- Em geral, a constante de tempo elétrica L/R é significativamente menor que a constante de tempo mecânica J_m/B_m . Assim o sistema se reduz a

$$\frac{\theta_m(s)}{V(s)} = \frac{K_m/R}{s(J_m s + B_m + K_b K_m/R)}$$
$$\frac{\theta_m(s)}{\tau_l(s)} = \frac{-1/\eta}{s(J_m s + B_m + K_b K_m/R)}$$

Malha aberta do sistema simplificado. Distúrbio D representa os efeitos das não-linearidades e dos acoplamentos.

• A equação diferencial correspondente é

$$J_m \ddot{\theta}_m(t) + (B_m + K_b K_m/R) \dot{\theta}_m(t) = (K_m/R) V(t) - \tau_l(t)/\eta$$

ou na forma compacta: $J\ddot{\theta}(t) + B\dot{\theta} = u(t) - d(t)$ onde $\theta = \theta_m$, $B = (B_m + K_b K_m/R)$, $u = (K_m/R)V(t)$ e $d = \tau_l(t)/\eta$.

Controle para um entrada de referência constante

Rastreamento de uma referência constante θ^d

• Compensador da forma PD:

$$U(s) = K_P(\Theta^d(s) - \Theta(s)) - K_D s \Theta(s)$$

O sistema em malha fechada fica sendo

$$\Theta(s) = \frac{K_P}{\Omega(s)} \Theta^d(s) - \frac{1}{\Omega(s)} D(s)$$

onde Ω é o polinômio característico:

$$\Omega(s) = Js^2 + (B + K_D)s + K_P$$

- O sistema será estável para quaisquer: $K_P > 0$ e $K_D > -B$.
- O erro de rastreamento $E(s) = \Theta^d(s) \Theta(s)$ é dado por

$$E(s) = \frac{Js^2 + (B + K_D)s}{\Omega(s)}\Theta^d(s) + \frac{1}{\Omega(s)}D(s)$$

• Para uma entrada em degrau e um distúrbio constante d, o erro estacionário é

$$e_{ss} = \lim_{s \to 0} sE(s) = \frac{d}{K_P}$$

 $\bullet\,$ Como o sistema é de segunda ordem, dados ζ e $\omega,$ temos

$$s^{2} + \frac{(B+K_{D})s}{J} + \frac{K_{P}}{J} = s^{2} + 2\zeta\omega s + \omega^{2} \rightarrow K_{P} = \omega^{2}J, \quad K_{D} = 2\zeta\omega J - B$$

Rastreamento de uma referência constante θ^d

Compensador PD: Exemplo numérico

• Seja $\zeta = 1$ e J = B = 1. Então o polinômio característico é

$$p(s) = s^2 + (1 + K_D)s + K_p$$

• Suponha que o distúrbio seja d = 0. Neste caso, o erro estacionário é nulo como visto na figura abaixo, que apresenta a resposta ao degrau $\theta^d = 10$ em função de ω .

• Suponha agora que o distúrbio seja d = 40. Neste caso, existe um erro estacionário ao degrau, como visto na figura abaixo. Este erro diminui à medida que ω aumenta.

Controle para um entrada de referência constante

Rastreamento de uma referência constante θ^d

• Compensador da forma PID:

$$U(s) = (K_P + \frac{K_I}{s})(\Theta^d(s) - \Theta(s)) - K_D s \Theta(s)$$

• O sistema em malha fechada fica sendo

$$\Theta(s) = \frac{K_P s + K_I}{\Omega(s)} \Theta^d(s) - \frac{s}{\Omega(s)} D(s)$$

onde Ω é o polinômio característico:

$$\Omega(s) = Js^{3} + (B + K_{D})s^{2} + K_{P}s + K_{I}$$

• Critério de estabilidade implica:

 $K_I < (B + K_D)K_P/J, \qquad K_P > 0, \quad K_D > -B, \quad K_I > 0$

• Considere os dados numéricos anteriores e que o distúrbio seja d = 40. Percebe-se agora, pela figura abaixo, que o erro estacionário ao degrau $\theta^d = 10$ é nulo.

Controle Dara um entrada de referência variante Controle "Feedforward"

- O PID anterior não é capaz de seguir uma referência variante $\theta^d(t)$. Porém, se um termo "Feedforward" for inserido, o sistema será capaz de seguir referências variantes.
- A figura abaixo apresenta a estrutura de controle por pré-alimentação, onde G(s) é a planta, F(s) é o compensador "Feedforward" e H(s) é o compensador "Feedback".

- Assume-se que G(s) é estritamente própria e H(s) é própria.
- Considere que as funções de transferência têm a seguinte forma

$$G(s) = \frac{q(s)}{p(s)}, \quad H(s) = \frac{c(s)}{d(s)}, \quad F(s) = \frac{a(s)}{b(s)}$$

• A função de transferência em malha fechada $T(s) = \Theta(s) / \Theta^d(s)$ é

$$T(s) = \frac{q(s)(c(s)b(s) + a(s)d(s))}{b(s)(p(s)d(s) + q(s)c(s))}$$

 \bullet Para assegurar estabilidade, F(s) e H(s) são escolhidos de tais forma que $p(s)d(s)+q(s)c(s) \ \ {\rm e} \ \ b(s) \ \ {\rm sejam} \ {\rm Hurwitz}$

Controle "Feedforward"

• Se G(s) for de fase mínima e estritamente própria, uma possível escolha é

$$F(s) = 1/G(s)$$

• Assim o sistema em malha fechada fica sendo

 $q(s)(p(s)d(s) + q(s)c(s))\Theta(s) = q(s)(p(s)d(s) + q(s)c(s))\Theta^{d}(s)$

ou em termos do erro de rastreamento $E(s) = \Theta^d(s) - \Theta(s)$:

$$q(s)(p(s)d(s) + q(s)c(s))E(s) = 0$$

- Assumindo estabilidade, a saída $\Theta(s)$ rastreará qualquer entrada $\Theta^d(s)$.
- Se houver uma entrada de distúrbio D(s), o erro E(s) de rastreamento é

$$E(s) = \frac{q(s)d(s)}{p(s)d(s) + q(s)c(s)}D(s)$$

Controle "Feedforward"

• Considere a planta G(s) e o controlador H(s), do tipo PD, dados por

$$G(s) = \frac{1}{Js^2 + Bs}, \qquad H(s) = K_P + K_D s$$

• Como a planta G(s) é de fase mínima, temos que $F(s) = Js^2 + Bs$:

- Perceba que F(s) não é uma função racional própria. No entanto, isto não é um obstáculo prático para a sua implementação já que a referência $\theta^d(t)$ é conhecida.
- No domínio do tempo, a lei de controle é dada por

$$u(t) = J\ddot{\theta}^d + B\dot{\theta}^d + K_D(\dot{\theta}^d - \dot{\theta}) + K_P(\theta^d - \theta)$$

• Para um distúrbio constante d, a equação do erro e(t) em malha fechada fica sendo

$$J\ddot{e}(t) + (B + K_D)\dot{e}(t) + K_P e(t) = d$$

• Caso um PID seja utilizado, equação do erro e(t) em malha fechada será $J\ddot{e}(t) + (B + K_D)\ddot{e}(t) + K_P\dot{e}(t) + K_Ie(t) = \dot{d} = 0$ Controle para um entrada de referência variante Controle "Feedforward"

• Sistema mecânico: J = B = 1.

Exemplos

- Distúrbio: d = 100 em t = 3s.
- Controlador PD: $K_P = 64$, $K_D = 15$.

Controle para um entrada de referência variante Controle "Feedforward"

• Sistema mecânico: J = B = 1.

Exemplos

- Distúrbio: d = 100 em t = 3s.
- Controlador PID: $K_P = 64$, $K_D = 15$, $K_I = 100$.

Controle de sistemas de segunda ordem Controle de regulagem de posição

• Considere a figura abaixo onde f(t) é uma força de controle atuando na massa m.

• A equação de movimento é dada por

$$m\ddot{x}(t) + b\dot{x}(t) + kx(t) = f(t)$$

- O objetivo é determinar uma lei de controle f(t) tal que o sistema em malha fechada seja estável e $x(t) \rightarrow 0$ para qualquer condição inicial.
- Assuma a seguinte lei de controle:

$$f(t) = -K_p x(t) - K_v \dot{x}(t)$$

• O diagrama de blocos do sistema em malha fechada está apresentado abaixo.

Controle de sistemas de segunda ordem Controle de regulagem de posição

• O sistema em malha fechada é dado por

$$m\ddot{x}(t) + \hat{b}\dot{x}(t) + \hat{k}x(t) = 0, \qquad \hat{b} = b + K_v, \quad \hat{k} = k + K_p$$

- O sistema é estável sempre que $m,\,\hat{b}$ e \hat{k} forem positivos.
- Para um amortecimento crítico em malha fechada é necessário que

$$\hat{b} = 2\sqrt{m\hat{k}}$$

• Assuma agora que a lei de controle seja

$$f(t) = \alpha f'(t) + \beta$$

onde α e β são coeficientes a serem escolhidos e f'(t) é a nova entrada de controle.

• Em malha fechada, temos

$$m\ddot{x}(t) + b\dot{x}(t) + kx(t) = \alpha f'(t) + \beta$$

• É possível escolher os coeficientes α e β de forma que o sistema se assemelhe com uma massa unitária sob a ação da força f'(t).

Controle de sistemas de segunda ordem Controle de regulagem de posicão

• Seja $\alpha = m \in \beta = b\dot{x} + kx$, então a dinâmica passa a ser representada pela equação da massa unitária dada por

$$\ddot{x}(t) = f'(t)$$

• Esta equação de movimento representa o sistema da figura abaixo.

• Escolhendo $f'(t) = -K_v \dot{x}(t) - K_p x(t)$, temos em malha fechada

$$\ddot{x}(t) + K_v \dot{x}(t) + K_p x(t) = 0$$

• O diagrama de blocos do sistema em malha fechada está apresentado abaixo.

- Para um amortecimento crítico em malha fechada é necessário que $K_v = 2\sqrt{K_p}$.
- Note que este critério agora independe dos parâmetros do sistema b e k.

Controle de sistemas de segunda ordem Controle de rastreamento de trajetória

• Suponha que a trajetória desejada (conhecida) seja dada por

$$x_d(t), \quad \dot{x}_d(t), \quad \ddot{x}_d(t), \quad \forall t \in R$$

- Defina o erro de rastreamento por $e(t) = x_d(t) x(t)$.
- Assuma a lei de controle $f'(t) = \ddot{x}_d(t) + K_v \dot{e}(t) + K_p e(t)$.
- Aplicando essa lei na equação da massa unitária, $\ddot{x} = f'(t)$, obtemos

$$\ddot{x}(t) = \ddot{x}_d(t) + K_v \dot{e}(t) + K_p e(t)$$

• Assim, a equação do erro de rastreamento fica sendo

$$\ddot{e}(t) + K_v \dot{e}(t) + K_p e(t) = 0$$

- Portanto, para K_v e K_p positivos, $e(t) \rightarrow 0$ e conseqüentemente $x(t) \rightarrow x_d(t)$.
- O diagrama de blocos para essa configuração está apresentado abaixo.

Controle para um entrada de referência variante

Controle de sistemas de segunda ordem Rejeição ao distúrbio

• Suponha agora que exista um distúrbio no sistema (na entrada de controle f).

• Então, a equação do erro passa a ser

$$\ddot{e}(t) + K_v \dot{e}(t) + K_p e(t) = d(t)$$

- Se o sistema for BIBO estável, sabemos que para uma entrada limitada d(t), tal que $\sup |d(t)| < \gamma < \infty$,
 - o erro de rastreamento e(t) também será limitado.
- Assumindo que o distúrbio é constante, d(t) = d, o erro estacionário e_{∞} é dado por

$$K_p e_\infty = d \quad \Rightarrow \quad e_\infty = \frac{d}{K_p}$$

• Este erro pode ser suprimido com a adição de um integrador na lei de controle:

$$f'(t) = \ddot{x}_d(t) + K_v \dot{e}(t) + K_p e(t) + K_i \int e(\tau) d\tau$$

Controle para um entrada de referência variante

Controle de sistemas de segunda ordem Rejeição ao distúrbio

Em malha fechada, temos

$$\ddot{e}(t) + K_v \dot{e}(t) + K_p e(t) + K_i \int e(\tau) d\tau = d(t)$$

Aplicando Laplace, temos

$$s^{2}E(s) - se_{0} - \dot{e}_{0} + K_{v}(sE(s) - e_{0}) + K_{p}E(s) + \frac{K_{i}}{s}E(s) = D(s)$$

• Definindo $\Omega(s) = s^3 + K_v s^2 + K_p s + K_i$, temos

$$\Omega(s)E(s) = s^2 e_0 + s\dot{e}_0 + K_v s e_0 + sD(s)$$

- Se a entrada for constante $d(t) = \bar{d}$, então $D(s) = \bar{d}/s$.
- Portanto, o erro de rastreamento passa a ser

$$E(s) = \frac{s(\dot{e}_0 + (K_v + s)e_0) + \bar{d}}{\Omega(s)}$$

e conseqüentemente o erro estacionário e_∞ é nulo, já que

$$e_{\infty} = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = 0.$$

 Está apresentado abaixo o modelo idealizado onde o atuador está conectado à carga através de uma mola torcional de rigidez k.

• A equação de movimento (em função do torque) é dada por

$$J_l \ddot{\theta}_l + B_l \dot{\theta}_l + k(\theta_l - \theta_m) = 0$$
$$J_m \ddot{\theta}_m + B_m \dot{\theta}_m + k(\theta_m - \theta_l) = u$$

onde J_l e J_m são as inércias da carga e do motor, B_l e B_m são os amortecimentos da carga e do motor, e u é o torque no eixo do motor.

• Aplicando Laplace temos o seguinte diagrama de blocos:

onde

$$p_l(s) = J_l s^2 + B_l s + k, \qquad p_m(s) = J_m s^2 + B_m s + k$$

Incluindo a dinâmica do redutor

• O sistema em malha aberta é

$$\frac{\Theta_l(s)}{U(s)} = \frac{k}{p_l(s)p_m(s) - k^2}$$

com o polinômio característico $p_l(s)p_m(s)-k^2$ dado por

$$J_{l}J_{m}s^{4} + (J_{l}B_{m} + J_{m}B_{l})s^{3} + (k(J_{l} + J_{m}) + B_{l}B_{m})s^{2} + k(B_{l} + B_{m})s$$

Negligenciando o amortecimento, temos

$$J_l J_m s^4 + k (J_l + J_m) s^2$$

cujos pólos são

$$p_1 = p_2 = 0,$$
 $p_3, p_4 = \pm j\omega$ com $\omega^2 = k \frac{J_m + J_l}{J_m J_l}$

- Na prática, o amortecimento é baixo e a rigidez k é alta. Assim os pólos de malha aberta estão no SPE próximos do eixo imaginário.
- Esta análise mostra que, na prática, trata-se de um sistema difícil de ser controlado.

- Ao se projetar um controlador, a análise dependerá de quais medições de posição/velocidade serão utilizadas: do eixo do motor ou do eixo da carga.
- Incluindo um compensador PD, da forma K_P + K_Ds, o sistema em malha fechada com realimentação da posição do motor tem a configuração apresentada abaixo.

• Para este sistema, o lugar das raízes em termos de K_D é dado por

• Percebe-se que o sistema é estável para $K_D > 0$. No entanto, a presença de zeros de malha aberta próximos do eixo imaginário pode levar a oscilações indesejáveis.

• O sistema de controle usando a posição θ_l da carga está apresentado na figura abaixo.

 As figuras abaixo apresentam o lugar das raízes em termos de K_D e a resposta de ambos os sistemas a uma entrada em degrau.

Percebemos que, neste caso, o sistema torna-se instável para valores elevados de K_D.
O valor limite pode ser determinado usando-se o critério de Routh-Hurwitz.

- Vimos que ao levar em consideração a flexibilidade da junta/elo, o controlador PD já não fornece um desempenho tão satisfatório.
- O argumento utilizado para negligenciar essa flexibilidade foi baseado no fato de que se o sistema for suficientemente rígido, a freqüência natural dessas ressonâncias não modeladas são altas e sua influência são desprezíveis comparadas com a influência dos pólos de segunda ordem dominantes.
- Caso a flexibilidade estrutural não seja modelada, deve-se ter cuidado para que essas ressonâncias não modeladas não sejam excitadas. Como regra prática, limita-se a freqüência w_n do sistema em malha fechada, de forma a satisfazer

$$w_n \le \frac{1}{2} w_{res}$$

- Para uma estimativa (não-rigorosa) da menor freqüência de ressonância do sistema, pode-se utilizar um modelo discreto, onde uma viga de massa m é substituída por uma massa pontual de valor 0.23m, na extremidade da viga. De forma similar, a inércia distribuída J pode ser substituída por uma inércia pontual de valor 0.33J, na extremidade do eixo.
- Note que se for necessário uma maior largura de banda para o sistema em malha fechada, então será necessário incluir a flexibilidade estrutural no modelo.

• Exemplo. Considere o sistema da figura cujos parâmetros são m = 1, b = 1 e k = 1. Sabemos ainda que a menor freqüência não modelada é 8 rad/s.

- Determine α, β, K_p e K_v para a lei de controle de regulagem de posição, de forma que o sistema seja criticamente amortecido, que a dinâmica não modelada não seja excitada e que a rigidez em malha fechada seja a mais alta possível.
- Solução: Escolhemos $\alpha = 1$, $\beta = \dot{x} + x$. Assim, o sistema se assemelha a massa unitária sob efeito da entrada auxiliar f'(t).
- Usando a regra prática

$$w_n \le \frac{1}{2} w_{res}$$

escolhemos a freqüência natural do sistema em malha fechada como $w_n = 4 \text{ rad/s. O}$ fator de amortecimento é escolhido como $\zeta = 1$. Assim o modelo desejado é

$$s^2 + 2\zeta w_n s + w_n^2 = s^2 + 8s + 16$$

• Da equação $\ddot{x} + K_v \dot{x} + K_p x = 0$, temos que $K_p = 16$ e $K_v = 8$.

• Considere o modelo mecânico do motor conectado através do redutor à carga.

onde
$$au_l = \eta au_m$$
 e $heta_l = rac{1}{\eta} heta_m$

• A dinâmica do sistema, com $J_m = J_a + J_g$, é dada por

$$J_m \ddot{\theta}_m(t) + B_m \dot{\theta}_m(t) = \tau_m - \tau_l / \eta$$
$$J_l \ddot{\theta}_l(t) + B_l \dot{\theta}_l(t) = \tau_l$$

• Fazendo o balanço dos torques, em termos de variáveis do motor, temos:

$$\tau_m = \left(J_m + \frac{J_l}{\eta^2}\right)\ddot{\theta}_m(t) + \left(B_m + \frac{B_l}{\eta^2}\right)\dot{\theta}_m(t)$$

ou ainda em termos de variáveis da carga:

$$\tau_l = \underbrace{\left(J_l + \eta^2 J_m\right)}_{\theta_l} \ddot{\theta}_l(t) + \underbrace{\left(B_l + \eta^2 B_m\right)}_{\theta_l} \dot{\theta}_l(t)$$

inércia efetiva

amortecimento efetivo

Considerações práticas

Considerações práticas Inércia efetiva

- Em sistemas com alto fator de redução ($\eta \gg 1$), a inércia do motor passa a ser uma porção significante da inércia total.
- Exemplo: suponha que a inércia do motor seja $J_m = 0.01$, que a relação de engrenagem seja $\eta = 30$ e que se saiba que a inércia aparente do elo varia entre 2 e 6 Kg.m². Assim:
 - A inércia efetiva mínima é dada por $J_{\min} + \eta^2 J_m = 2 + (900)(0.01) = 11;$
 - A inércia efetiva máxima é dada por $J_{max} + \eta^2 J_m = 6 + (900)(0.01) = 15.$
- É este efeito que permite considerar que a inércia do sistema é praticamente constante.
- Para assegurar que o sistema, no controle independente de juntas, nunca seja subamortecido, deve-se usar o valor máximo da inércia do elo.
- Simplificações admitidas para o controle independente de juntas:
 - A indutância L_a do motor pode ser negligenciada;
 - Q Considerando uma relação de engrenagem alta, a inércia efetiva é considerada constante e igual a $J_{\max} + \eta^2 J_m$;
 - A flexibilidade estrutural é negligenciada, exceto que a menor freqüência estrutural w_{res} é usada no projeto dos ganhos do controlador.

Métodos no espaço de estado Modelo no espaço de estado

- Vimos que o projeto PD é inadequado para o controle de robô, exceto:
 - se for negligenciada a flexibilidade da junta/elo;
 - se for permitido que o sistema tenha uma resposta lenta;
 - se for utilizada uma relação de transmissão alta.
- A equação de movimento do sistema foi determinada como sendo

$$J_l \ddot{\theta}_l + B_l \dot{\theta}_l + k(\theta_l - \theta_m) = 0$$
$$J_m \ddot{\theta}_m + B_m \dot{\theta}_m + k(\theta_m - \theta_l) = u$$

• Esta equação pode ser reescrita no espaço de estado

$$\dot{x} = Ax + Bu, \qquad y = Cx + Du$$

• Escolhendo as seguintes variáveis de estado

$$x_1 = \theta_l, \qquad x_2 = \dot{\theta}_l, \qquad x_3 = \theta_m, \qquad x_4 = \dot{\theta}_m$$

temos

$$\begin{aligned} \dot{x}_1 &= x_2, \qquad \dot{x}_2 &= -\frac{k}{J_l} x_1 - \frac{B_l}{J_l} x_2 + \frac{k}{J_l} x_3 \\ \dot{x}_3 &= x_4, \qquad \dot{x}_4 &= \frac{k}{J_m} x_1 - \frac{B_l}{J_m} x_4 - \frac{k}{J_m} x_3 + \frac{1}{J_m} u \end{aligned} \right\} \to A \in B$$

• Escolhendo a saída como sendo $y(t) = \theta_l(t)$, temos: $C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} e D = \begin{bmatrix} 0 \end{bmatrix}$.

Análise no espaço de estado Controlabilidade e observabilidade

• Considere o sistema abaixo com condição inicial $x(t_0) = x_0$:

$$\dot{x} = Ax + Bu, \qquad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times r}$$

- Controlabilidade completa de estado: O sistema é completamente controlável num instante $t = t_0$, se existir um tempo $t_f > t_0$ e uma lei de controle u(t), com $t \in [t_0, t_f]$, tal que o estado é transferido de um estado inicial arbitrário $x(t_0) = x_0$ para um estado específico $x(t_f) = x_f$ num intervalo de tempo finito $t_f < \infty$.
- Esta condição é equivalente a verificar se o Gramiano de Controlabilidade X dado por

$$X = \int_0^\infty e^{A\tau} B B^T e^{A^T \tau} \, d\tau$$

é uma matriz positiva definida, ou seja, se X > 0.

• Uma condição necessária e suficiente para que X > 0, é que matriz de controlabilidade C tenha posto completo n:

$$\mathcal{C} = \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}$$

• Pode-se mostrar que a matriz X satisfaz a seguinte equação de Lyapunov

$$AX + XA^T + BB^T = 0$$

Análise no espaço de estado Controlabilidade e observabilidade

• Considere o sistema abaixo com condição inicial $x(t_0) = x_0$:

$$\dot{x} = Ax, \qquad y = Cx, \qquad A \in \mathbb{R}^{n \times n}, \quad C \in \mathbb{R}^{p \times n}$$

• Observabilidade completa de estado: O sistema é observável num instante $t_f > t_0$, se o conhecimento de y(t), com $t \in [t_0, t_f]$, fornece uma solução única $x(t_0)$ para

$$y(t) = Ce^{A(t-t_0)}x(t_0)$$

• Esta condição é equivalente a verificar se o Gramiano de Observabilidade

$$Q = \int_0^\infty e^{A^T \tau} C^T C e^{A\tau} \, d\tau$$

é uma matriz positiva definida, ou seja, se Q > 0.

• Q > 0 se, e somente se, a matriz de observabilidade O tiver posto completo n:

$$\mathcal{O} = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}$$

• Pode-se mostrar que a matriz Q satisfaz a seguinte equação de Lyapunov $QA + A^TQ + C^TC = 0$

Métodos de controle no espaco de estado

Projeto de controladores no espaço de estado Fórmula de Ackermann

- Se o sistema for completamente controlável, podemos usar a fórmula de Ackermann para alocar os pólos.
- Suponha que o polinômio característico desejado em malha fechada seja

$$\phi(s) = |sI - A + BK| = s^n + \alpha_1 s^{n-1} + \dots + \alpha_{n-1} s + \alpha_n$$

$$K = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \end{bmatrix} \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} \phi(A)$$

 ${\ensuremath{\, \bullet \, }}$ Exemplo. Seja a planta $G(s)=1/s^2$, cujas matrizes de estado são

$$A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \qquad C = \begin{bmatrix} 0 & 1 \end{bmatrix}, \qquad D = 0$$

• Suponha que o polinômio desejado seja

$$\alpha_c = s^2 + 0.4s + 0.08 \qquad \Rightarrow \qquad \zeta = \sqrt{2}/2, \quad \omega_n = \sqrt{2}/5$$

• A equação a ser resolvida é

$$\left| \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} K_1 & K_2 \end{bmatrix} \right| = s^2 + 0.4s + 0.08$$

cuja solução fornece $K_1 = 0.4$ e $K_2 = 0.08$.

Métodos de controle no espaço de estado Projeto de controladores no espaço de estado Observador de Luenberger

- Nem todos os estados podem estar disponíveis, sendo necessário estimá-los.
- O estimador de ordem completa de Luenberger é dado por

$$\dot{\bar{x}} = A\bar{x} + Bu(t) + L(y - C\bar{x})$$
$$= (A - LC)\bar{x} + Bu + Ly$$

onde \bar{x} é o estado estimado e $\bar{y}=C\bar{x}$ é a saída estimada.

• Para este estimador, a equação do erro $\tilde{x}(t) = \bar{x}(t) - x(t)$ é

$$\tilde{\tilde{x}}(t) = A\bar{x} + Bu(t) + L(y - C\bar{x}) - Ax - Bu$$
$$= (A - LC)\tilde{x}(t)$$

• Assim, o erro a qualquer instante é dado por

$$\tilde{x}(t) = e^{(A - LC)t} \tilde{x}(0)$$

- Se o sistema for completamente observável, é possível escolher L de forma a alocar arbitrariamente os autovalores de (A LC).
- A equação característica é dada por

$$\det(sI - A + LC) = 0$$

Métodos de controle no espaco de estado

Projeto de controladores no espaço de estado Observador de Luenberger

• Exemplo. Considere o duplo integrador: $G(s) = \frac{1}{s^2}$

cujas matrizes no espaço de estado são

$$A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \qquad C = \begin{bmatrix} 0 & 1 \end{bmatrix}, \qquad D = 0$$

• O sistema é observável, já que sua matriz de observabilidade é inversível:

$$\mathcal{O} = \begin{bmatrix} C \\ CA \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

• Suponha que o polinômio desejado para o estimador seja

$$\alpha_o = s^2 + 2s + 2 \qquad \Rightarrow \qquad \zeta = \sqrt{2}/2, \quad \omega_n = \sqrt{2}$$

• A equação para alocar os pólos do observador é

$$\begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} l_1 \\ l_2 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix} = s^2 + 2s + 2 \implies l_1 = 2, l_2 = 2$$

• A equação do estimador é dada por

$$\dot{\bar{x}}_1(t) = -2\bar{x}_2(t) + u(t) + 2y(t)$$
$$\dot{\bar{x}}_2(t) = \bar{x}_1(t) - 2\bar{x}_2(t) + 2y(t)$$

Projeto de controladores no espaço de estado Observador de Luenberger

• Se o sistema for completamente observável, existe uma matriz L tal que

$$\det(sI - A + LC) = \alpha_o(s)$$

• Fórmula de Ackermann:

$$L = \alpha_o(A)\mathcal{O}^{-1}\begin{bmatrix} 0 & 0 & \cdots & 1 \end{bmatrix}^T$$

onde ${\mathcal O}$ é a matriz de observabilidade.

- O problema de alocação de pólos para o observador é dual do controlador.
- A equação característica é dada por

$$|sI - A + LC| = |sI - A^T + C^T L^T| = |sI - A^T + C^T K| \quad \text{com } K = L^T$$

• Esta equação característica representa o seguinte problema de controle

$$\dot{x} = A^T x + C^T u$$
$$u = -Kx$$

Portanto, ∃K que aloca arbitrariamente λ_i(A^T + C^TK) sse o par (A^T, C^T) for controlável, i.e., se [C^T A^TC^T (A^T)ⁿ⁻¹C^T] for de posto completo n.

Métodos de controle no espaco de estado

Projeto de controladores no espaço de estado Princípio da separação

 No projeto do controlador por realimentação completa de estado, assume-se que todos os estados estão disponíveis, ou seja

$$u = -Kx(t)$$

• Caso x não esteja disponível, podemos usar o observador de Luenberger:

$$\dot{\bar{x}} = A\bar{x} + Bu + L(y - C\bar{x}) = (A - LC)\bar{x} + Bu + Ly$$

- Usando \bar{x} no lugar de x, a lei de controle passa a ser $u = -K\bar{x}$
- A estrutura final de controle fica sendo

- O princípio da separação afirma que o projeto do controlador e do estimador podem ser realizados de forma independentes, que a estabilidade permanecerá garantida.
- Os pólos do estimador são geralmente alocados de forma a serem de 3 a 6 vezes mais rápidos do que os pólos do controlador.

Camino, J. F. (DPM/FEM/UNICAMP)

ES927 - Controle de Sistemas Robóticos

Projeto de controladores no espaço de estado Princípio da separacão

Métodos de controle no espaço de estado

- É possível obter a função de transferência do controlador/observador.
- Para isto, usamos a equação do observador e do controlador dados por

$$\dot{\bar{x}} = A\bar{x} + Bu(t) + L(y(t) - C\bar{x}(t)), \qquad u = -K\bar{x}(t)$$

• Aplicando a transformada de Laplace, temos

$$D(s) = -K(sI - A + BK + LC)^{-1}L$$

- Note que a ordem do controlador D(s) é a mesma do observador.
- Embora mais difícil, é possível obter um estimador de ordem reduzida.
- Exemplo. Para o sistema composto pelo duplo integrador, projetamos

$$K = \begin{bmatrix} 0.4 & 0.08 \end{bmatrix}, \qquad L = \begin{bmatrix} 2\\ 2 \end{bmatrix}$$

 ${\ensuremath{\bullet}}$ Assim, a função de transferência do controlador D(s) é dada por

$$D(s) = \begin{bmatrix} 0.4 & 0.08 \end{bmatrix} \left(sI - \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 0.4 & 0.08 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 2 \\ 0 & 2 \end{bmatrix} \right)^{-1} \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$
$$= -\frac{0.96(s+1/6)}{s^2 + 2.4s + 2.88}$$

Projeto de controladores ótimos no espaço de estado Problema LQR horizonte infinito

• Considere o sistema linear contínuo invariante no tempo

$$x(t) = Ax(t) + Bu(t)$$

 ${\ensuremath{\, \circ }}$ Desejamos encontrar uma lei de controle u(t) de forma a minimizar o custo

$$J = \frac{1}{2} \int_0^\infty \left(x(t)' Q x(t) + u(t)' R u(t) \right) \, \mathrm{d}t$$

onde $Q=Q'\geq 0$ e R=R'>0 são matrizes de ponderação.

• A solução ótima é obtida da seguinte equação diferencial de Riccati:

$$A'P + PA - PBR^{-1}B'P + Q = 0$$

• A lei de controle ótima no caso é dada por

$$u^{*}(t) = -Kx(t), \text{ com } K = R^{-1}B'P$$

- Exemplo. Considere o problema: $\min J = \int_0^T u(t)^2 dt$ sujeito a $\dot{x}(t) = x(t) + u(t)$ Claramente, temos $u^* = 0$. No entanto o sistema em malha fechada será instável.
- Para garantir que P > 0 e que o sistema em malha fechada seja assintoticamente estável, é suficiente que haja controlabilidade e observabilidade.
- $\bullet~$ Controle por Matlab: $[K,P] = \mathrm{lqr}(A,B,Q,R)$ e $[P] = \mathrm{care}(A,B,Q,R)$.